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Fusion Family of Mixed Signal FPGAs
Clock Aggregation
Clock aggregation allows for multi-spine clock domains. A MUX tree provides the necessary flexibility to
allow long lines or I/Os to access domains of one, two, or four global spines. Signal access to the clock
aggregation system is achieved through long-line resources in the central rib, and also through local
resources in the north and south ribs, allowing I/Os to feed directly into the clock system. As Figure 2-14
indicates, this access system is contiguous.

There is no break in the middle of the chip for north and south I/O VersaNet access. This is different from
the quadrant clocks, located in these ribs, which only reach the middle of the rib. Refer to the Using
Global Resources in Actel Fusion Devices application note.

Figure 2-14 • Clock Aggregation Tree Architecture
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Fusion Family of Mixed Signal FPGAs
VersaNet Timing Characteristics
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not
include I/O input buffer clock delays, as these are dependent upon I/O standard, and the clock may be
driven and conditioned internally by the CCC module. Table 2-5, Table 2-6, Table 2-7, and Table 2-8 on
page 2-17 present minimum and maximum global clock delays within the device Minimum and maximum
delays are measured with minimum and maximum loading, respectively.

Timing Characteristics  

Table 2-5 • AFS1500 Global Resource Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description
–2 –1 Std. 

Units
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2

tRCKL Input Low Delay for Global Clock 1.53 1.75 1.74 1.99 2.05 2.34 ns

tRCKH Input High Delay for Global Clock 1.53 1.79 1.75 2.04 2.05 2.40 ns

tRCKMPWH Minimum Pulse Width High for Global Clock ns

tRCKMPWL Minimum Pulse Width Low for Global Clock ns

tRCKSW Maximum Skew for Global Clock 0.26 0.29 0.34 ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element
located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a
fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-6 • AFS600 Global Resource Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description
–2 –1 Std. 

Units
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2

tRCKL Input Low Delay for Global Clock 1.27 1.49 1.44 1.70 1.69 2.00  ns 

tRCKH Input High Delay for Global Clock 1.26 1.54 1.44 1.75 1.69 2.06  ns 

tRCKMPWH Minimum Pulse Width High for Global Clock  ns 

tRCKMPWL Minimum Pulse Width Low for Global Clock  ns 

tRCKSW Maximum Skew for Global Clock 0.27 0.31 0.36  ns 

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element
located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a
fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.
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Device Architecture
Table 2-7 • AFS250 Global Resource Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description
–2 –1 Std. 

Units
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2

tRCKL Input Low Delay for Global Clock 0.89 1.12 1.02 1.27 1.20 1.50  ns 

tRCKH Input High Delay for Global Clock 0.88 1.14 1.00 1.30 1.17 1.53  ns 

tRCKMPWH Minimum Pulse Width High for Global Clock  ns 

tRCKMPWL Minimum Pulse Width Low for Global Clock  ns 

tRCKSW Maximum Skew for Global Clock 0.26 0.30 0.35  ns 

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element
located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully
loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-8 • AFS090 Global Resource Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description
–2 –1 Std. 

Units
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2

tRCKL Input Low Delay for Global Clock 0.84 1.07 0.96 1.21 1.13 1.43  ns 

tRCKH Input High Delay for Global Clock 0.83 1.10 0.95 1.25 1.12 1.47  ns 

tRCKMPWH Minimum Pulse Width High for Global Clock  ns 

tRCKMPWL Minimum Pulse Width Low for Global Clock  ns 

tRCKSW Maximum Skew for Global Clock 0.27 0.30 0.36  ns 

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element
located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a
fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.
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Fusion Family of Mixed Signal FPGAs
Voltage Regulator and Power System Monitor (VRPSM)
The VRPSM macro controls the power-up state of the FPGA. The power-up bar (PUB) pin can turn on
the voltage regulator when set to 0. TRST can enable the voltage regulator when deasserted, allowing
the FPGA to power-up when user want access to JTAG ports. The inputs VRINITSTATE and
RTCPSMMATCH come from the flash bits and RTC, and can also power up the FPGA.

Note: *Signals are hardwired internally and do not exist in the macro core.

