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Fusion Device Family Overview
Instant On
Flash-based Fusion devices are Level 0 Instant On. Instant On Fusion devices greatly simplify total
system design and reduce total system cost by eliminating the need for CPLDs. The Fusion Instant On
clocking (PLLs) replaces off-chip clocking resources. The Fusion mix of Instant On clocking and analog
resources makes these devices an excellent choice for both system supervisor and system management
functions. Instant On from a single 3.3 V source enables Fusion devices to initiate, control, and monitor
multiple voltage supplies while also providing system clocks. In addition, glitches and brownouts in
system power will not corrupt the Fusion device flash configuration. Unlike SRAM-based FPGAs, the
device will not have to be reloaded when system power is restored. This enables reduction or complete
removal of expensive voltage monitor and brownout detection devices from the PCB design. 
Flash-based Fusion devices simplify total system design and reduce cost and design risk, while
increasing system reliability. 

Firm Errors
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. Another
source of radiation-induced firm errors is alpha particles. For an alpha to cause a soft or firm error, its
source must be in very close proximity to the affected circuit. The alpha source must be in the package
molding compound or in the die itself. While low-alpha molding compounds are being used increasingly,
this helps reduce but does not entirely eliminate alpha-induced firm errors.

Firm errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not occur in Fusion flash-based FPGAs. Once it is programmed,
the flash cell configuration element of Fusion FPGAs cannot be altered by high-energy neutrons and is
therefore immune to errors from them. 

Recoverable (or soft) errors occur in the user data SRAMs of all FPGA devices. These can easily be
mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Low Power
Flash-based Fusion devices exhibit power characteristics similar to those of an ASIC, making them an
ideal choice for power-sensitive applications. With Fusion devices, there is no power-on current surge
and no high current transition, both of which occur on many FPGAs.

Fusion devices also have low dynamic power consumption and support both low power standby mode
and very low power sleep mode, offering further power savings.

Advanced Flash Technology
The Fusion family offers many benefits, including nonvolatility and reprogrammability through an
advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design
techniques are used to implement logic and control functions. The combination of fine granularity,
enhanced flexible routing resources, and abundant flash switches allows very high logic utilization (much
higher than competing SRAM technologies) without compromising device routability or performance.
Logic functions within the device are interconnected through a four-level routing hierarchy.
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Fusion Family of Mixed Signal FPGAs
Global Clocking
Fusion devices have extensive support for multiple clocking domains. In addition to the CCC and PLL
support described above, there are on-chip oscillators as well as a comprehensive global clock
distribution network.

The integrated RC oscillator generates a 100 MHz clock. It is used internally to provide a known clock
source to the flash memory read and write control. It can also be used as a source for the PLLs.

The crystal oscillator supports the following operating modes:

• Crystal (32.768 KHz to 20 MHz)

• Ceramic (500 KHz to 8 MHz)

• RC (32.768 KHz to 4 MHz)

Each VersaTile input and output port has access to nine VersaNets: six main and three quadrant global
networks. The VersaNets can be driven by the CCC or directly accessed from the core via MUXes. The
VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

Digital I/Os with Advanced I/O Standards
The Fusion family of FPGAs features a flexible digital I/O structure, supporting a range of voltages (1.5 V,
1.8 V, 2.5 V, and 3.3 V). Fusion FPGAs support many different digital I/O standards, both single-ended
and differential. 

The I/Os are organized into banks, with four or five banks per device. The configuration of these banks
determines the I/O standards supported. The banks along the east and west sides of the device support
the full range of I/O standards (single-ended and differential). The south bank supports the Analog Quads
(analog I/O). In the family's two smaller devices, the north bank supports multiple single-ended digital I/O
standards. In the family’s larger devices, the north bank is divided into two banks of digital Pro I/Os,
supporting a wide variety of single-ended, differential, and voltage-referenced I/O standards.

Each I/O module contains several input, output, and enable registers. These registers allow the
implementation of the following applications:

• Single-Data-Rate (SDR) applications 

• Double-Data-Rate (DDR) applications—DDR LVDS I/O for chip-to-chip communications

• Fusion banks support LVPECL, LVDS, BLVDS, and M-LVDS with 20 multi-drop points. 

