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2 – Device Architecture

Fusion Stack Architecture
To manage the unprecedented level of integration in Fusion devices, Microsemi developed the Fusion
technology stack (Figure 2-1). This layered model offers a flexible design environment, enabling design
at very high and very low levels of abstraction. Fusion peripherals include hard analog IP and hard and
soft digital IP. Peripherals communicate across the FPGA fabric via a layer of soft gates—the Fusion
backbone. Much more than a common bus interface, this Fusion backbone integrates a micro-sequencer
within the FPGA fabric and configures the individual peripherals and supports low-level processing of
peripheral data. Fusion applets are application building blocks that can control and respond to
peripherals and other system signals. Applets can be rapidly combined to create large applications. The
technology is scalable across devices, families, design types, and user expertise, and supports a 
well-defined interface for external IP and tool integration.

At the lowest level, Level 0, are Fusion peripherals. These are configurable functional blocks that can be
hardwired structures such as a PLL or analog input channel, or soft (FPGA gate) blocks such as a UART
or two-wire serial interface. The Fusion peripherals are configurable and support a standard interface to
facilitate communication and implementation.

Connecting and controlling access to the peripherals is the Fusion backbone, Level 1. The backbone is a
soft-gate structure, scalable to any number of peripherals. The backbone is a bus and much more; it
manages peripheral configuration to ensure proper operation. Leveraging the common peripheral
interface and a low-level state machine, the backbone efficiently offloads peripheral management from
the system design. The backbone can set and clear flags based upon peripheral behavior and can define
performance criteria. The flexibility of the stack enables a designer to configure the silicon, directly
bypassing the backbone if that level of control is desired.

One step up from the backbone is the Fusion applet, Level 2. The applet is an application building block
that implements a specific function in FPGA gates. It can react to stimuli and board-level events coming
through the backbone or from other sources, and responds to these stimuli by accessing and
manipulating peripherals via the backbone or initiating some other action. An applet controls or responds
to the peripheral(s). Applets can be easily imported or exported from the design environment. The applet
structure is open and well-defined, enabling users to import applets from Microsemi, system developers,
third parties, and user groups.

Note: Levels 1, 2, and 3 are implemented in FPGA logic gates.

Figure 2-1 • Fusion Architecture Stack
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Device Architecture
Timing Characteristics

Sample VersaTile Specifications—Sequential Module
The Fusion library offers a wide variety of sequential cells, including flip-flops and latches. Each has a
data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a
representative sample from the library (Figure 2-5). For more details, refer to the IGLOO, ProASIC3,
SmartFusion and Fusion Macro Library Guide. 

Table 2-1 • Combinatorial Cell Propagation Delays
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell Equation Parameter –2 –1 Std. Units

INV Y = !A tPD 0.40 0.46 0.54 ns

AND2 Y = A · B tPD 0.47 0.54 0.63 ns

NAND2 Y = !(A · B) tPD 0.47 0.54 0.63 ns

OR2 Y = A + B tPD 0.49 0.55 0.65 ns

NOR2 Y = !(A + B) tPD 0.49 0.55 0.65 ns

XOR2 Y = A B tPD 0.74 0.84 0.99 ns

MAJ3 Y = MAJ(A, B, C) tPD 0.70 0.79 0.93 ns

XOR3 Y = A  B C tPD 0.87 1.00 1.17 ns

MUX2 Y = A !S + B S tPD 0.51 0.58 0.68 ns

AND3 Y = A · B · C tPD 0.56 0.64 0.75 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Figure 2-5 • Sample of Sequential Cells
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Device Architecture
VersaNet Global Networks and Spine Access 
The Fusion architecture contains a total of 18 segmented global networks that can access the
VersaTiles, SRAM, and I/O tiles on the Fusion device. There are 6 chip (main) global networks that
access the entire device and 12 quadrant networks (3 in each quadrant). Each device has a total of 18
globals. These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets,
including clock signals. In addition, these highly segmented global networks offer users the flexibility to
create low-skew local networks using spines for up to 180 internal/external clocks (in an AFS1500
device) or other high-fanout nets in Fusion devices. Optimal usage of these low-skew networks can
result in significant improvement in design performance on Fusion devices. 

The nine spines available in a vertical column reside in global networks with two separate regions of
scope: the quadrant global network, which has three spines, and the chip (main) global network, which
has six spines. Note that there are three quadrant spines in each quadrant of the device. There are four
quadrant global network regions per device (Figure 2-12 on page 2-12). 

The spines are the vertical branches of the global network tree, shown in Figure 2-11 on page 2-11. Each
spine in a vertical column of a chip (main) global network is further divided into two equal-length spine
segments: one in the top and one in the bottom half of the die. 

Each spine and its associated ribs cover a certain area of the Fusion device (the "scope" of the spine;
see Figure 2-11 on page 2-11). Each spine is accessed by the dedicated global network MUX tree
architecture, which defines how a particular spine is driven—either by the signal on the global network
from a CCC, for example, or another net defined by the user (Figure 2-13). Quadrant spines can be
driven from user I/Os on the north and south sides of the die, via analog I/Os configured as direct digital
inputs. The ability to drive spines in the quadrant global networks can have a significant effect on system
performance for high-fanout inputs to a design. 