Figure 2-30 • VRPSM Macro
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Table 2-17 • VRPSM Signal Descriptions

Signal Name Width Direction Function

VRPU 1 In Voltage Regulator Power-Up

0 – Voltage regulator disabled. PUB must be floated or pulled up, and the TRST
pin must be grounded to disable the voltage regulator.

1 – Voltage regulator enabled

VRINITSTATE 1 In Voltage Regulator Initial State

Defines the voltage Regulator status upon power-up of the 3.3 V. The signal is
configured by Libero SoC when the VRPSM macro is generated.

Tie off to 1 – Voltage regulator enables when 3.3 V is powered.

Tie off to 0 – Voltage regulator disables when 3.3 V is powered.

RTCPSMMATCH 1 In RTC Power System Management Match

Connect from RTCPSMATCH signal from RTC in AB

0 transition to 1 turns on the voltage regulator 

PUB 1 In External pin, built-in weak pull-up

Power-Up Bar

0 – Enables voltage regulator at all times

TRST* 1 In External pin, JTAG Test Reset

1 – Enables voltage regulator at all times

FPGAGOOD 1 Out Indicator that the FPGA is powered and functional

No need to connect if it is not used.

1 – Indicates that the FPGA is powered up and functional.

0 – Not possible to read by FPGA since it has already powered off.

PUCORE 1 Out Power-Up Core

Inverted signal of PUB. No need to connect if it is not used.

VREN* 1 Out Voltage Regulator Enable

Connected to 1.5 V voltage regulator in Fusion device internally.

0 – Voltage regulator disables

1 – Voltage regulator enables

Note: *Signals are hardwired internally and do not exist in the macro core.
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Fusion Family of Mixed Signal FPGAs
Read Operation
Read operations are designed to read data from the FB Array, Page Buffer, Block Buffer, or status
registers. Read operations support a normal read and a read-ahead mode (done by asserting
READNEXT). Also, the timing for Read operations is dependent on the setting of PIPE.

The following diagrams illustrate representative timing for Non-Pipe Mode (Figure 2-38) and Pipe Mode
(Figure 2-39) reads of the flash memory block interface.  

Figure 2-38 • Read Waveform (Non-Pipe Mode, 32-bit access)

Figure 2-39 • Read Waveform (Pipe Mode, 32-bit access)
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Fusion Family of Mixed Signal FPGAs
Modes of Operation
There are two read modes and one write mode:

• Read Nonpipelined (synchronous—1 clock edge): In the standard read mode, new data is driven
onto the RD bus in the same clock cycle following RA and REN valid. The read address is
registered on the read port clock active edge, and data appears at RD after the RAM access time.
Setting PIPE to OFF enables this mode.

• Read Pipelined (synchronous—2 clock edges): The pipelined mode incurs an additional clock
delay from the address to the data but enables operation at a much higher frequency. The read
address is registered on the read port active clock edge, and the read data is registered and
appears at RD after the second read clock edge. Setting PIPE to ON enables this mode.

• Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into
the SRAM at the write address when WEN is High. The setup times of the write address, write
enables, and write data are minimal with respect to the write clock. Write and read transfers are
described with timing requirements in the "SRAM Characteristics" section on page 2-63 and the
"FIFO Characteristics" section on page 2-72.

RAM Initialization
Each SRAM block can be individually initialized on power-up by means of the JTAG port using the
UJTAG mechanism (refer to the "JTAG IEEE 1532" section on page 2-229 and the Fusion SRAM/FIFO
Blocks application note). The shift register for a target block can be selected and loaded with the proper
bit configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation. 
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Fusion Family of Mixed Signal FPGAs
ESTOP, FSTOP
ESTOP is used to stop the FIFO read counter from further counting once the FIFO is empty (i.e., the
EMPTY flag goes High). A High on this signal inhibits the counting. 

FSTOP is used to stop the FIFO write counter from further counting once the FIFO is full (i.e., the FULL
flag goes High). A High on this signal inhibits the counting. 

For more information on these signals, refer to the "ESTOP and FSTOP Usage" section on page 2-70.

FULL, EMPTY
When the FIFO is full and no more data can be written, the FULL flag asserts High. The FULL flag is
synchronous to WCLK to inhibit writing immediately upon detection of a full condition and to prevent
overflows. Since the write address is compared to a resynchronized (and thus time-delayed) version of
the read address, the FULL flag will remain asserted until two WCLK active edges after a read operation
eliminates the full condition.