VersaTiles
The Fusion core consists of VersaTiles, which are also used in the successful ProASIC3 family. The
Fusion VersaTile supports the following:

• All 3-input logic functions—LUT-3 equivalent 

• Latch with clear or set

• D-flip-flop with clear or set and optional enable

Refer to Figure 1-2 for the VersaTile configuration arrangement.

Figure 1-2 • VersaTile Configurations
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Fusion Family of Mixed Signal FPGAs
The NGMUX macro is simplified to show the two clock options that have been selected by the
GLMUXCFG[1:0] bits. Figure 2-25 illustrates the NGMUX macro. During design, the two clock sources
are connected to CLK0 and CLK1 and are controlled by GLMUXSEL[1:0] to determine which signal is to
be passed through the MUX.

The sequence of switching between two clock sources (from CLK0 to CLK1) is as follows (Figure 2-26):

• GLMUXSEL[1:0] transitions to initiate a switch.

• GL drives one last complete CLK0 positive pulse (i.e., one rising edge followed by one falling
edge).

• From that point, GL stays Low until the second rising edge of CLK1 occurs.

• At the second CLK1 rising edge, GL will begin to continuously deliver the CLK1 signal.

• Minimum tsw = 0.05 ns at 25°C (typical conditions)

For examples of NGMUX operation, refer to the Fusion FPGA Fabric User Guide. 

Figure 2-25 •  NGMUX Macro

Figure 2-26 • NGMUX Waveform
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Device Architecture
RAM4K9 Description

Figure 2-48 • RAM4K9
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Fusion Family of Mixed Signal FPGAs
Figure 2-52 • RAM Write, Output Retained. Applicable to both RAM4K9 and RAM512x18.

Figure 2-53 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.
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Device Architecture
The following signals are used to configure the FIFO4K18 memory element.

WW and RW
These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 2-33).

WBLK and RBLK
These signals are active low and will enable the respective ports when Low. When the RBLK signal is
High, the corresponding port’s outputs hold the previous value.

WEN and REN
Read and write enables. WEN is active low and REN is active high by default. These signals can be
configured as active high or low.

WCLK and RCLK
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver.

RPIPE
This signal is used to specify pipelined read on the output. A Low on RPIPE indicates a nonpipelined
read, and the data appears on the output in the same clock cycle. A High indicates a pipelined read, and
data appears on the output in the next clock cycle.

RESET
This active low signal resets the output to zero when asserted. It resets the FIFO counters. It also sets all
the RD pins Low, the FULL and AFULL pins Low, and the EMPTY and AEMPTY pins High (Table 2-34). 

WD
This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data
width less than 18 is specified, unused higher-order signals must be grounded (Table 2-34). 

RD
This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD
bus, high-order bits become unusable if the data width is less than 18. The output data on unused pins is
undefined (Table 2-34).

Table 2-33 • Aspect Ratio Settings for WW[2:0]

WW2, WW1, WW0 RW2, RW1, RW0 D×W

000 000 4k×1

001 001 2k×2

010 010 1k×4 

011 011 512×9

100 100 256×18

101, 110, 111 101, 110, 111 Reserved

Table 2-34 • Input Data Signal Usage for Different Aspect Ratios

D×W WD/RD Unused

4k×1 WD[17:1], RD[17:1]

2k×2 WD[17:2], RD[17:2]

1k×4 WD[17:4], RD[17:4]

512×9 WD[17:9], RD[17:9]

256×18 –
2-69 Revision 6



Fusion Family of Mixed Signal FPGAs
ESTOP, FSTOP
ESTOP is used to stop the FIFO read counter from further counting once the FIFO is empty (i.e., the
EMPTY flag goes High). A High on this signal inhibits the counting. 

FSTOP is used to stop the FIFO write counter from further counting once the FIFO is full (i.e., the FULL
flag goes High). A High on this signal inhibits the counting. 

For more information on these signals, refer to the "ESTOP and FSTOP Usage" section on page 2-70.