Details of the chip (main) global network spine-selection MUX are presented in Figure 2-13. The spine
drivers for each spine are located in the middle of the die. 

Quadrant spines are driven from a north or south rib. Access to the top and bottom ribs is from the corner
CCC or from the I/Os on the north and south sides of the device. For details on using spines in Fusion
devices, see the application note Using Global Resources in Actel Fusion Devices.

Figure 2-13 • Spine-Selection MUX of Global Tree
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Device Architecture
Table 2-7 • AFS250 Global Resource Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description
–2 –1 Std. 

Units
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2

tRCKL Input Low Delay for Global Clock 0.89 1.12 1.02 1.27 1.20 1.50  ns 

tRCKH Input High Delay for Global Clock 0.88 1.14 1.00 1.30 1.17 1.53  ns 

tRCKMPWH Minimum Pulse Width High for Global Clock  ns 

tRCKMPWL Minimum Pulse Width Low for Global Clock  ns 

tRCKSW Maximum Skew for Global Clock 0.26 0.30 0.35  ns 

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element
located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully
loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-8 • AFS090 Global Resource Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description
–2 –1 Std. 

Units
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2

tRCKL Input Low Delay for Global Clock 0.84 1.07 0.96 1.21 1.13 1.43  ns 

tRCKH Input High Delay for Global Clock 0.83 1.10 0.95 1.25 1.12 1.47  ns 

tRCKMPWH Minimum Pulse Width High for Global Clock  ns 

tRCKMPWL Minimum Pulse Width Low for Global Clock  ns 

tRCKSW Maximum Skew for Global Clock 0.27 0.30 0.36  ns 

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element
located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a
fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.
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Device Architecture
RAM4K9 Description

Figure 2-48 • RAM4K9
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Fusion Family of Mixed Signal FPGAs
INL – Integral Non-Linearity
INL is the deviation of an actual transfer function from a straight line. After nullifying offset and gain
errors, the straight line is either a best-fit straight line or a line drawn between the end points of the
transfer function (Figure 2-85).

LSB – Least Significant Bit
In a binary number, the LSB is the least weighted bit in the group. Typically, the LSB is the furthest right
bit. For an ADC, the weight of an LSB equals the full-scale voltage range of the converter divided by 2N,
where N is the converter’s resolution. 

EQ 13 shows the calculation for a 10-bit ADC with a unipolar full-scale voltage of 2.56 V:

1 LSB = (2.56 V / 210) = 2.5 mV

EQ 13

No Missing Codes
An ADC has no missing codes if it produces all possible digital codes in response to a ramp signal
applied to the analog input.

Figure 2-85 • Integral Non-Linearity (INL)
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Fusion Family of Mixed Signal FPGAs
TUE – Total Unadjusted Error
TUE is a comprehensive specification that includes linearity errors, gain error, and offset error. It is the
worst-case deviation from the ideal device performance. TUE is a static specification (Figure 2-87).

ADC Operation 
Once the ADC has powered up and been released from reset, ADCRESET, the ADC will initiate a
calibration routine designed to provide optimal ADC performance. The Fusion ADC offers a robust
calibration scheme to reduce integrated offset and linearity errors. The offset and linearity errors of the
main capacitor array are compensated for with an 8-bit calibration capacitor array. The offset/linearity
error calibration is carried out in two ways. First, a power-up calibration is carried out when the ADC
comes out of reset. This is initiated by the CALIBRATE output of the Analog Block macro and is a fixed
number of ADC_CLK cycles (3,840 cycles), as shown in Figure 2-89 on page 2-111. In this mode, the
linearity and offset errors of the capacitors are calibrated. 

To further compensate for drift and temperature-dependent effects, every conversion is followed by post-
calibration of either the offset or a bit of the main capacitor array. The post-calibration ensures that, over
time and with temperature, the ADC remains consistent. 

After both calibration and the setting of the appropriate configurations, as explained above, the ADC is
ready for operation. Setting the ADCSTART signal high for one clock period will initiate the sample and
conversion of the analog signal on the channel as configured by CHNUMBER[4:0]. The status signals
SAMPLE and BUSY will show when the ADC is sampling and converting (Figure 2-91 on page 2-112).
Both SAMPLE and BUSY will initially go high. After the ADC has sampled and held the analog signal,
SAMPLE will go low. After the entire operation has completed and the analog signal is converted, BUSY
will go low and DATAVALID will go high. This indicates that the digital result is available on the
RESULT[11:0] pins.

DATAVALID will remain high until a subsequent ADCSTART is issued. The DATAVALID goes low on the
rising edge of SYSCLK as shown in Figure 2-90 on page 2-112. The RESULT signals will be kept
constant until the ADC finishes the subsequent sample. The next sampled RESULT will be available
when DATAVALID goes high again. It is ideal to read the RESULT when DATAVALID is '1'. The RESULT
is latched and remains unchanged until the next DATAVLAID rising edge.