When the FIFO is empty and no more data can be read, the EMPTY flag asserts High. The EMPTY flag
is synchronous to RCLK to inhibit reading immediately upon detection of an empty condition and to
prevent underflows. Since the read address is compared to a resynchronized (and thus time-delayed)
version of the write address, the EMPTY flag will remain asserted until two RCLK active edges after a
write operation removes the empty condition.

For more information on these signals, refer to the "FIFO Flag Usage Considerations" section on
page 2-70. 

AFULL, AEMPTY
These are programmable flags and will be asserted on the threshold specified by AFVAL and AEVAL,
respectively. 

When the number of words stored in the FIFO reaches the amount specified by AEVAL while reading,
the AEMPTY output will go High. Likewise, when the number of words stored in the FIFO reaches the
amount specified by AFVAL while writing, the AFULL output will go High. 

AFVAL, AEVAL
The AEVAL and AFVAL pins are used to specify the almost-empty and almost-full threshold values,
respectively. They are 12-bit signals. For more information on these signals, refer to "FIFO Flag
Usage Considerations" section.

ESTOP and FSTOP Usage
The ESTOP pin is used to stop the read counter from counting any further once the FIFO is empty (i.e.,
the EMPTY flag goes High). Likewise, the FSTOP pin is used to stop the write counter from counting any
further once the FIFO is full (i.e., the FULL flag goes High). 

The FIFO counters in the Fusion device start the count at 0, reach the maximum depth for the
configuration (e.g., 511 for a 512×9 configuration), and then restart at 0. An example application for the
ESTOP, where the read counter keeps counting, would be writing to the FIFO once and reading the same
content over and over without doing another write.

FIFO Flag Usage Considerations
The AEVAL and AFVAL pins are used to specify the 12-bit AEMPTY and AFULL threshold values,
respectively. The FIFO contains separate 12-bit write address (WADDR) and read address (RADDR)
counters. WADDR is incremented every time a write operation is performed, and RADDR is incremented
every time a read operation is performed. Whenever the difference between WADDR and RADDR is
greater than or equal to AFVAL, the AFULL output is asserted. Likewise, whenever the difference
between WADDR and RADDR is less than or equal to AEVAL, the AEMPTY output is asserted. To
handle different read and write aspect ratios, AFVAL and AEVAL are expressed in terms of total data bits
instead of total data words. When users specify AFVAL and AEVAL in terms of read or write words, the
SmartGen tool translates them into bit addresses and configures these signals automatically. SmartGen
configures the AFULL flag to assert when the write address exceeds the read address by at least a
predefined value. In a 2k×8 FIFO, for example, a value of 1,500 for AFVAL means that the AFULL flag
will be asserted after a write when the difference between the write address and the read address
reaches 1,500 (there have been at least 1500 more writes than reads). It will stay asserted until the
difference between the write and read addresses drops below 1,500.
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Fusion Family of Mixed Signal FPGAs
Voltage Monitor
The Fusion Analog Quad offers a robust set of voltage-monitoring capabilities unique in the FPGA
industry. The Analog Quad comprises three analog input pads— Analog Voltage (AV), Analog Current
(AC), and Analog Temperature (AT)—and a single gate driver output pad, Analog Gate (AG). There are
many common characteristics among the analog input pads. Each analog input can be configured to
connect directly to the input MUX of the ADC. When configured in this manner (Figure 2-66), there will be
no prescaling of the input signal. Care must be taken in this mode not to drive the ADC into saturation by
applying an input voltage greater than the reference voltage. The internal reference voltage of the ADC is
2.56 V. Optionally, an external reference can be supplied by the user. The external reference can be a
maximum of 3.3 V DC.

The Analog Quad offers a wide variety of prescaling options to enable the ADC to resolve the input
signals. Figure 2-67 shows the path through the Analog Quad for a signal that is to be prescaled prior to
conversion. The ADC internal reference voltage and the prescaler factors were selected to make both
prescaling and postscaling of the signals easy binary calculations (refer to Table 2-57 on page 2-130 for
details). When an analog input pad is configured with a prescaler, there will be a 1 M resistor to ground.
This occurs even when the device is in power-down mode. In low power standby or sleep mode (VCC is
OFF, VCC33A is ON, VCCI is ON) or when the resource is not used, analog inputs are pulled down to
ground through a 1 M resistor. The gate driver output is floating (or tristated), and there is no extra
current on VCC33A.