FULL, EMPTY
When the FIFO is full and no more data can be written, the FULL flag asserts High. The FULL flag is
synchronous to WCLK to inhibit writing immediately upon detection of a full condition and to prevent
overflows. Since the write address is compared to a resynchronized (and thus time-delayed) version of
the read address, the FULL flag will remain asserted until two WCLK active edges after a read operation
eliminates the full condition.

When the FIFO is empty and no more data can be read, the EMPTY flag asserts High. The EMPTY flag
is synchronous to RCLK to inhibit reading immediately upon detection of an empty condition and to
prevent underflows. Since the read address is compared to a resynchronized (and thus time-delayed)
version of the write address, the EMPTY flag will remain asserted until two RCLK active edges after a
write operation removes the empty condition.

For more information on these signals, refer to the "FIFO Flag Usage Considerations" section on
page 2-70. 

AFULL, AEMPTY
These are programmable flags and will be asserted on the threshold specified by AFVAL and AEVAL,
respectively. 

When the number of words stored in the FIFO reaches the amount specified by AEVAL while reading,
the AEMPTY output will go High. Likewise, when the number of words stored in the FIFO reaches the
amount specified by AFVAL while writing, the AFULL output will go High. 

AFVAL, AEVAL
The AEVAL and AFVAL pins are used to specify the almost-empty and almost-full threshold values,
respectively. They are 12-bit signals. For more information on these signals, refer to "FIFO Flag
Usage Considerations" section.

ESTOP and FSTOP Usage
The ESTOP pin is used to stop the read counter from counting any further once the FIFO is empty (i.e.,
the EMPTY flag goes High). Likewise, the FSTOP pin is used to stop the write counter from counting any
further once the FIFO is full (i.e., the FULL flag goes High). 

The FIFO counters in the Fusion device start the count at 0, reach the maximum depth for the
configuration (e.g., 511 for a 512×9 configuration), and then restart at 0. An example application for the
ESTOP, where the read counter keeps counting, would be writing to the FIFO once and reading the same
content over and over without doing another write.

FIFO Flag Usage Considerations
The AEVAL and AFVAL pins are used to specify the 12-bit AEMPTY and AFULL threshold values,
respectively. The FIFO contains separate 12-bit write address (WADDR) and read address (RADDR)
counters. WADDR is incremented every time a write operation is performed, and RADDR is incremented
every time a read operation is performed. Whenever the difference between WADDR and RADDR is
greater than or equal to AFVAL, the AFULL output is asserted. Likewise, whenever the difference
between WADDR and RADDR is less than or equal to AEVAL, the AEMPTY output is asserted. To
handle different read and write aspect ratios, AFVAL and AEVAL are expressed in terms of total data bits
instead of total data words. When users specify AFVAL and AEVAL in terms of read or write words, the
SmartGen tool translates them into bit addresses and configures these signals automatically. SmartGen
configures the AFULL flag to assert when the write address exceeds the read address by at least a
predefined value. In a 2k×8 FIFO, for example, a value of 1,500 for AFVAL means that the AFULL flag
will be asserted after a write when the difference between the write address and the read address
reaches 1,500 (there have been at least 1500 more writes than reads). It will stay asserted until the
difference between the write and read addresses drops below 1,500.
Revision 6 2-70



Fusion Family of Mixed Signal FPGAs
Table 2-36 describes each pin in the Analog Block. Each function within the Analog Block will be
explained in detail in the following sections.

Table 2-36 • Analog Block Pin Description

Signal Name
Number 
of Bits Direction Function

Location of 
Details

VAREF 1 Input/Output Voltage reference for ADC ADC

ADCGNDREF 1 Input External ground reference ADC

MODE[3:0] 4 Input ADC operating mode ADC

SYSCLK 1 Input External system clock

TVC[7:0] 8 Input Clock divide control ADC

STC[7:0] 8 Input Sample time control ADC

ADCSTART 1 Input Start of conversion ADC

PWRDWN 1 Input ADC comparator power-down if 1.
When asserted, the ADC will stop
functioning, and the digital portion of
the analog block will continue
operating. This may result in invalid
status flags from the analog block.
Therefore, Microsemi does not
recommend asserting the PWRDWN
pin.