Figure 2-87 • Total Unadjusted Error (TUE)
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Fusion Family of Mixed Signal FPGAs
Figure 2-102 • DDR Output Support in Fusion Devices
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Fusion Family of Mixed Signal FPGAs
Table 2-99 • Short Current Event Duration before Failure

Temperature Time Before Failure

–40°C >20 years

 0°C >20 years

25°C >20 years

70°C  5 years

85°C  2 years

100°C 6 months

Table 2-100 • Schmitt Trigger Input Hysteresis
Hysteresis Voltage Value (typ.) for Schmitt Mode Input Buffers

Input Buffer Configuration Hysteresis Value (typ.)

3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode) 240 mV

2.5 V LVCMOS (Schmitt trigger mode) 140 mV

1.8 V LVCMOS (Schmitt trigger mode) 80 mV

1.5 V LVCMOS (Schmitt trigger mode) 60 mV

Table 2-101 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer Input Rise/Fall Time (min.) Input Rise/Fall Time (max.) Reliability

LVTTL/LVCMOS (Schmitt trigger
disabled)

No requirement 10 ns* 20 years (100°C)

LVTTL/LVCMOS (Schmitt trigger
enabled)

No requirement No requirement, but input
noise voltage cannot exceed
Schmitt hysteresis

20 years (100°C)

HSTL/SSTL/GTL No requirement 10 ns* 10 years (100°C)

LVDS/BLVDS/M-LVDS/LVPECL No requirement 10 ns* 10 years (100°C)

Note: * The maximum input rise/fall time is related only to the noise induced into the input buffer trace. If the noise is
low, the rise time and fall time of input buffers, when Schmitt trigger is disabled, can be increased beyond the
maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise.
Microsemi recommends signal integrity evaluation/characterization of the system to ensure there is no excessive
noise coupling into input signals.
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics       

Table 2-103 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 3.3 1.4 – 35

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Table 2-104 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V
Applicable to Pro I/Os

Drive 
Strength

 
Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

4 mA  Std. 0.66 11.01 0.04 1.20 1.57 0.43 11.21 9.05 2.69 2.44 13.45 11.29 ns

 –1 0.56 9.36 0.04 1.02 1.33 0.36 9.54 7.70 2.29 2.08 11.44 9.60 ns

 –2 0.49 8.22 0.03 0.90 1.17 0.32 8.37 6.76 2.01 1.82 10.04 8.43 ns

8 mA  Std. 0.66 7.86 0.04 1.20 1.57 0.43 8.01 6.44 3.04 3.06 10.24 8.68 ns

 –1 0.56 6.69 0.04 1.02 1.33 0.36 6.81 5.48 2.58 2.61 8.71 7.38 ns

 –2 0.49 5.87 0.03 0.90 1.17 0.32 5.98 4.81 2.27 2.29 7.65 6.48 ns

12 mA  Std. 0.66 6.03 0.04 1.20 1.57 0.43 6.14 5.02 3.28 3.47 8.37 7.26 ns

 –1 0.56 5.13 0.04 1.02 1.33 0.36 5.22 4.27 2.79 2.95 7.12 6.17 ns

 –2 0.49 4.50 0.03 0.90 1.17 0.32 4.58 3.75 2.45 2.59 6.25 5.42 ns

16 mA  Std. 0.66 5.62 0.04 1.20 1.57 0.43 5.72 4.72 3.32 3.58 7.96 6.96 ns

 –1 0.56 4.78 0.04 1.02 1.33 0.36 4.87 4.02 2.83 3.04 6.77 5.92 ns

 –2 0.49 4.20 0.03 0.90 1.17 0.32 4.27 3.53 2.48 2.67 5.94 5.20 ns

24 mA  Std. 0.66 5.24 0.04 1.20 1.57 0.43 5.34 4.69 3.39 3.96 7.58 6.93 ns

 –1 0.56 4.46 0.04 1.02 1.33 0.36 4.54 3.99 2.88 3.37 6.44 5.89 ns

 –2 0.49 3.92 0.03 0.90 1.17 0.32 3.99 3.50 2.53 2.96 5.66 5.17 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
Table 2-105 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 3.0 V
Applicable to Pro I/Os