These scaling factors hold true whether the particular pad is configured to accept a positive or negative
voltage. Note that whereas the AV and AC pads support the same prescaling factors, the AT pad
supports a reduced set of prescaling factors and supports positive voltages only.

Figure 2-66 • Analog Quad Direct Connect
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Device Architecture
The rate at which the gate voltage of the external MOSFET slews is determined by the current, Ig,
sourced or sunk by the AG pin and the gate-to-source capacitance, CGS, of the external MOSFET. As an
approximation, the slew rate is given by EQ 6.

dv/dt = Ig / CGS 

EQ 6

CGS is not a fixed capacitance but, depending on the circuitry connected to its drain terminal, can vary
significantly during the course of a turn-on or turn-off transient. Thus, EQ 6 on page 2-91 can only be
used for a first-order estimate of the switching speed of the external MOSFET.

Figure 2-75 • Gate Driver Example
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Fusion Family of Mixed Signal FPGAs
Intra-Conversion
Performing a conversion during power-up calibration is possible but should be avoided, since the
performance is not guaranteed, as shown in Table 2-49 on page 2-117. This is described as 
intra-conversion. Figure 2-92 on page 2-113 shows intra-conversion, (conversion that starts during
power-up calibration).

Injected Conversion
A conversion can be interrupted by another conversion. Before the current conversion is finished, a
second conversion can be started by issuing a pulse on signal ADCSTART. When a second conversion
is issued before the current conversion is completed, the current conversion would be dropped and the
ADC would start the second conversion on the rising edge of the SYSCLK. This is known as injected
conversion. Since the ADC is synchronous, the minimum time to issue a second conversion is two clock
cycles of SYSCLK after the previous one. Figure 2-93 on page 2-113 shows injected conversion,
(conversion that starts before a previously started conversion is finished). The total time for calibration
still remains 3,840 ADCCLK cycles.

ADC Example
This example shows how to choose the correct settings to achieve the fastest sample time in 10-bit mode
for a system that runs at 66 MHz. Assume the acquisition times defined in Table 2-44 on page 2-108 for
10-bit mode, which gives 0.549 µs as a minimum hold time.

The period of SYSCLK: tSYSCLK = 1/66 MHz = 0.015 µs

Choosing TVC between 1 and 33 will meet the maximum and minimum period for the ADCCLK
requirement. A higher TVC leads to a higher ADCCLK period. 

The minimum TVC is chosen so that tdistrib and tpost-cal can be run faster. The period of ADCCLK with a
TVC of 1 can be computed by EQ 24.

EQ 24

The STC value can now be computed by using the minimum sample/hold time from Table 2-44 on
page 2-108, as shown in EQ 25. 

EQ 25

You must round up to 3 to accommodate the minimum sample time requirement. The actual sample time,
tsample, with an STC of 3, is now equal to 0.6 µs, as shown in EQ 26

EQ 26

Microsemi recommends post-calibration for temperature drift over time, so post-calibration is enabled.

The post-calibration time, tpost-cal, can be computed by EQ 27. The post-calibration time is 0.24 µs.

EQ 27

The distribution time, tdistrib, is equal to 1.2 µs and can be computed as shown in EQ 28 (N is number of
bits, referring back to EQ 8 on page 2-94).

EQ 28

The total conversion time can now be summated, as shown in EQ 29 (referring to EQ 23 on page 2-109).

tsync_read + tsample + tdistrib + tpost-cal + tsync_write = (0.015 + 0.60 + 1.2 + 0.24 + 0.015) µs = 2.07 µs

EQ 29

tADCCLK 4 1 TVC+  tSYSCLK 4 1 1+  0.015 µs 0.12 µs= = =

STC
tsample

tADCCLK
-------------------- 2–

0.549 µs
0.12 µs
----------------------- 2– 4.575 2– 2.575= = = =

tsample 2 STC+  tADCCLK 2 3+  tADCCLK 5 0.12 µs 0.6 µs= = = =

tpost-cal 2 tADCCLK 0.24 µs= =

tdistrib N tADCCLK 10 0.12 1.2 µs= = =
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Fusion Family of Mixed Signal FPGAs
Figure 2-96 • Temperature Reading Noise When Averaging is Used
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Device Architecture
Digital Input using Analog Pads AV, AC and AT