ADC

ADCRESET 1 Input ADC resets and disables Analog Quad
– active high

ADC

BUSY 1 Output 1 – Running conversion ADC

CALIBRATE 1 Output 1 – Power-up calibration ADC

DATAVALID 1 Output 1 – Valid conversion result ADC

RESULT[11:0] 12 Output Conversion result ADC

TMSTBINT 1 Input Internal temp. monitor strobe ADC

SAMPLE 1 Output 1 – An analog signal is actively being
sampled (stays high during signal
acquisition only)

0 – No analog signal is being sampled

ADC

VAREFSEL 1 Input 0 = Output internal voltage reference
(2.56 V) to VAREF

1 = Input external voltage reference
from VAREF and ADCGNDREF

ADC

CHNUMBER[4:0] 5 Input Analog input channel select Input 
multiplexer

ACMCLK 1 Input ACM clock ACM

ACMWEN 1 Input ACM write enable – active high ACM

ACMRESET 1 Input ACM reset – active low ACM

ACMWDATA[7:0] 8 Input ACM write data ACM

ACMRDATA[7:0] 8 Output ACM read data ACM

ACMADDR[7:0] 8 Input ACM address ACM

CMSTB0 to CMSTB9 10 Input Current monitor strobe – 1 per quad,
active high

Analog Quad
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Fusion Family of Mixed Signal FPGAs
INL – Integral Non-Linearity
INL is the deviation of an actual transfer function from a straight line. After nullifying offset and gain
errors, the straight line is either a best-fit straight line or a line drawn between the end points of the
transfer function (Figure 2-85).

LSB – Least Significant Bit
In a binary number, the LSB is the least weighted bit in the group. Typically, the LSB is the furthest right
bit. For an ADC, the weight of an LSB equals the full-scale voltage range of the converter divided by 2N,
where N is the converter’s resolution. 

EQ 13 shows the calculation for a 10-bit ADC with a unipolar full-scale voltage of 2.56 V:

1 LSB = (2.56 V / 210) = 2.5 mV

EQ 13

No Missing Codes
An ADC has no missing codes if it produces all possible digital codes in response to a ramp signal
applied to the analog input.

Figure 2-85 • Integral Non-Linearity (INL)

A
D

C
 O

u
tp

u
t 

C
o

d
e

Input Voltage to Prescaler

INL = +0.5 LSB

INL = +1 LSB

Ideal Output

Actual Output
Revision 6 2-102



Fusion Family of Mixed Signal FPGAs
User I/Os

Introduction
Fusion devices feature a flexible I/O structure, supporting a range of mixed voltages (1.5 V, 1.8 V, 2.5 V,
and 3.3 V) through a bank-selectable voltage. Table 2-68, Table 2-69, Table 2-70, and Table 2-71 on
page 2-135 show the voltages and the compatible I/O standards. I/Os provide programmable slew rates,
drive strengths, weak pull-up, and weak pull-down circuits. 3.3 V PCI and 3.3 V PCI-X are 5 V–tolerant.
See the "5 V Input Tolerance" section on page 2-144 for possible implementations of 5 V tolerance. 

All I/Os are in a known state during power-up, and any power-up sequence is allowed without current
impact. Refer to the "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial
and Industrial)" section on page 3-5 for more information. In low power standby or sleep mode (VCC is
OFF, VCC33A is ON, VCCI is ON) or when the resource is not used, digital inputs are tristated, digital
outputs are tristated, and digital bibufs (input/output) are tristated.

I/O Tile

The Fusion I/O tile provides a flexible, programmable structure for implementing a large number of I/O
standards. In addition, the registers available in the I/O tile in selected I/O banks can be used to support
high-performance register inputs and outputs, with register enable if desired (Figure 2-99 on
page 2-133). The registers can also be used to support the JESD-79C DDR standard within the I/O
structure (see the "Double Data Rate (DDR) Support" section on page 2-139 for more information).

As depicted in Figure 2-100 on page 2-138, all I/O registers share one CLR port. The output register and
output enable register share one CLK port. Refer to the "I/O Registers" section on page 2-138 for more
information.

