

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	223
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1afs1500-1fgg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-7 • AFS250 Global Resource Timing
Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Paramotor	meter Description –		·2	-1		Std.		Unite
Faranieter			Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.89	1.12	1.02	1.27	1.20	1.50	ns
t _{RCKH}	Input High Delay for Global Clock	0.88	1.14	1.00	1.30	1.17	1.53	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.30		0.35	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-8 • AFS090 Global Resource Timing

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Perameter Description		-	-2		-1		Std.	
Falailletei	Description		Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.84	1.07	0.96	1.21	1.13	1.43	ns
t _{RCKH}	Input High Delay for Global Clock	0.83	1.10	0.95	1.25	1.12	1.47	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.27		0.30		0.36	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Clock Conditioning Circuits

In Fusion devices, the CCCs are used to implement frequency division, frequency multiplication, phase shifting, and delay operations.

The CCCs are available in six chip locations—each of the four chip corners and the middle of the east and west chip sides.

Each CCC can implement up to three independent global buffers (with or without programmable delay), or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to three global outputs. Unused global outputs of a PLL can be used to implement independent global buffers, up to a maximum of three global outputs for a given CCC.

A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, and CLKC-GLC) of a given CCC.

A PLL macro uses the CLKA CCC input to drive its reference clock. It uses the GLA and, optionally, the GLB and GLC global outputs to drive the global networks. A PLL macro can also drive the YB and YC regular core outputs. The GLB (or GLC) global output cannot be reused if the YB (or YC) output is used (Figure 2-19). Refer to the "PLL Macro" section on page 2-27 for more information.

Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

- · 3 dedicated single-ended I/Os using a hardwired connection
- 2 dedicated differential I/Os using a hardwired connection
- The FPGA core

The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or through an asynchronous interface. This asynchronous interface is dynamically accessible from inside the Fusion device to permit changes of parameters (such as divide ratios) during device operation. To increase the versatility and flexibility of the clock conditioning system, the CCC configuration is determined either by the user during the design process, with configuration data being stored in flash memory as part of the device programming procedure, or by writing data into a dedicated shift register during normal device operation. This latter mode allows the user to dynamically reconfigure the CCC without the need for core programming. The shift register is accessed through a simple serial interface. Refer to the "UJTAG Applications in Microsemi's Low-Power Flash Devices" chapter of the *Fusion FPGA Fabric User Guide* and the "CCC and PLL Characteristics" section on page 2-28 for more information.

Notes:

- 1. Visit the Microsemi SoC Products Group website for application notes concerning dynamic PLL reconfiguration. Refer to the "PLL Macro" section on page 2-27 for signal descriptions.
- 2. Many specific INBUF macros support the wide variety of single-ended and differential I/O standards for the Fusion family.
- 3. Refer to the IGLOO, ProASIC3, SmartFusion and Fusion Macro Library Guide for more information.

Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro

Table 2-11 • Available Selections of I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

CLKBUF Macros
CLKBUF_LVCMOS5
CLKBUF_LVCMOS33 ¹
CLKBUF_LVCMOS18
CLKBUF_LVCMOS15
CLKBUF_PCI
CLKBUF_LVDS ²
CLKBUF_LVPECL

Notes:

1. This is the default macro. For more details, refer to the IGLOO, ProASIC3, SmartFusion and Fusion Macro Library Guide.

2. The B-LVDS and M-LVDS standards are supported with CLKBUF_LVDS.

Direct Digital Input

The AV, AC, and AT pads can also be configured as high-voltage digital inputs (Figure 2-69). As these pads are 12 V–tolerant, the digital input can also be up to 12 V. However, the frequency at which these pads can operate is limited to 10 MHz.

To enable one of these analog input pads to operate as a digital input, its corresponding Digital Input Enable (DENAxy) pin on the Analog Block must be pulled High, where x is either V, C, or T (for AV, AC, or AT pads, respectively) and y is in the range 0 to 9, corresponding to the appropriate Analog Quad.

When the pad is configured as a digital input, the signal will come out of the Analog Block macro on the appropriate DAxOUTy pin, where x represents the pad type (V for AV pad, C for AC pad, or T for AT pad) and y represents the appropriate Analog Quad number. Example: If the AT pad in Analog Quad 5 is configured as a digital input, it will come out on the DATOUT5 pin of the Analog Block macro.