Drive 
Strength

 
Speed 
Grade tDOUT tDP tDIN tPY tPYS

tEOU

T tZL tZH tLZ tHZ tZLS tZHS

 
Units

4 mA  Std. 0.66 7.88 0.04 1.20 1.57 0.43 8.03 6.70 2.69 2.59 10.26 8.94  ns 

 –1 0.56 6.71 0.04 1.02 1.33 0.36 6.83 5.70 2.29 2.20 8.73 7.60  ns 

 –2 0.49 5.89 0.03 0.90 1.17 0.32 6.00 5.01 2.01 1.93 7.67 6.67  ns 

8 mA  Std. 0.66 5.08 0.04 1.20 1.57 0.43 5.17 4.14 3.05 3.21 7.41 6.38  ns 

 –1 0.56 4.32 0.04 1.02 1.33 0.36 4.40 3.52 2.59 2.73 6.30 5.43  ns 

 –2 0.49 3.79 0.03 0.90 1.17 0.32 3.86 3.09 2.28 2.40 5.53 4.76  ns 

12 mA  Std. 0.66 3.67 0.04 1.20 1.57 0.43 3.74 2.87 3.28 3.61 5.97 5.11  ns 

 –1 0.56 3.12 0.04 1.02 1.33 0.36 3.18 2.44 2.79 3.07 5.08 4.34  ns 

 –2 0.49 2.74 0.03 0.90 1.17 0.32 2.79 2.14 2.45 2.70 4.46 3.81  ns 

16 mA  Std. 0.66 3.46 0.04 1.20 1.57 0.43 3.53 2.61 3.33 3.72 5.76 4.84  ns 

 –1 0.56 2.95 0.04 1.02 1.33 0.36 3.00 2.22 2.83 3.17 4.90 4.12  ns 

 –2 0.49 2.59 0.03 0.90 1.17 0.32 2.63 1.95 2.49 2.78 4.30 3.62  ns 

24 mA  Std. 0.66 3.21 0.04 1.20 1.57 0.43 3.27 2.16 3.39 4.13 5.50 4.39  ns 

 –1 0.56 2.73 0.04 1.02 1.33 0.36 2.78 1.83 2.88 3.51 4.68 3.74  ns 

 –2 0.49 2.39 0.03 0.90 1.17 0.32 2.44 1.61 2.53 3.08 4.11 3.28  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
Table 2-115 • 2.5 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 2.3 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

4 mA  Std. 0.66 8.66 0.04 1.31 0.43 7.83 8.66 2.68 2.30 10.07 10.90  ns 

 –1 0.56 7.37 0.04 1.11 0.36 6.66 7.37 2.28 1.96 8.56 9.27  ns 

 –2 0.49 6.47 0.03 0.98 0.32 5.85 6.47 2.00 1.72 7.52 8.14  ns 

8 mA  Std. 0.66 5.17 0.04 1.31 0.43 5.04 5.17 3.05 3.00 7.27 7.40  ns 

 –1 0.56 4.39 0.04 1.11 0.36 4.28 4.39 2.59 2.55 6.19 6.30  ns 

 –2 0.49 3.86 0.03 0.98 0.32 3.76 3.86 2.28 2.24 5.43 5.53  ns 

12 mA  Std. 0.66 3.56 0.04 1.31 0.43 3.63 3.43 3.30 3.44 5.86 5.67  ns 

 –1 0.56 3.03 0.04 1.11 0.36 3.08 2.92 2.81 2.92 4.99 4.82  ns 

 –2 0.49 2.66 0.03 0.98 0.32 2.71 2.56 2.47 2.57 4.38 4.23  ns 

16 mA  Std. 0.66 3.35 0.04 1.31 0.43 3.41 3.06 3.36 3.55 5.65 5.30  ns 

 –1 0.56 2.85 0.04 1.11 0.36 2.90 2.60 2.86 3.02 4.81 4.51  ns 

 –2 0.49 2.50 0.03 0.98 0.32 2.55 2.29 2.51 2.65 4.22 3.96  ns 

24 mA  Std. 0.66 3.56 0.04 1.31 0.43 3.63 3.43 3.30 3.44 5.86 5.67  ns 

 –1 0.56 3.03 0.04 1.11 0.36 3.08 2.92 2.81 2.92 4.99 4.82  ns 

 –2 0.49 2.66 0.03 0.98 0.32 2.71 2.56 2.47 2.57 4.38 4.23  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Table 2-116 • 2.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 2.3 V
Applicable to Standard I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  Units 

2 mA  Std. 0.66 11.00 0.04 1.29 0.43 10.37 11.00 2.03 1.83  ns 

 –1 0.56 9.35 0.04 1.10 0.36 8.83 9.35 1.73 1.56  ns 

 –2 0.49 8.21 0.03 0.96 0.32 7.75 8.21 1.52 1.37  ns 

4 mA  Std. 0.66 11.00 0.04 1.29 0.43 10.37 11.00 2.03 1.83  ns 

 –1 0.56 9.35 0.04 1.10 0.36 8.83 9.35 1.73 1.56  ns 

 –2 0.49 8.21 0.03 0.96 0.32 7.75 8.21 1.52 1.37  ns 

6 mA  Std. 0.66 7.50 0.04 1.29 0.43 7.36 7.50 2.39 2.46  ns 

 –1 0.56 6.38 0.04 1.10 0.36 6.26 6.38 2.03 2.10  ns 

 –2 0.49 5.60 0.03 0.96 0.32 5.49 5.60 1.78 1.84  ns 

8 mA  Std. 0.66 7.50 0.04 1.29 0.43 7.36 7.50 2.39 2.46  ns 

 –1 0.56 6.38 0.04 1.10 0.36 6.26 6.38 2.03 2.10  ns 

 –2 0.49 5.60 0.03 0.96 0.32 5.49 5.60 1.78 1.84  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
Table 2-130 • 1.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.66 12.78 0.04 1.31 0.43 12.81 12.78 3.40 2.64 15.05 15.02  ns 