VIND2,3 Input Voltage Refer to Table 3-2 on page 3-3

VHYSDIN Hysteresis 0.3 V

VIHDIN Input High 1.2 V

VILDIN Input Low 0.9 V

VMPWDIN Minimum Pulse With 50 ns

FDIN Maximum Frequency 10 MHz

ISTBDIN Input Leakage Current 2 µA

IDYNDIN Dynamic Current 20 µA

tINDIN Input Delay 10 ns

Gate Driver Output Using Analog Pad AG

VG Voltage Range Refer to Table 3-2 on page 3-3

IG Output Current Drive High Current Mode6 at 1.0 V ±20 mA

Low Current Mode: ±1 µA 0.8 1.0 1.3 µA

Low Current Mode: ±3 µA 2.0 2.7 3.3 µA

Low Current Mode: ± 10 µA 7.4 9.0 11.5 µA

Low Current Mode: ± 30 µA 21.0 27.0 32.0 µA

IOFFG Maximum Off Current 100 nA

FG Maximum switching rate High Current Mode6 at 1.0 V, 1 
k resistive load

1.3 MHz

Low Current Mode: 
±1 µA, 3 M resistive load

3 KHz

Low Current Mode: 
±3 µA, 1 M resistive load

7 KHz

Low Current Mode: 
±10 µA, 300 k resistive load

25 KHz

Low Current Mode: 
±30 µA, 105 k resistive load

78 KHz

Table 2-49 • Analog Channel Specifications  (continued)
Commercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise), 
Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter Description Condition Min. Typ. Max. Units

Notes:

1. VRSM is the maximum voltage drop across the current sense resistor.
2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no

reliability concern on digital inputs as long as VIND does not exceed these limits.

3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.

4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance
allowed across the AT pins is 500 pF.

5. The temperature offset is a fixed positive value.

6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on
voltage on the pad.

7. When using SmartGen Analog System Builder, CalibIP is required to obtain specified offset. For further details on
CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA
Fabric User Guide.
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Device Architecture
SSTL2 Class I
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Fusion devices support Class
I. This provides a differential amplifier input buffer and a push-pull output buffer.   

Timing Characteristics  

Table 2-156 • Minimum and Maximum DC Input and Output Levels

SSTL2 Class I VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

15 mA –0.3 VREF – 0.2 VREF + 0.2 3.6 0.54 VCCI – 0.62 15 15 87 83 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-130 • AC Loading

Table 2-157 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)

VREF – 0.2 VREF + 0.2 1.25 1.25 1.25 30

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point

30 pF

50

25

SSTL2
Class I

VTT

Table 2-158 • SSTL 2 Class I
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 2.3 V, VREF = 1.25 V

Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

 Std. 0.66 2.13 0.04 1.33 0.43 2.17 1.85 4.40 4.08 ns

 –1 0.56 1.81 0.04 1.14 0.36 1.84 1.57 3.74 3.47 ns

 –2 0.49 1.59 0.03 1.00 0.32 1.62 1.38 3.29 3.05 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics

Figure 2-145 • Output DDR Timing Diagram
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Table 2-182 • Output DDR Propagation Delays
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tDDROCLKQ Clock-to-Out of DDR for Output DDR 0.70 0.80 0.94 ns

tDDROSUD1 Data_F Data Setup for Output DDR 0.38 0.43 0.51 ns

tDDROSUD2 Data_R Data Setup for Output DDR 0.38 0.43 0.51 ns

tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 0.00 ns

tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 0.00 ns

tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 0.80 0.91 1.07 ns

tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 0.00 ns

tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.22 0.25 0.30 ns

tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.22 0.25 0.30 ns

tDDROCKMPWH Clock Minimum Pulse Width High for the Output DDR 0.36 0.41 0.48 ns

tDDROCKMPWL Clock Minimum Pulse Width Low for the Output DDR 0.32 0.37 0.43 ns

FDDOMAX Maximum Frequency for the Output DDR 1404 1232 1048 MHz

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
Pin Descriptions

Supply Pins

GND Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is
decoupled from the simultaneous switching noise originated from the output buffer ground domain. This
minimizes the noise transfer within the package and improves input signal integrity. GNDQ needs to
always be connected on the board to GND. Note: In FG256, FG484, and FG676 packages, GNDQ and
GND pins are connected within the package and are labeled as GND pins in the respective package pin
assignment tables.