Figure 2-69 • Analog Quad Direct Digital Input Configuration

Table 2-50 • ADC Characteristics in Direct Input Mode (continued)

Commercial Temperature Range Conditions, $T_J = 85^{\circ}C$ (unless noted otherwise), Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Dynamic Pe	erformance					
SNR	Signal-to-Noise Ratio	8-bit mode	48.0	49.5		dB
		10-bit mode	58.0	60.0		dB
		12-bit mode	62.9	64.5		dB
SINAD	Signal-to-Noise Distortion	8-bit mode	47.6	49.5		dB
		10-bit mode	57.4	59.8		dB
		12-bit mode	62.0	64.2		dB
THD	Total Harmonic Distortion	8-bit mode		-74.4	-63.0	dBc
		10-bit mode		-78.3	-63.0	dBc
		12-bit mode		-77.9	-64.4	dBc
ENOB	Effective Number of Bits	8-bit mode	7.6	7.9		bits
		10-bit mode	9.5	9.6		bits
		12-bit mode	10.0	10.4		bits
Conversion	Rate					
	Conversion Time	8-bit mode	1.7			μs
		10-bit mode	1.8			μs
		12-bit mode	2			μs
	Sample Rate	8-bit mode			600	Ksps
		10-bit mode			550	Ksps
		12-bit mode			500	Ksps

Notes:

1. Accuracy of the external reference is 2.56 V \pm 4.6 mV.

2. Data is based on characterization.

3. The sample rate is time-shared among active analog inputs.

Table 2-52 • Calibrated Analog Channel Accuracy 1,2,3Worst-Case Industrial Conditions, TJ = 85°C

		Condition	Total	Channel Error	(LSB)
Analog Pad	Prescaler Range (V)	Input Voltage ⁴ (V)	Negative Max.	Median	Positive Max.
P	ositive Range		A	DC in 10-Bit Mo	ode
AV, AC	16	0.300 to 12.0	-6	1	6
	8	0.250 to 8.00	-6	0	6
	4	0.200 to 4.00	-7	-1	7
	2	0.150 to 2.00	-7	0	7
	1	0.050 to 1.00	-6	-1	6
AT	16	0.300 to 16.0	-5	0	5
	4	0.100 to 4.00	-7	-1	7
Ne	egative Range		ADC in 10-Bit Mode		
AV, AC	16	-0.400 to -10.5	-7	1	9
	8	-0.350 to -8.00	-7	-1	7
	4	-0.300 to -4.00	-7	-2	9
	2	-0.250 to -2.00	-7	-2	7
	1	-0.050 to -1.00	-16	-1	20

Notes:

1. Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For 8-bit mode, divide the LSB count by 4. Overall accuracy remains the same.

2. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

3. Calibrated with two-point calibration methodology, using 20% and 80% full-scale points.

4. The lower limit of the input voltage is determined by the prescaler input offset.

	Calibrated Typical Error per Positive Prescaler Setting ¹ (%FSR)						SR)	Direct ADC ^{2,3} (%FSR)
Input Voltage (V)	16 V (AT)	16 V (12 V) (AV/AC)	8 V (AV/AC)	4 V (AT)	4 V (AV/AC)	2 V (AV/AC)	1 V (AV/AC)	VAREF = 2.56 V
15	1							
14	1							
12	1	1						
5	2	2	1					
3.3	2	2	1	1	1			
2.5	3	2	1	1	1			1
1.8	4	4	1	1	1	1		1
1.5	5	5	2	2	2	1		1
1.2	7	6	2	2	2	1		1
0.9	9	9	4	3	3	1	1	1

Table 2-53 • Analog Channel Accuracy: Monitoring Standard Positive Voltages Typical Conditions, T_A = 25°C

Notes:

1. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

2. Direct ADC mode using an external VAREF of 2.56V±4.6mV, without Analog Calibration macro.

3. For input greater than 2.56 V, the ADC output will saturate. A higher VAREF or prescaler usage is recommended.

Examples

Calculating Accuracy for an Uncalibrated Analog Channel

Formula

For a given prescaler range, EQ 30 gives the output voltage.