 –1 0.56 10.87 0.04 1.11 0.36 10.90 10.87 2.89 2.25 12.80 12.78  ns 

 –2 0.49 9.55 0.03 0.98 0.32 9.57 9.55 2.54 1.97 11.24 11.22  ns 

4 mA  Std. 0.66 10.01 0.04 1.31 0.43 10.19 9.55 3.75 3.27 12.43 11.78  ns 

 –1 0.56 8.51 0.04 1.11 0.36 8.67 8.12 3.19 2.78 10.57 10.02  ns 

 –2 0.49 7.47 0.03 0.98 0.32 7.61 7.13 2.80 2.44 9.28 8.80  ns 

8 mA  Std. 0.66 9.33 0.04 1.31 0.43 9.51 8.89 3.83 3.43 11.74 11.13  ns 

 –1 0.56 7.94 0.04 1.11 0.36 8.09 7.56 3.26 2.92 9.99 9.47  ns 

 –2 0.49 6.97 0.03 0.98 0.32 7.10 6.64 2.86 2.56 8.77 8.31  ns 

12 mA  Std. 0.66 8.91 0.04 1.31 0.43 9.07 8.89 3.95 4.05 11.31 11.13  ns 

 –1 0.56 7.58 0.04 1.11 0.36 7.72 7.57 3.36 3.44 9.62 9.47  ns 

 –2 0.49 6.65 0.03 0.98 0.32 6.78 6.64 2.95 3.02 8.45 8.31  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Table 2-131 • 1.5 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.4 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.66 8.36 0.04 1.44 0.43 6.82 8.36 3.39 2.77 9.06 10.60  ns 

 –1 0.56 7.11 0.04 1.22 0.36 5.80 7.11 2.88 2.35 7.71 9.02  ns 

 –2 0.49 6.24 0.03 1.07 0.32 5.10 6.24 2.53 2.06 6.76 7.91  ns 

4 mA  Std. 0.66 5.31 0.04 1.44 0.43 4.85 5.31 3.74 3.40 7.09 7.55  ns 

 –1 0.56 4.52 0.04 1.22 0.36 4.13 4.52 3.18 2.89 6.03 6.42  ns 

 –2 0.49 3.97 0.03 1.07 0.32 3.62 3.97 2.79 2.54 5.29 5.64  ns 

8 mA  Std. 0.66 4.67 0.04 1.44 0.43 4.55 4.67 3.82 3.56 6.78 6.90  ns 

 –1 0.56 3.97 0.04 1.22 0.36 3.87 3.97 3.25 3.03 5.77 5.87  ns 

 –2 0.49 3.49 0.03 1.07 0.32 3.40 3.49 2.85 2.66 5.07 5.16  ns 

12 mA  Std. 0.66 4.08 0.04 1.44 0.43 4.15 3.58 3.94 4.20 6.39 5.81  ns 

 –1 0.56 3.47 0.04 1.22 0.36 3.53 3.04 3.36 3.58 5.44 4.95  ns 

 –2 0.49 3.05 0.03 1.07 0.32 3.10 2.67 2.95 3.14 4.77 4.34  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
Differential I/O Characteristics
Configuration of the I/O modules as a differential pair is handled by the Microsemi Designer
software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no
support for bidirectional I/Os or tristates with these standards.

LVDS
Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a high-speed differential I/O standard. It requires
that one data bit be carried through two signal lines, so two pins are needed. It also requires external
resistor termination. 

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-134.
The building blocks of the LVDS transmitter–receiver are one transmitter macro, one receiver macro,
three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three
driver resistors are different from those used in the LVPECL implementation because the output standard
specifications are different.    

Figure 2-134 • LVDS Circuit Diagram and Board-Level Implementation

Table 2-168 • Minimum and Maximum DC Input and Output Levels

DC Parameter Description Min. Typ. Max. Units

VCCI Supply Voltage 2.375  2.5  2.625 V

VOL Output Low Voltage  0.9  1.075  1.25 V

VOH Input High Voltage  1.25  1.425  1.6 V

IOL 1 Output Low Voltage 0.65 0.91 1.16 mA

IOH 1 Output High Voltage 0.65 0.91 1.16 mA

VI Input Voltage  0   2.925 V

IIL 2,3 Input Low Voltage 10 A

IIH 2,4 Input High Voltage 10 A

VODIFF Differential Output Voltage  250  350  450 mV

VOCM Output Common Mode Voltage  1.125  1.25  1.375 V

VICM Input Common Mode Voltage  0.05  1.25  2.35 V

VIDIFF Input Differential Voltage  100  350  mV

Notes:

1. IOL/IOH defined by VODIFF/(Resistor Network)
2. Currents are measured at 85°C junction temperature.  

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics

Figure 2-143 • Input DDR Timing Diagram

tDDRICLR2Q2

tDDRIREMCLR

tDDRIRECCLR

tDDRICLR2Q1

1 2 3 4 5 6 7 8 9

CLK

Data

CLR

Out_QR

Out_QF

tDDRICLKQ1

2 4 6

3 5 7

tDDRIHD
tDDRISUD

tDDRICLKQ2

Table 2-180 • Input DDR Propagation Delays
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tDDRICLKQ1 Clock-to-Out Out_QR for Input DDR 0.39 0.44 0.52 ns

tDDRICLKQ2 Clock-to-Out Out_QF for Input DDR 0.27 0.31 0.37 ns

tDDRISUD Data Setup for Input DDR 0.28 0.32 0.38 ns

tDDRIHD Data Hold for Input DDR 0.00 0.00 0.00 ns

tDDRICLR2Q1 Asynchronous Clear-to-Out Out_QR for Input DDR 0.57 0.65 0.76 ns

tDDRICLR2Q2 Asynchronous Clear-to-Out Out_QF for Input DDR 0.46 0.53 0.62 ns

tDDRIREMCLR Asynchronous Clear Removal Time for Input DDR 0.00 0.00 0.00 ns

tDDRIRECCLR Asynchronous Clear Recovery Time for Input DDR 0.22 0.25 0.30 ns

tDDRIWCLR Asynchronous Clear Minimum Pulse Width for Input DDR 0.22 0.25 0.30 ns

tDDRICKMPWH Clock Minimum Pulse Width High for Input DDR 0.36 0.41 0.48 ns

tDDRICKMPWL Clock Minimum Pulse Width Low for Input DDR 0.32 0.37 0.43 ns

FDDRIMAX Maximum Frequency for Input DDR 1404 1232 1048 MHz

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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DC and Power Characteristics
IJTAG JTAG I/O quiescent
current

Operational standby4, 
VJTAG = 3.63 V

TJ = 25°C 80 100 µA

TJ = 85°C 80 100 µA

TJ = 100°C 80 100 µA

Standby mode5 or Sleep mode6, 
VJTAG = 0 V

0 0 µA

IPP Programming supply
current

Non-programming mode, 
VPUMP =  3.63 V

TJ = 25°C 39 80 µA

TJ = 85°C 40 80 µA

TJ = 100°C 40 80 µA

Standby mode5 or Sleep mode6,
VPUMP = 0 V

0 0 µA

ICCNVM Embedded NVM
current

Reset asserted, VCCNVM = 1.575 V TJ = 25°C 50 150 µA

TJ =85°C 50 150 µA

TJ = 100°C 50 150 µA

ICCPLL 1.5 V PLL quiescent
current

Operational standby
, VCCPLL = 1.575 V

TJ = 25°C 130 200 µA

TJ = 85°C 130 200 µA

TJ = 100°C 130 200 µA

Table 3-8 • AFS1500 Quiescent Supply Current Characteristics (continued)

Parameter Description Conditions Temp. Min. Typ. Max. Unit

Notes:

1. ICC is the 1.5 V power supplies, ICC and ICC15A.
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.
3-11 Revision 6



Fusion Family of Mixed Signal FPGAs
Methodology
Total Power Consumption—PTOTAL

Operating Mode, Standby Mode, and Sleep Mode

PTOTAL = PSTAT + PDYN

PSTAT is the total static power consumption.

PDYN is the total dynamic power consumption.

Total Static Power Consumption—PSTAT

Operating Mode

PSTAT = PDC1 + (NNVM-BLOCKS * PDC4) + PDC5+ (NQUADS * PDC6) + (NINPUTS * PDC7) + 
(NOUTPUTS * PDC8) + (NPLLS * PDC9)

NNVM-BLOCKS is the number of NVM blocks available in the device.

NQUADS is the number of Analog Quads used in the design.

NINPUTS is the number of I/O input buffers used in the design.

NOUTPUTS is the number of I/O output buffers used in the design.

NPLLS is the number of PLLs available in the device.

Standby Mode

PSTAT = PDC2

Sleep Mode

PSTAT = PDC3

Total Dynamic Power Consumption—PDYN

Operating Mode

PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL + PNVM+ 
PXTL-OSC + PRC-OSC + PAB

Standby Mode

PDYN = PXTL-OSC

Sleep Mode

PDYN = 0 W

Global Clock Dynamic Contribution—PCLOCK

Operating Mode

PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK

NSPINE is the number of global spines used in the user design—guidelines are provided in the
"Spine Architecture" section of the Global Resources chapter in the Fusion and Extended
Temperature Fusion FPGA Fabric User's Guide.

NROW is the number of VersaTile rows used in the design—guidelines are provided in the "Spine
Architecture" section of the Global Resources chapter in the Fusion and Extended Temperature
Fusion FPGA Fabric User's Guide.