I/O Banks and I/O Standards Compatibility
The digital I/Os are grouped into I/O voltage banks. There are three digital I/O banks on the AFS090 and
AFS250 devices and four digital I/O banks on the AFS600 and AFS1500 devices. Figure 2-113 on
page 2-158 and Figure 2-114 on page 2-159 show the bank configuration by device. The north side of
the I/O in the AFS600 and AFS1500 devices comprises two banks of Pro I/Os. The Pro I/Os support a
wide number of voltage-referenced I/O standards in addition to the multitude of single-ended and
differential I/O standards common throughout all Microsemi digital I/Os. Each I/O voltage bank has
dedicated I/O supply and ground voltages (VCCI/GNDQ for input buffers and VCCI/GND for output
buffers). Because of these dedicated supplies, only I/Os with compatible standards can be assigned to
the same I/O voltage bank. Table 2-69 and Table 2-70 on page 2-134 show the required voltage
compatibility values for each of these voltages.

For more information about I/O and global assignments to I/O banks, refer to the specific pin table of the
device in the "Package Pin Assignments" on page 4-1 and the "User I/O Naming Convention" section on
page 2-158.

Each Pro I/O bank is divided into minibanks. Any user I/O in a VREF minibank (a minibank is the region
of scope of a VREF pin) can be configured as a VREF pin (Figure 2-99 on page 2-133). Only one VREF
pin is needed to control the entire VREF minibank. The location and scope of the VREF minibanks can
be determined by the I/O name. For details, see the "User I/O Naming Convention" section on
page 2-158.

Table 2-70 on page 2-134 shows the I/O standards supported by Fusion devices and the corresponding
voltage levels.

I/O standards are compatible if the following are true:

• Their VCCI values are identical.

• If both of the standards need a VREF, their VREF values must be identical (Pro I/O only).
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Fusion Family of Mixed Signal FPGAs
Figure 2-102 • DDR Output Support in Fusion Devices
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Device Architecture
Selectable Skew between Output Buffer Enable/Disable Time
The configurable skew block is used to delay the output buffer assertion (enable) without affecting
deassertion (disable) time.

Figure 2-107 • Block Diagram of Output Enable Path

Figure 2-108 • Timing Diagram (option1: bypasses skew circuit)

Figure 2-109 • Timing Diagram (option 2: enables skew circuit)
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Fusion Family of Mixed Signal FPGAs
Table 2-109 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V
Applicable to Standard I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  Units 

2 mA  Std. 0.66 7.07 0.04 1.00 0.43 7.20 6.23 2.07 2.15  ns 

 –1 0.56 6.01 0.04 0.85 0.36 6.12 5.30 1.76 1.83  ns 

 –2 2 0.49 5.28 0.03 0.75 0.32 5.37 4.65 1.55 1.60  ns 

4 mA  Std. 0.66 7.07 0.04 1.00 0.43 7.20 6.23 2.07 2.15  ns 

 –1 0.56 6.01 0.04 0.85 0.36 6.12 5.30 1.76 1.83  ns 

 –2 0.49 5.28 0.03 0.75 0.32 5.37 4.65 1.55 1.60  ns 

6 mA  Std. 0.66 4.41 0.04 1.00 0.43 4.49 3.75 2.39 2.69  ns 

 –1 0.56 3.75 0.04 0.85 0.36 3.82 3.19 2.04 2.29  ns 

 –2 0.49 3.29 0.03 0.75 0.32 3.36 2.80 1.79 2.01  ns 

8 mA  Std. 0.66 4.41 0.04 1.00 0.43 4.49 3.75 2.39 2.69  ns 

 –1 0.56 3.75 0.04 0.85 0.36 3.82 3.19 2.04 2.29  ns 

 –2 0.49 3.29 0.03 0.75 0.32 3.36 2.80 1.79 2.01  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
VCC Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is also required for powering the JTAG state
machine, in addition to VJTAG. Even when a Fusion device is in bypass mode in a JTAG chain of
interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass
through the Fusion device.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are either
four (AFS090 and AFS250) or five (AFS600 and AFS1500) I/O banks on the Fusion devices plus a
dedicated VJTAG bank. 

Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply.
VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their
corresponding VCCI pins tied to GND.