Output Voltage = (Channel Output Offset in V) + (Input Voltage x Channel Gain)

EQ 30

where

Channel Output offset in V = Channel Input offset in LSBs x Equivalent voltage per LSB Channel Gain Factor = 1 + (% Channel Gain / 100)

Example

Input Voltage = 5 V Chosen Prescaler range = 8 V range Refer to Table 2-51 on page 2-122.

Max. Output Voltage = (Max Positive input offset) + (Input Voltage x Max Positive Channel Gain)

Max. Positive input offset = (21 LSB) x (8 mV per LSB in 10-bit mode) Max. Positive input offset = 166 mV Max. Positive Gain Error = +3% Max. Positive Channel Gain = 1 + (+3% / 100) Max. Positive Channel Gain = 1.03 Max. Output Voltage = (166 mV) + (5 V x 1.03) Max. Output Voltage = **5.316 V** Table 2-57 details the settings available to control the prescaler values of the AV, AC, and AT pins. Note that the AT pin has a reduced number of available prescaler values.

Control Lines Bx[2:0]	Scaling Factor, Pad to ADC Input	LSB for an 8-Bit Conversion ¹ (mV)	LSB for a 10-Bit Conversion ¹ (mV)	LSB for a 12-Bit Conversion ¹ (mV)	Full-Scale Voltage in 10-Bit Mode ²	Range Name
000 ³	0.15625	64	16	4	16.368 V	16 V
001	0.3125	32	8	2	8.184 V	8 V
010 ³	0.625	16	4	1	4.092 V	4 V
011	1.25	8	2	0.5	2.046 V	2 V
100	2.5	4	1	0.25	1.023 V	1 V
101	5.0	2	0.5	0.125	0.5115 V	0.5 V
110	10.0	1	0.25	0.0625	0.25575 V	0.25 V
111	20.0	0.5	0.125	0.03125	0.127875 V	0.125 V

Table 2-57 • Prescaler Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Notes:

1. LSB voltage equivalences assume VAREF = 2.56 V.

2. Full Scale voltage for n-bit mode: $((2^n) - 1) \times (LSB \text{ for a } n\text{-bit Conversion})$

3. These are the only valid ranges for the Temperature Monitor Block Prescaler.

Table 2-58 details the settings available to control the MUX within each of the AV, AC, and AT circuits. This MUX determines whether the signal routed to the ADC is the direct analog input, prescaled signal, or output of either the Current Monitor Block or the Temperature Monitor Block.

Table 2-58 • Analog Multiplexer Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[4]	Control Lines Bx[3]	ADC Connected To
0	0	Prescaler
0	1	Direct input
1	0	Current amplifier temperature monitor
1	1	Not valid

Table 2-59 details the settings available to control the Direct Analog Input switch for the AV, AC, and AT pins.

Table 2-59 • Direct Analog Input Switch Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[5]	Direct Input Switch
0	Off
1	On

Table 2-60 details the settings available to control the polarity of the signals coming to the AV, AC, and AT pins. Note that the only valid setting for the AT pin is logic 0 to support positive voltages.

Table 2-60 • Voltage Polarity Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)*

Control Lines Bx[6]	Input Signal Polarity
0	Positive
1	Negative

Note: *The B3[6] signal for the AT pad should be kept at logic 0 to accept only positive voltages.

Table 2-73 • Maximum I/O Frequency for Single-Ended, Voltage-Referenced, and Differential I/Os; All I/O Bank Types (maximum drive strength and high slew selected)

Specification	Performance Up To
LVTTL/LVCMOS 3.3 V	200 MHz
LVCMOS 2.5 V	250 MHz
LVCMOS 1.8 V	200 MHz
LVCMOS 1.5 V	130 MHz
PCI	200 MHz
PCI-X	200 MHz
HSTL-I	300 MHz
HSTL-II	300 MHz
SSTL2-I	300 MHz
SSTL2-II	300 MHz
SSTL3-I	300 MHz
SSTL3-II	300 MHz
GTL+ 3.3 V	300 MHz
GTL+ 2.5 V	300 MHz
GTL 3.3 V	300 MHz
GTL 2.5 V	300 MHz
LVDS	350 MHz
LVPECL	300 MHz