FCLK is the global clock signal frequency.

NS-CELL is the number of VersaTiles used as sequential modules in the design.

Standby Mode and Sleep Mode

PCLOCK = 0 W

Sequential Cells Dynamic Contribution—PS-CELL

Operating Mode
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Fusion Family of Mixed Signal FPGAs
H13 GND GND

H14 VCCIB1 VCCIB1

H15 GND GND

H16 GND GND

H17 NC IO53NDB2V0

H18 IO38PDB2V0 IO57PDB2V0

H19 GCA2/IO39PDB2V0 GCA2/IO59PDB2V0

H20 VCCIB2 VCCIB2

H21 IO37NDB2V0 IO54NDB2V0

H22 IO37PDB2V0 IO54PDB2V0

J1 NC IO112PPB4V0

J2 IO76NDB4V0 IO113NDB4V0

J3 GFB2/IO74PDB4V0 GFB2/IO109PDB4V0

J4 GFA2/IO75PDB4V0 GFA2/IO110PDB4V0

J5 NC IO112NPB4V0

J6 NC IO104PDB4V0

J7 NC IO111PDB4V0

J8 VCCIB4 VCCIB4

J9 GND GND

J10 VCC VCC

J11 GND GND

J12 VCC VCC

J13 GND GND

J14 VCC VCC

J15 VCCIB2 VCCIB2

J16 GCB2/IO40PDB2V0 GCB2/IO60PDB2V0

J17 NC IO58NDB2V0

J18 IO38NDB2V0 IO57NDB2V0

J19 IO39NDB2V0 IO59NDB2V0

J20 GCC2/IO41PDB2V0 GCC2/IO61PDB2V0

J21 NC IO55PSB2V0

J22 IO42PDB2V0 IO56PDB2V0

K1 GFC2/IO73PDB4V0 GFC2/IO108PDB4V0

K2 GND GND

K3 IO74NDB4V0 IO109NDB4V0

FG484

Pin 
Number AFS600 Function AFS1500 Function

K4 IO75NDB4V0 IO110NDB4V0

K5 GND GND

K6 NC IO104NDB4V0

K7 NC IO111NDB4V0

K8 GND GND

K9 VCC VCC

K10 GND GND

K11 VCC VCC

K12 GND GND

K13 VCC VCC

K14 GND GND

K15 GND GND

K16 IO40NDB2V0 IO60NDB2V0

K17 NC IO58PDB2V0

K18 GND GND

K19 NC IO68NPB2V0

K20 IO41NDB2V0 IO61NDB2V0

K21 GND GND

K22 IO42NDB2V0 IO56NDB2V0

L1 IO73NDB4V0 IO108NDB4V0

L2 VCCOSC VCCOSC

L3 VCCIB4 VCCIB4

L4 XTAL2 XTAL2

L5 GFC1/IO72PDB4V0 GFC1/IO107PDB4V0

L6 VCCIB4 VCCIB4

L7 GFB1/IO71PDB4V0 GFB1/IO106PDB4V0

L8 VCCIB4 VCCIB4

L9 GND GND

L10 VCC VCC

L11 GND GND

L12 VCC VCC

L13 GND GND

L14 VCC VCC

L15 VCCIB2 VCCIB2

L16 IO48PDB2V0 IO70PDB2V0

FG484

Pin 
Number AFS600 Function AFS1500 Function
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Fusion Family of Mixed Signal FPGAs
P21 IO51PDB2V0 IO73PDB2V0