ADCGNDREF Analog Reference Ground

Analog ground reference used by the ADC. This pad should be connected to a quiet analog ground.

GNDA Ground (analog)

Quiet ground supply voltage to the Analog Block of Fusion devices. The use of a separate analog ground
helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V
maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.

GNDAQ Ground (analog quiet)

Quiet ground supply voltage to the analog I/O of Fusion devices. The use of a separate analog ground
helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V
maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.
Note: In FG256, FG484, and FG676 packages, GNDAQ and GNDA pins are connected within the
package and are labeled as GNDA pins in the respective package pin assignment tables. 

GNDNVM Flash Memory Ground

Ground supply used by the Fusion device's flash memory block module(s).

GNDOSC Oscillator Ground

Ground supply for both integrated RC oscillator and crystal oscillator circuit.

VCC15A Analog Power Supply (1.5 V)

1.5 V clean analog power supply input for use by the 1.5 V portion of the analog circuitry.

VCC33A Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the 3.3 V portion of the analog circuitry.

VCC33N Negative 3.3 V Output

This is the –3.3 V output from the voltage converter. A 2.2 µF capacitor must be connected from this pin
to ground.

VCC33PMP Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the analog charge pump. To avoid high current draw,
VCC33PMP should be powered up simultaneously with or after VCC33A.

VCCNVM Flash Memory Block Power Supply (1.5 V)

1.5 V power supply input used by the Fusion device's flash memory block module(s). To avoid high
current draw, VCC should be powered up before or simultaneously with VCCNVM.

VCCOSC Oscillator Power Supply (3.3 V)

Power supply for both integrated RC oscillator and crystal oscillator circuit. The internal 100 MHz
oscillator, powered by the VCCOSC pin, is needed for device programming, operation of the VDDN33
pump, and eNVM operation. VCCOSC is off only when VCCA is off. VCCOSC must be powered
whenever the Fusion device needs to function.
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Device Architecture
TMS Test Mode Select

The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an
internal weak pull-up resistor on the TMS pin. 

TRST Boundary Scan Reset Pin

The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan
circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-
down resistor could be included to ensure the TAP is held in reset mode. The resistor values must be
chosen from Table 2-183 and must satisfy the parallel resistance value requirement. The values in
Table 2-183 correspond to the resistor recommended when a single device is used and to the equivalent
parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entering an undesired JTAG state. In such
cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500  to 1 k will satisfy the requirements.

Special Function Pins

NC No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be
left floating with no effect on the operation of the device.

DC Don't Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

NCAP Negative Capacitor

Negative Capacitor is where the negative terminal of the charge pump capacitor is connected. A
capacitor, with a 2.2 µF recommended value, is required to connect between PCAP and NCAP.

PCAP Positive Capacitor

Positive Capacitor is where the positive terminal of the charge pump capacitor is connected. A capacitor,
with a 2.2 µF recommended value, is required to connect between PCAP and NCAP.

PUB Push Button

Push button is the connection for the external momentary switch used to turn on the 1.5 V voltage
regulator and can be floating if not used.

PTBASE Pass Transistor Base

Pass Transistor Base is the control signal of the voltage regulator. This pin should be connected to the
base of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if
not used.

PTEM Pass Transistor Emitter

Pass Transistor Emitter is the feedback input of the voltage regulator.

This pin should be connected to the emitter of the external pass transistor used with the 1.5 V internal
voltage regulator and can be floating if not used.