VCCPLA/B PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V, where A and B refer to the PLL. AFS090 and AFS250
each have a single PLL. The AFS600 and AFS1500 devices each have two PLLs. Microsemi
recommends tying VCCPLX to VCC and using proper filtering circuits to decouple VCC noise from PLL.

If unused, VCCPLA/B should be tied to GND. 

VCOMPLA/B Ground for West and East PLL

VCOMPLA is the ground of the west PLL (CCC location F) and VCOMPLB is the ground of the east PLL
(CCC location C). 

VJTAG JTAG Supply Voltage

Fusion devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any
voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives
greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is
neither used nor planned to be used, the VJTAG pin together with the TRST pin could be tied to GND. It
should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a
Fusion device is in a JTAG chain of interconnected boards and it is desired to power down the board
containing the Fusion device, this may be done provided both VJTAG and VCC to the Fusion part remain
powered; otherwise, JTAG signals will not be able to transition the Fusion device, even in bypass mode.

VPUMP Programming Supply Voltage

Fusion devices support single-voltage ISP programming of the configuration flash and FlashROM. For
programming, VPUMP should be in the 3.3 V +/-5% range. During normal device operation, VPUMP can
be left floating or can be tied to any voltage between 0 V and 3.6 V.

When the VPUMP pin is tied to ground, it shuts off the charge pump circuitry, resulting in no sources of
oscillation from the charge pump circuitry.

For proper programming, 0.01 µF and 0.33 µF capacitors (both rated at 16 V) are to be connected in
parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.
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DC and Power Characteristics
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset 
(Commercial and Industrial)
Sophisticated power-up management circuitry is designed into every Fusion device. These circuits
ensure easy transition from the powered off state to the powered up state of the device. The many
different supplies can power up in any sequence with minimized current spikes or surges. In addition, the
I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 3-1
on page 3-6. 

There are five regions to consider during power-up. 

Fusion I/Os are activated only if ALL of the following three conditions are met:

1. VCC and VCCI are above the minimum specified trip points (Figure 3-1). 

2. VCCI > VCC – 0.75 V (typical). 

3. Chip is in the operating mode.

VCCI Trip Point: 

Ramping up: 0.6 V < trip_point_up < 1.2 V

Ramping down: 0.5 V < trip_point_down < 1.1 V 

VCC Trip Point: 

Ramping up: 0.6 V < trip_point_up < 1.1 V

Ramping down: 0.5 V < trip_point_down < 1 V 

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically
built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

• During programming, I/Os become tristated and weakly pulled up to VCCI.

• JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O
behavior.

Internal Power-Up Activation Sequence
1. Core

2. Input buffers 

3. Output buffers, after 200 ns delay from input buffer activation

PLL Behavior at Brownout Condition
Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-
up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout
activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 3-1 on page 3-6
for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels
(0.75 V ± 0.25 V), the PLL output lock signal goes low and/or the output clock is lost.  

Table 3-5 • FPGA Programming, Storage, and Operating Limits

Product 
Grade

Storage 
Temperature Element

Grade Programming 
Cycles Retention

Commercial Min. TJ = 0°C FPGA/FlashROM 500 20 years

Max. TJ = 85°C Embedded Flash < 1,000 20 years

< 10,000 10 years

< 15,000 5 years

Industrial Min. TJ = –40°C FPGA/FlashROM 500 20 years

Max. TJ = 100°C Embedded Flash < 1,000 20 years

< 10,000 10 years

< 15,000 5 years
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DC and Power Characteristics
IPP Programming supply
current

Non-programming mode, 
VPUMP = 3.63 V

TJ = 25°C 36 80 µA

TJ = 85°C 36 80 µA

TJ = 100°C 36 80 µA

Standby mode5 or Sleep
mode6, VPUMP = 0 V

0 0 µA

ICCNVM Embedded NVM current Reset asserted, 
VCCNVM = 1.575 V

TJ = 25°C 22 80 µA

TJ = 85°C 24 80 µA

TJ = 100°C 25 80 µA

ICCPLL 1.5 V PLL quiescent current Operational standby, 
VCCPLL = 1.575 V 

TJ = 25°C 130 200 µA

TJ = 85°C 130 200 µA

TJ = 100°C 130 200 µA

Table 3-9 • AFS600 Quiescent Supply Current Characteristics (continued)