P22 IO49NDB2V0 IO71NDB2V0

R1 IO69PDB4V0 IO102PDB4V0

R2 IO69NDB4V0 IO102NDB4V0

R3 VCCIB4 VCCIB4

R4 IO64PDB4V0 IO91PDB4V0

R5 IO64NDB4V0 IO91NDB4V0

R6 NC IO92PDB4V0

R7 GND GND

R8 GND GND

R9 VCC33A VCC33A

R10 GNDA GNDA

R11 VCC33A VCC33A

R12 GNDA GNDA

R13 VCC33A VCC33A

R14 GNDA GNDA

R15 VCC VCC

R16 GND GND

R17 NC IO74NDB2V0

R18 GDA0/IO54NDB2V0 GDA0/IO81NDB2V0

R19 GDB0/IO53NDB2V0 GDB0/IO80NDB2V0

R20 VCCIB2 VCCIB2

R21 IO50NDB2V0 IO75NDB2V0

R22 IO50PDB2V0 IO75PDB2V0

T1 NC IO100PPB4V0

T2 GND GND

T3 IO66PDB4V0 IO95PDB4V0

T4 IO66NDB4V0 IO95NDB4V0

T5 VCCIB4 VCCIB4

T6 NC IO92NDB4V0

T7 GNDNVM GNDNVM

T8 GNDA GNDA

T9 NC NC

T10 AV4 AV4

T11 NC NC

FG484

Pin 
Number AFS600 Function AFS1500 Function

T12 AV5 AV5

T13 AC5 AC5

T14 NC NC

T15 GNDA GNDA

T16 NC IO77PPB2V0

T17 NC IO74PDB2V0

T18 VCCIB2 VCCIB2

T19 IO55NDB2V0 IO82NDB2V0

T20 GDA2/IO55PDB2V0 GDA2/IO82PDB2V0

T21 GND GND

T22 GDC1/IO52PDB2V0 GDC1/IO79PDB2V0

U1 IO67PDB4V0 IO98PDB4V0

U2 IO67NDB4V0 IO98NDB4V0

U3 GEC1/IO63PDB4V0 GEC1/IO90PDB4V0

U4 GEC0/IO63NDB4V0 GEC0/IO90NDB4V0

U5 GND GND

U6 VCCNVM VCCNVM

U7 VCCIB4 VCCIB4

U8 VCC15A VCC15A

U9 GNDA GNDA

U10 AC4 AC4

U11 VCC33A VCC33A

U12 GNDA GNDA

U13 AG5 AG5

U14 GNDA GNDA

U15 PUB PUB

U16 VCCIB2 VCCIB2

U17 TDI TDI

U18 GND GND

U19 IO57NDB2V0 IO84NDB2V0

U20 GDC2/IO57PDB2V0 GDC2/IO84PDB2V0

U21 NC IO77NPB2V0

U22 GDC0/IO52NDB2V0 GDC0/IO79NDB2V0

V1 GEB1/IO62PDB4V0 GEB1/IO89PDB4V0

V2 GEB0/IO62NDB4V0 GEB0/IO89NDB4V0

FG484

Pin 
Number AFS600 Function AFS1500 Function
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Datasheet Information
Revision 2
(continued)

A note was added to Figure 2-27 • Real-Time Counter System (not all the signals are
shown for the AB macro) stating that the user is only required to instantiate the
VRPSM macro if the user wishes to specify PUPO behavior of the voltage regulator
to be different from the default, or employ user logic to shut the voltage regulator off
(SAR 21773).

2-31

VPUMP was incorrectly represented as VPP in several places. This was corrected to
VPUMP in the "Standby and Sleep Mode Circuit Implementation" section and
Table 3-8 • AFS1500 Quiescent Supply Current Characteristics through Table 3-11 •
AFS090 Quiescent Supply Current Characteristics (21963).

2-32, 3-10

Additional information was added to the Flash Memory Block "Write Operation"
section, including an explanation of the fact that a copy-page operation takes no less
than 55 cycles (SAR 26338).

2-45

The "FlashROM" section was revised to refer to Figure 2-46 • FlashROM Timing
Diagram and Table 2-26 • FlashROM Access Time rather than stating 20 MHz as the
maximum FlashROM access clock and 10 ns as the time interval for D0 to become
valid or invalid (SAR 22105).

2-53, 2-54

The following figures were deleted (SAR 29991). Reference was made to a new
application note, Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-
Based cSoCs and FPGAs, which covers these cases in detail (SAR 34862).

Figure 2-55 • Write Access after Write onto Same Address

Figure 2-56 • Read Access after Write onto Same Address

Figure 2-57 • Write Access after Read onto Same Address

The port names in the SRAM "Timing Waveforms", "Timing Characteristics", SRAM
tables, Figure 2-55 • RAM Reset. Applicable to both RAM4K9 and RAM512x18., and
the FIFO "Timing Characteristics" tables were revised to ensure consistency with the
software names (SAR 35753).

2-63, 
2-66, 

2-65, 2-75

In several places throughout the datasheet, GNDREF was corrected to
ADCGNDREF (SAR 20783):

Figure 2-64 • Analog Block Macro

Table 2-36 • Analog Block Pin Description

"ADC Operation" section

2-77

2-78

2-104

The following note was added below Figure 2-78 • Timing Diagram for the
Temperature Monitor Strobe Signal:

When the IEEE 1149.1 Boundary Scan EXTEST instruction is executed, the AG pad
drive strength ceases and becomes a 1 µA sink into the Fusion device. (SAR
24796).

2-93

The "Analog-to-Digital Converter Block" section was extensively revised,
reorganizing the information and adding the "ADC Theory of Operation" section and
"Acquisition Time or Sample Time Control" section. The "ADC Example" section was
reworked and corrected (SAR 20577).

2-96

Table 2-49 • Analog Channel Specifications was modified to include calibrated and
uncalibrated values for offset (AFS090 and AFS250) for the external and internal
temperature monitors. The "Offset" section was revised accordingly and now
references Table 2-49 • Analog Channel Specifications (SARs 22647, 27015).

2-95, 
2-117 

The "Intra-Conversion" section and "Injected Conversion" section had definitions
incorrectly interchanged and have been corrected. Figure 2-92 • Intra-Conversion
Timing Diagram and Figure 2-93 • Injected Conversion Timing Diagram were also
incorrectly interchanged and have been replaced correctly. Reference in the figure
notes to EQ 10  has been corrected to EQ 23  (SAR 20547).

2-110, 
2-113, 
2-113
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