I/O Standard	Input/Output Supply Voltage (VCCI_TYP)	Input Reference Voltage (VREF_TYP)	Board Termination Voltage (VTT_TYP)
LVTTL/LVCMOS 3.3 V	3.30 V	-	-
LVCMOS 2.5 V	2.50 V	-	-
LVCMOS 2.5 V / 5.0 V Input	2.50 V	-	-
LVCMOS 1.8 V	1.80 V	-	-
LVCMOS 1.5 V	1.50 V	-	-
PCI 3.3 V	3.30 V	-	-
PCI-X 3.3 V	3.30 V	-	-
GTL+ 3.3 V	3.30 V	1.00 V	1.50 V
GTL+ 2.5 V	2.50 V	1.00 V	1.50 V
GTL 3.3 V	3.30 V	0.80 V	1.20 V
GTL 2.5 V	2.50 V	0.80 V	1.20 V
HSTL Class I	1.50 V	0.75 V	0.75 V
HSTL Class II	1.50 V	0.75 V	0.75 V
SSTL3 Class I	3.30 V	1.50 V	1.50 V
SSTL3 Class II	3.30 V	1.50 V	1.50 V
SSTL2 Class I	2.50 V	1.25 V	1.25 V
SSTL2 Class II	2.50 V	1.25 V	1.25 V
LVDS, BLVDS, M-LVDS	2.50 V	-	-
LVPECL	3.30 V	-	-

Table 2-83 • Fusion Pro I/O Supported Standards and Corresponding VREF and VTT Voltages

Overview of I/O Performance Summary of I/O DC Input and Output Levels – Default I/O Software Settings

Table 2-86 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions Applicable to Pro I/Os

				VIL	VIH		VOL	VOH	IOL	IOH
I/O Standard	Drive Strength	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
2.5 V LVCMOS	12 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	12	12
1.5 V LVCMOS	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12
3.3 V PCI		•	•		Per PCI Spec	ification				
3.3 V PCI-X					Per PCI-X Spe	cification				
3.3 V GTL	20 mA ²	High	-0.3	VREF-0.05	VREF + 0.05	3.6	0.4	-	20	20
2.5 V GTL	20 mA ²	High	-0.3	VREF-0.05	VREF + 0.05	3.6	0.4	-	20	20
3.3 V GTL+	35 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	35	35
2.5 V GTL+	33 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	33	33
HSTL (I)	8 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI – 0.4	8	8
HSTL (II)	15 mA ²	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI – 0.4	15	15
SSTL2 (I)	15 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI-0.62	15	15
SSTL2 (II)	18 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI-0.43	18	18
SSTL3 (I)	14 mA	High	-0.3	VREF - 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14
SSTL3 (II)	21 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI – 0.9	21	21

Notes:

1. Currents are measured at 85°C junction temperature.

2. Output drive strength is below JEDEC specification.

3. Output slew rate can be extracted by the IBIS models.

Table 2-87 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions Applicable to Advanced I/Os

			VIL		VIH		VOL	VOH	IOL	ЮН
I/O Standard	Drive Strength	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
2.5 V LVCMOS	12 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	12	12
1.5 V LVCMOS	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12
3.3 V PCI	Per PCI specifications									
3.3 V PCI-X				Р	er PCI-X spec	cificatior	าร			

Note: Currents are measured at 85°C junction temperature.

3.3 V PCI, 3.3 V PCI-X

The Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

Table 2-134 • Minimum and Maximum DC Input and Output Levels

3.3 V PCI/PCI-X	v	IL	V	IH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Per PCI specification	Per PCI curves								10	10		

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-123.

Figure 2-123 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the data path; Microsemi loading for tristate is described in Table 2-135.