XTAL1 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or
external clock input. When using an external crystal or ceramic oscillator, external capacitors are also
recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the
case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the
XTAL2 pin should be left floating.
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Fusion Family of Mixed Signal FPGAs
Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings1 

CLOAD (pF) VCCI (V) 
Static Power
PDC8 (mW)2 

Dynamic Power
PAC10 (µW/MHz)3

Applicable to Pro I/O Banks

Single-Ended 

3.3 V LVTTL/LVCMOS 35 3.3 – 474.70 

2.5 V LVCMOS 35 2.5 – 270.73 

1.8 V LVCMOS 35 1.8 – 151.78 

1.5 V LVCMOS (JESD8-11) 35 1.5 – 104.55 

3.3 V PCI 10 3.3 – 204.61 

3.3 V PCI-X 10 3.3 – 204.61 

Voltage-Referenced 

3.3 V GTL 10 3.3 – 24.08

2.5 V GTL 10 2.5 – 13.52

3.3 V GTL+ 10 3.3 – 24.10

2.5 V GTL+ 10 2.5 – 13.54

HSTL (I) 20 1.5 7.08 26.22

HSTL (II) 20 1.5 13.88 27.22

SSTL2 (I) 30 2.5 16.69 105.56

SSTL2 (II) 30 2.5 25.91 116.60

SSTL3 (I) 30 3.3 26.02 114.87

SSTL3 (II) 30 3.3 42.21 131.76

Differential 

LVDS – 2.5 7.70 89.62

LVPECL – 3.3 19.42 168.02

Applicable to Advanced I/O Banks

Single-Ended 

3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 468.67

2.5 V LVCMOS 35 2.5 – 267.48

1.8 V LVCMOS 35 1.8 – 149.46

1.5 V LVCMOS (JESD8-11) 35 1.5 – 103.12

3.3 V PCI 10 3.3 – 201.02

3.3 V PCI-X 10 3.3 – 201.02

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.
2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.
Revision 6 3-20



Fusion Family of Mixed Signal FPGAs
RAM Dynamic Contribution—PMEMORY

Operating Mode

PMEMORY = (NBLOCKS * PAC11 * 2 * FREAD-CLOCK) + (NBLOCKS * PAC12 * 3 * FWRITE-CLOCK)

NBLOCKS is the number of RAM blocks used in the design.

FREAD-CLOCK is the memory read clock frequency.

2 is the RAM enable rate for read operations—guidelines are provided in Table 3-17 on
page 3-27.

3 the RAM enable rate for write operations—guidelines are provided in Table 3-17 on page 3-27.

FWRITE-CLOCK is the memory write clock frequency.

Standby Mode and Sleep Mode

PMEMORY = 0 W

PLL/CCC Dynamic Contribution—PPLL

Operating Mode

PPLL = PAC13 * FCLKOUT

FCLKIN is the input clock frequency.

FCLKOUT is the output clock frequency.1

Standby Mode and Sleep Mode

PPLL = 0 W

Nonvolatile Memory Dynamic Contribution—PNVM

Operating Mode

The NVM dynamic power consumption is a piecewise linear function of frequency.

PNVM = NNVM-BLOCKS * 4 * PAC15 * FREAD-NVM when FREAD-NVM 33 MHz,

PNVM = NNVM-BLOCKS * 4 *(PAC16 + PAC17 * FREAD-NVM when FREAD-NVM > 33 MHz

NNVM-BLOCKS is the number of NVM blocks used in the design (2 inAFS600).

4 is the NVM enable rate for read operations. Default is 0 (NVM mainly in idle state).

FREAD-NVM is the NVM read clock frequency.

Standby Mode and Sleep Mode

PNVM = 0 W

Crystal Oscillator Dynamic Contribution—PXTL-OSC

Operating Mode

PXTL-OSC = PAC18

Standby Mode

PXTL-OSC = PAC18

Sleep Mode

PXTL-OSC = 0 W

1. The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the
PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output
clock in the formula output clock by adding its corresponding contribution (PAC14 * FCLKOUT product) to the total PLL
contribution.
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Package Pin Assignments
M15 TRST TRST TRST TRST