Parameter Description Conditions Temp. Min Typ Max Unit

Notes:

1. ICC is the 1.5 V power supplies, ICC and ICC15A.
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.
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Fusion Family of Mixed Signal FPGAs
Dynamic Power Consumption of Various Internal Resources

Table 3-14 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices

Parameter Definition

Power Supply
Device-Specific 

Dynamic Contributions

UnitsName Setting AFS1500 AFS600 AFS250 AFS090

PAC1 Clock contribution of a Global
Rib

VCC 1.5 V 14.5 12.8 11 11 µW/MHz

PAC2 Clock contribution of a Global
Spine

VCC 1.5 V 2.5 1.9 1.6 0.8 µW/MHz

PAC3 Clock contribution of a VersaTile
row

VCC 1.5 V 0.81 µW/MHz

PAC4 Clock contribution of a VersaTile
used as a sequential module

VCC 1.5 V 0.11 µW/MHz

PAC5 First contribution of a VersaTile
used as a sequential module

VCC 1.5 V 0.07 µW/MHz

PAC6 Second contribution of a
VersaTile used as a sequential
module

VCC 1.5 V 0.29 µW/MHz

PAC7 Contribution of a VersaTile used
as a combinatorial module

VCC 1.5 V 0.29 µW/MHz

PAC8 Average contribution of a routing
net

VCC 1.5 V 0.70 µW/MHz

PAC9 Contribution of an I/O input pin
(standard dependent)

VCCI See Table 3-12 on page 3-18

PAC10 Contribution of an I/O output pin
(standard dependent)

VCCI See Table 3-13 on page 3-20

PAC11 Average contribution of a RAM
block during a read operation

VCC 1.5 V 25 µW/MHz

PAC12 Average contribution of a RAM
block during a write operation

VCC 1.5 V 30 µW/MHz

PAC13 Dynamic Contribution for PLL VCC 1.5 V 2.6 µW/MHz

PAC15 Contribution of NVM block during
a read operation (F < 33MHz)

VCC 1.5 V 358 µW/MHz

PAC16 1st contribution of NVM block
during a read operation (F > 33
MHz)

VCC 1.5 V 12.88 mW

PAC17 2nd contribution of NVM block
during a read operation (F > 33
MHz)

VCC 1.5 V 4.8 µW/MHz

PAC18 Crystal Oscillator contribution VCC33A 3.3 V 0.63 mW

PAC19 RC Oscillator contribution VCC33A 3.3 V 3.3 mW

PAC20 Analog Block dynamic power
contribution of ADC

VCC 1.5 V 3 mW
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Fusion Family of Mixed Signal FPGAs
R5 AV0 AV0 AV2 AV2

R6 AT0 AT0 AT2 AT2

R7 AV1 AV1 AV3 AV3

R8 AT3 AT3 AT5 AT5

R9 AV4 AV4 AV6 AV6

R10 NC AT5 AT7 AT7

R11 NC AV5 AV7 AV7

R12 NC NC AT9 AT9

R13 NC NC AG9 AG9

R14 NC NC AC9 AC9

R15 PUB PUB PUB PUB

R16 VCCIB1 VCCIB1 VCCIB2 VCCIB2

T1 GND GND GND GND

T2 NCAP NCAP NCAP NCAP

T3 VCC33N VCC33N VCC33N VCC33N

T4 NC NC ATRTN0 ATRTN0

T5 AT1 AT1 AT3 AT3

T6 ATRTN0 ATRTN0 ATRTN1 ATRTN1

T7 AT2 AT2 AT4 AT4

T8 ATRTN1 ATRTN1 ATRTN2 ATRTN2

T9 AT4 AT4 AT6 AT6

T10 ATRTN2 ATRTN2 ATRTN3 ATRTN3

T11 NC NC AT8 AT8

T12 NC NC ATRTN4 ATRTN4

T13 GNDA GNDA GNDA GNDA

T14 VCC33A VCC33A VCC33A VCC33A

T15 VAREF VAREF VAREF VAREF

T16 GND GND GND GND

FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function
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Datasheet Information
Advance v1.0
(continued)

This change table states that in the "208-Pin PQFP" table listed under the Advance
v0.8 changes, the AFS090 device had a pin change. That is incorrect. Pin 102 was
updated for AFS250 and AFS600. The function name changed from VCC33ACAP to
VCC33A.