Table 2-135 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for t _{DP(R)}	-	10
		0.615 * VCCI for t _{DP(F)}		

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Thermal Characteristics

Introduction

The temperature variable in the Microsemi Designer software refers to the junction temperature, not the ambient, case, or board temperatures. This is an important distinction because dynamic and static power consumption will cause the chip's junction temperature to be higher than the ambient, case, or board temperatures. EQ 1 through EQ 3 give the relationship between thermal resistance, temperature gradient, and power.

$$\theta_{\mathsf{J}\mathsf{A}} = \frac{\mathsf{T}_{\mathsf{J}} - \theta_{\mathsf{A}}}{\mathsf{P}}$$

EQ 1

$$\theta_{\mathsf{JB}} = \frac{\mathsf{T}_{\mathsf{J}} - \mathsf{T}_{\mathsf{B}}}{\mathsf{P}}$$

EQ 2

EQ 3

$$\theta_{JC} = \frac{T_J - T_C}{P}$$

where

- θ_{JA} = Junction-to-air thermal resistance
- θ_{JB} = Junction-to-board thermal resistance
- θ_{JC} = Junction-to-case thermal resistance
- T_J = Junction temperature
- T_A = Ambient temperature
- T_B = Board temperature (measured 1.0 mm away from the package edge)

T_C = Case temperature

P = Total power dissipated by the device

Table 3-6 • Package Thermal Resistance

Product	Still Air	1.0 m/s	2.5 m/s	θ JC	θ_{JB}	Units
AFS090-QN108	34.5	30.0	27.7	8.1	16.7	°C/W
AFS090-QN180	33.3	27.6	25.7	9.2	21.2	°C/W
AFS250-QN180	32.2	26.5	24.7	5.7	15.0	°C/W
AFS250-PQ208	42.1	38.4	37	20.5	36.3	°C/W
AFS600-PQ208	23.9	21.3	20.48	6.1	16.5	°C/W
AFS090-FG256	37.7	33.9	32.2	11.5	29.7	°C/W
AFS250-FG256	33.7	30.0	28.3	9.3	24.8	°C/W
AFS600-FG256	28.9	25.2	23.5	6.8	19.9	°C/W
AFS1500-FG256	23.3	19.6	18.0	4.3	14.2	°C/W
AFS600-FG484	21.8	18.2	16.7	7.7	16.8	°C/W
AFS1500-FG484	21.6	16.8	15.2	5.6	14.9	°C/W
AFS1500-FG676	TBD	TBD	TBD	TBD	TBD	°C/W

Power per I/O Pin

Table 3-12 • Summary of I/O Input Buffer Power (per pin)—Default I/O Software Settings

	VCCI (V)	Static Power PDC7 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Applicable to Pro I/O Banks	<u> </u>		
Single-Ended			
3.3 V LVTTL/LVCMOS	3.3		17.39
3.3 V LVTTL/LVCMOS – Schmitt trigger	3.3	_	25.51
2.5 V LVCMOS	2.5	_	5.76
2.5 V LVCMOS – Schmitt trigger	2.5	_	7.16
1.8 V LVCMOS	1.8	_	2.72
1.8 V LVCMOS – Schmitt trigger	1.8	_	2.80
1.5 V LVCMOS (JESD8-11)	1.5	_	2.08
1.5 V LVCMOS (JESD8-11) – Schmitt trigger	1.5	_	2.00
3.3 V PCI	3.3	_	18.82
3.3 V PCI – Schmitt trigger	3.3	_	20.12
3.3 V PCI-X	3.3	_	18.82
3.3 V PCI-X – Schmitt trigger	3.3	_	20.12
Voltage-Referenced	<u></u>		
3.3 V GTL	3.3	2.90	8.23
2.5 V GTL	2.5	2.13	4.78
3.3 V GTL+	3.3	2.81	4.14
2.5 V GTL+	2.5	2.57	3.71
HSTL (I)	1.5	0.17	2.03
HSTL (II)	1.5	0.17	2.03
SSTL2 (I)	2.5	1.38	4.48
SSTL2 (II)	2.5	1.38	4.48
SSTL3 (I)	3.3	3.21	9.26
SSTL3 (II)	3.3	3.21	9.26
Differential			
LVDS	2.5	2.26	1.50
LVPECL	3.3	5.71	2.17

Notes:

1. PDC7 is the static power (where applicable) measured on VCCI.

2. PAC9 is the total dynamic power measured on VCC and VCCI.

RC Oscillator Dynamic Contribution—**P**_{RC-OSC}

Operating Mode

P_{RC-OSC} = PAC19

Standby Mode and Sleep Mode

 $P_{RC-OSC} = 0 W$

Analog System Dynamic Contribution—P_{AB}

Operating Mode

P_{AB} = PAC20

Standby Mode and Sleep Mode

 $P_{AB} = 0 W$

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that the net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100%, as all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
 - Bit 0 (LSB) = 100%
 - Bit 1 = 50%
 - Bit 2 = 25%
 - ...
 - Bit 7 (MSB) = 0.78125%
 - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . 0.78125%) / 8.