M16 GND GND GND GND

N1 GEB2/IO42PDB3V0 GEB2/IO59PDB3V0 GEB2/IO59PDB4V0 GEB2/IO86PDB4V0

N2 GEA2/IO42NDB3V0 IO59NDB3V0 IO59NDB4V0 IO86NDB4V0

N3 NC GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO85PPB4V0

N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP

N5 VCC15A VCC15A VCC15A VCC15A

N6 NC NC AG0 AG0

N7 AC1 AC1 AC3 AC3

N8 AG3 AG3 AG5 AG5

N9 AV3 AV3 AV5 AV5

N10 AG4 AG4 AG6 AG6

N11 NC NC AC8 AC8

N12 GNDA GNDA GNDA GNDA

N13 VCC33A VCC33A VCC33A VCC33A

N14 VCCNVM VCCNVM VCCNVM VCCNVM

N15 TCK TCK TCK TCK

N16 TDI TDI TDI TDI

P1 VCCNVM VCCNVM VCCNVM VCCNVM

P2 GNDNVM GNDNVM GNDNVM GNDNVM

P3 GNDA GNDA GNDA GNDA

P4 NC NC AC0 AC0

P5 NC NC AG1 AG1

P6 NC NC AV1 AV1

P7 AG0 AG0 AG2 AG2

P8 AG2 AG2 AG4 AG4

P9 GNDA GNDA GNDA GNDA

P10 NC AC5 AC7 AC7

P11 NC NC AV8 AV8

P12 NC NC AG8 AG8

P13 NC NC AV9 AV9

P14 ADCGNDREF ADCGNDREF ADCGNDREF ADCGNDREF

P15 PTBASE PTBASE PTBASE PTBASE

P16 GNDNVM GNDNVM GNDNVM GNDNVM

R1 VCCIB3 VCCIB3 VCCIB4 VCCIB4

R2 PCAP PCAP PCAP PCAP

R3 NC NC AT1 AT1

R4 NC NC AT0 AT0

FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function
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Fusion Family of Mixed Signal FPGAs
Revision 2
(continued)

The prescalar range for the 'Analog Input (direct input to ADC)" configurations was
removed as inapplicable for direct inputs. The input resistance for direct inputs is
covered in Table 2-50 • ADC Characteristics in Direct Input Mode (SAR 31201).

2-120

The "Examples" for calibrating accuracy for ADC channels were revised and
corrected to make them consistent with terminology in the associated tables (SARs
36791, 36773).

2-124

A note was added to Table 2-56 • Analog Quad ACM Byte Assignment and the
introductory text for Table 2-66 • Internal Temperature Monitor Control Truth Table,
stating that for the internal temperature monitor to function, Bit 0 of Byte 2 for all 10
Quads must be set (SAR 34418).

2-129, 
2-131

tDOUT was corrected to tDIN in Figure 2-116 • Input Buffer Timing Model and Delays
(example) (SAR 37115).

2-161

The formulas in the table notes for Table 2-97 • I/O Weak Pull-Up/Pull-Down
Resistances were corrected (SAR 34751).

2-171

The AC Loading figures in the "Single-Ended I/O Characteristics" section were
updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O
Software Settings" section (SAR 34877).

2-175

The following notes were removed from Table 2-168 • Minimum and Maximum DC
Input and Output Levels (SAR 34808):

±5% 

Differential input voltage = ±350 mV

2-209

An incomplete, duplicate sentence was removed from the end of the "GNDAQ
Ground (analog quiet)" pin description (SAR 30185).

2-223

Information about configuration of unused I/Os was added to the "User Pins" section
(SAR 32642).

2-225

The following information was added to the pin description for "XTAL1 Crystal
Oscillator Circuit Input" and "XTAL2 Crystal Oscillator Circuit Input" (SAR 24119).

2-227

The input resistance to ground value in Table 3-3 • Input Resistance of Analog Pads
for Analog Input (direct input to ADC), was corrected from 1 M (typical) to 2 k
(typical) (SAR 34371). 

3-4

The Storage Temperature column in Table 3-5 • FPGA Programming, Storage, and
Operating Limits stated Min. TJ twice for commercial and industrial product grades
and has been corrected to Min. TJ and Max. TJ (SAR 29416).

3-5

The reference to guidelines for global spines and VersaTile rows, given in the
"Global Clock Dynamic Contribution—PCLOCK" section, was corrected to the
"Spine Architecture" section of the Global Resources chapter in the Fusion
FPGA Fabric User's Guide (SAR 34741).

3-24

Package names used in the "Package Pin Assignments" section were revised to
match standards given in Package Mechanical Drawings (SAR 36612).

4-1

July 2010 The versioning system for datasheets has been changed. Datasheets are assigned
a revision number that increments each time the datasheet is revised. The "Fusion
Device Status" table indicates the status for each device in the device family. 

N/A
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