3-8

Advance v0.9
(October 2007)

In the "Package I/Os: Single-/Double-Ended (Analog)" table, the
AFS1500/M7AFS1500 I/O counts were updated for the following devices:

FG484: 223/109

FG676: 252/126

II

In the "108-Pin QFN" table, the function changed from VCC33ACAP to VCC33A for the
following pin:

B25

3-2

In the "180-Pin QFN" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS090: B29

AFS250: B29

3-4

In the "208-Pin PQFP" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS090: 102

AFS250: 102

3-8

In the "256-Pin FBGA" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS090: T14

AFS250: T14

AFS600: T14

AFS1500: T14

3-12

Advance v0.9
(continued)

In the "484-Pin FBGA" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS600: AB18

AFS1500: AB18

3-20

In the "676-Pin FBGA" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS1500: AD20

3-28

Advance v0.8
(June 2007)

Figure 2-16 • Fusion Clocking Options and the "RC Oscillator" section were updated
to change GND_OSC and VCC_OSC to GNDOSC and VCCOSC.

2-20, 2-21

Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro was updated
to change the positions of OADIVRST and OADIVHALF, and a note was added.

2-25

The "Crystal Oscillator" section was updated to include information about controlling
and enabling/disabling the crystal oscillator.

2-22

Table 2-11 · Electrical Characteristics of the Crystal Oscillator was updated to
change the typical value of IDYNXTAL for 0.032–0.2 MHz to 0.19.

2-24

The "1.5 V Voltage Regulator" section was updated to add "or floating" in the
paragraph stating that an external pull-down is required on TRST to power down the
VR.

2-41

The "1.5 V Voltage Regulator" section was updated to include information on
powering down with the VR.

2-41
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Fusion Family of Mixed Signal FPGAs
Advance v0.3
(continued)

The "Temperature Monitor" section was updated. 2-96

EQ 2 is new. 2-103

The "ADC Description" section was updated. 2-102

Figure 2-16 • Fusion Clocking Options was updated. 2-20

Table 2-46 · Analog Channel Specifications was updated. 2-118

The notes in Table 2-72 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V
Input Tolerance Capabilities were updated.

2-144

The "Simultaneously Switching Outputs and PCB Layout" section is new. 2-149

LVPECL and LVDS were updated in Table 2-81 • Fusion Standard and Advanced I/O
Attributes vs. I/O Standard Applications.

2-157

LVPECL and LVDS were updated in Table 2-82 • Fusion Pro I/O Attributes vs. I/O
Standard Applications.

2-158

The "Timing Model" was updated. 2-161

All voltage-referenced Minimum and Maximum DC Input and Output Level tables
were updated.

N/A

All Timing Characteristic tables were updated N/A

Table 2-83 • Summary of Maximum and Minimum DC Input and Output Levels
Applicable to Commercial and Industrial Conditions was updated.

2-165

Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings
was updated.

2-134

Table 2-93 • I/O Output Buffer Maximum Resistances 1 was updated. 2-171

The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O
standards included in the datasheet.

2-211

The "CoreMP7 and Cortex-M1 Software Tools" section is new. 2-257

Table 2-83 • Summary of Maximum and Minimum DC Input and Output Levels
Applicable to Commercial and Industrial Conditions was updated.

2-165

Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings
was updated.

2-134

Table 2-93 • I/O Output Buffer Maximum Resistances 1 was updated. 2-171

The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O
standards included in the datasheet.

2-211

The "108-Pin QFN" table for the AFS090 device is new. 3-2

The "180-Pin QFN" table for the AFS090 device is new. 3-4

The "208-Pin PQFP" table for the AFS090 device is new. 3-8

The "256-Pin FBGA" table for the AFS090 device is new. 3-12

The "256-Pin FBGA" table for the AFS250 device is new. 3-12
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