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When non-tristate output buffers are used, the enable rate should be 100%.

Table 3-16 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
α_1	Toggle rate of VersaTile outputs	10%
α ₂	I/O buffer toggle rate	10%

Table 3-17 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β ₁	I/O output buffer enable rate	100%
β ₂	RAM enable rate for read operations	12.5%
β ₃	RAM enable rate for write operations	12.5%
β ₄	NVM enable rate for read operations	0%

	FG256						
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function			
R5	AV0	AV0	AV2	AV2			
R6	AT0	AT0	AT2	AT2			
R7	AV1	AV1	AV3	AV3			
R8	AT3	AT3	AT5	AT5			
R9	AV4	AV4	AV6	AV6			
R10	NC	AT5	AT7	AT7			
R11	NC	AV5	AV7	AV7			
R12	NC	NC	AT9	AT9			
R13	NC	NC	AG9	AG9			
R14	NC	NC	AC9	AC9			
R15	PUB	PUB	PUB	PUB			
R16	VCCIB1	VCCIB1	VCCIB2	VCCIB2			
T1	GND	GND	GND	GND			
T2	NCAP	NCAP	NCAP	NCAP			
Т3	VCC33N	VCC33N	VCC33N	VCC33N			
T4	NC	NC	ATRTN0	ATRTN0			
T5	AT1	AT1	AT3	AT3			
Т6	ATRTN0	ATRTN0	ATRTN1	ATRTN1			
Τ7	AT2	AT2	AT4	AT4			
Т8	ATRTN1	ATRTN1	ATRTN2	ATRTN2			
Т9	AT4	AT4	AT6	AT6			
T10	ATRTN2	ATRTN2	ATRTN3	ATRTN3			
T11	NC	NC	AT8	AT8			
T12	NC	NC	ATRTN4	ATRTN4			
T13	GNDA	GNDA	GNDA	GNDA			
T14	VCC33A	VCC33A	VCC33A	VCC33A			
T15	VAREF	VAREF	VAREF	VAREF			
T16	GND	GND	GND	GND			

	FG484		FG484		
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function
H13	GND	GND	K4	IO75NDB4V0	IO110NDB4V0
H14	VCCIB1	VCCIB1	K5	GND	GND
H15	GND	GND	K6	NC	IO104NDB4V0
H16	GND	GND	K7	NC	IO111NDB4V0
H17	NC	IO53NDB2V0	K8	GND	GND
H18	IO38PDB2V0	IO57PDB2V0	K9	VCC	VCC
H19	GCA2/IO39PDB2V0	GCA2/IO59PDB2V0	K10	GND	GND
H20	VCCIB2	VCCIB2	K11	VCC	VCC
H21	IO37NDB2V0	IO54NDB2V0	K12	GND	GND
H22	IO37PDB2V0	IO54PDB2V0	K13	VCC	VCC
J1	NC	IO112PPB4V0	K14	GND	GND
J2	IO76NDB4V0	IO113NDB4V0	K15	GND	GND
J3	GFB2/IO74PDB4V0	GFB2/IO109PDB4V0	K16	IO40NDB2V0	IO60NDB2V0
J4	GFA2/IO75PDB4V0	GFA2/IO110PDB4V0	K17	NC	IO58PDB2V0
J5	NC	IO112NPB4V0	K18	GND	GND
J6	NC	IO104PDB4V0	K19	NC	IO68NPB2V0
J7	NC	IO111PDB4V0	K20	IO41NDB2V0	IO61NDB2V0
J8	VCCIB4	VCCIB4	K21	GND	GND
J9	GND	GND	K22	IO42NDB2V0	IO56NDB2V0
J10	VCC	VCC	L1	IO73NDB4V0	IO108NDB4V0
J11	GND	GND	L2	VCCOSC	VCCOSC
J12	VCC	VCC	L3	VCCIB4	VCCIB4
J13	GND	GND	L4	XTAL2	XTAL2
J14	VCC	VCC	L5	GFC1/IO72PDB4V0	GFC1/IO107PDB4V0
J15	VCCIB2	VCCIB2	L6	VCCIB4	VCCIB4
J16	GCB2/IO40PDB2V0	GCB2/IO60PDB2V0	L7	GFB1/IO71PDB4V0	GFB1/IO106PDB4V0
J17	NC	IO58NDB2V0	L8	VCCIB4	VCCIB4
J18	IO38NDB2V0	IO57NDB2V0	L9	GND	GND
J19	IO39NDB2V0	IO59NDB2V0	L10	VCC	VCC
J20	GCC2/IO41PDB2V0	GCC2/IO61PDB2V0	L11	GND	GND
J21	NC	IO55PSB2V0	L12	VCC	VCC
J22	IO42PDB2V0	IO56PDB2V0	L13	GND	GND
K1	GFC2/IO73PDB4V0	GFC2/IO108PDB4V0	L14	VCC	VCC
K2	GND	GND	L15	VCCIB2	VCCIB2
K3	IO74NDB4V0	IO109NDB4V0	L16	IO48PDB2V0	IO70PDB2V0

FG676

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.

Datasheet Information

Revision	Changes	Page
Advance v0.8 (continued)	The voltage range in the "VPUMP Programming Supply Voltage" section was updated. The parenthetical reference to "pulled up" was removed from the statement, "VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and 3.6 V."	2-225
	The "ATRTNx Temperature Monitor Return" section was updated with information about grounding and floating the pin.	2-226
	The following text was deleted from the "VREF I/O Voltage Reference" section: (all digital I/O).	2-225
	The "NCAP Negative Capacitor" section and "PCAP Positive Capacitor" section were updated to include information about the type of capacitor that is required to connect the two.	2-228
	1 µF was changed to 100 pF in the "XTAL1 Crystal Oscillator Circuit Input".	2-228
	The "Programming" section was updated to include information about V_{CCOSC} .	2-229
	The VMV pins have now been tied internally with the V _{CCI} pins.	N/A
	The AFS090"108-Pin QFN" table was updated.	3-2
	The AFS090 and AFS250 devices were updated in the "108-Pin QFN" table.	3-2
	The AFS250 device was updated in the "208-Pin PQFP" table.	3-8
	The AFS600 device was updated in the "208-Pin PQFP" table.	3-8
	The AFS090, AFS250, AFS600, and AFS1500 devices were updated in the "256-Pin FBGA" table.	3-12
	The AFS600 and AFS1500 devices were updated in the "484-Pin FBGA" table.	3-20
Advance v0.7	The AFS600 device was updated in the "676-Pin FBGA" table.	3-28
(January 2007)	The AFS1500 digital I/O count was updated in the "Fusion Family" table.	I
	The AFS1500 digital I/O count was updated in the "Package I/Os: Single-/Double- Ended (Analog)" table.	II
Advance v0.6 (October 2006)	The second paragraph of the "PLL Macro" section was updated to include information about POWERDOWN.	2-30
	The description for bit 0 was updated in Table 2-17 · RTC Control/Status Register.	2-38
	3.9 was changed to 7.8 in the "Crystal Oscillator (Xtal Osc)" section.	2-40.
	All function descriptions in Table 2-18 · Signals for VRPSM Macro.	2-42
	In Table 2-19 • Flash Memory Block Pin Names, the RD[31:0] description was updated.	2-43
	The "RESET" section was updated.	2-61
	The "RESET" section was updated.	2-64
	Table 2-35 • FIFO was updated.	2-79
	The VAREF function description was updated in Table 2-36 • Analog Block Pin Description.	2-82
	The "Voltage Monitor" section was updated to include information about low power mode and sleep mode.	2-86
	The text in the "Current Monitor" section was changed from 2 mV to 1 mV.	2-90
	The "Gate Driver" section was updated to include information about forcing 1 V on the drain.	2-94

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.