

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

ĿХF

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	
Total RAM Bits	276480
Number of I/O	252
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1afs1500-1fgg676

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

Fusion Devices	AFS090	AFS250	AFS600	AFS1500
ARM Cortex-M1 Devices		M1AFS250	M1AFS600	M1AFS1500
Pigeon Point Devices			P1AFS600 ³	P1AFS1500 ³
MicroBlade Devices		U1AFS250 ⁴	U1AFS600 ⁴	U1AFS1500 ⁴
QN108 ⁵	C, I	-	-	_
QN180 ⁵	C, I	C, I	-	-
PQ208	-	C, I	C, I	-
FG256	C, I	C, I	C, I	C, I
FG484	-	-	C, I	C, I
FG676	-	-	-	C, I

Notes:

1. C = Commercial Temperature Range: 0°C to 85°C Junction

2. I = Industrial Temperature Range: -40°C to 100°C Junction

3. Pigeon Point devices are only offered in FG484 and FG256.

4. MicroBlade devices are only offered in FG256.

5. Package not available.

Speed Grade and Temperature Grade Matrix

	Std. ¹	-1	-2 ²
C ³	\checkmark	\checkmark	\checkmark
l ⁴	\checkmark	\checkmark	\checkmark

Notes:

1. MicroBlade devices are only offered in standard speed grade.

2. Pigeon Point devices are only offered in –2 speed grade.

3. C = Commercial Temperature Range: 0°C to 85°C Junction

4. I = Industrial Temperature Range: -40°C to 100°C Junction

Contact your local Microsemi SoC Products Group representative for device availability:

http://www.microsemi.com/index.php?option=com_content&id=137&lang=en&view=article.

Cortex-M1, Pigeon Point, and MicroBlade Fusion Device Information

This datasheet provides information for all Fusion (AFS), Cortex-M1 (M1), Pigeon Point (P1), and MicroBlade (U1) devices. The remainder of the document will only list the Fusion (AFS) devices. Please apply relevant information to M1, P1, and U1 devices when appropriate. Please note the following:

- Cortex-M1 devices are offered in the same speed grades and packages as basic Fusion devices.
- Pigeon Point devices are only offered in –2 speed grade and FG484 and FG256 packages.
- MicroBlade devices are only offered in standard speed grade and the FG256 package.

Fusion Device Family Overview

The FlashPoint tool in the Fusion development software solutions, Libero SoC and Designer, has extensive support for flash memory blocks and FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using the Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

Fusion devices have embedded SRAM blocks along the north and south sides of the device. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be written through a 4-bit port and read as a single bitstream. The SRAM blocks can be initialized from the flash memory blocks or via the device JTAG port (ROM emulation mode), using the UJTAG macro.

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal EMPTY and FULL flags. The embedded FIFO control unit contains the counters necessary for the generation of the read and write address pointers. The SRAM/FIFO blocks can be cascaded to create larger configurations.

Clock Resources

PLLs and Clock Conditioning Circuits (CCCs)

Fusion devices provide designers with very flexible clock conditioning capabilities. Each member of the Fusion family contains six CCCs. In the two larger family members, two of these CCCs also include a PLL; the smaller devices support one PLL.

The inputs of the CCC blocks are accessible from the FPGA core or from one of several inputs with dedicated CCC block connections.

The CCC block has the following key features:

- Wide input frequency range (f_{IN CCC}) = 1.5 MHz to 350 MHz
- Output frequency range ($f_{OUT CCC}$) = 0.75 MHz to 350 MHz
- Clock phase adjustment via programmable and fixed delays from -6.275 ns to +8.75 ns
- Clock skew minimization (PLL)
- Clock frequency synthesis (PLL)
- · On-chip analog clocking resources usable as inputs:
 - 100 MHz on-chip RC oscillator
 - Crystal oscillator

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°
- Output duty cycle = $50\% \pm 1.5\%$
- Low output jitter. Samples of peak-to-peak period jitter when a single global network is used:
 - 70 ps at 350 MHz
 - 90 ps at 100 MHz
 - 180 ps at 24 MHz
 - Worst case < 2.5% × clock period
- Maximum acquisition time = 150 µs
- Low power consumption of 5 mW

Conversely, when writing 4-bit values and reading 9-bit values, the ninth bit of a read operation will be undefined. The RAM blocks employ little-endian byte order for read and write operations.

Figure 2-47 • Fusion RAM Block with Embedded FIFO Controller

Timing Characteristics

Table 2-35 • FIFO

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN, WEN Setup time	1.34	1.52	1.79	ns
t _{ENH}	REN, WEN Hold time	0.00	0.00	0.00	ns
t _{BKS}	BLK Setup time	0.19	0.22	0.26	ns
t _{вкн}	BLK Hold time	0.00	0.00	0.00	ns
t _{DS}	Input data (WD) Setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (WD) Hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.17	2.47	2.90	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	0.94	1.07	1.26	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET Low to Almost-Empty/Full Flag Valid	6.13	6.98	8.20	ns
+	RESET Low to Data out Low on RD (flow-through)	0.92	1.05	1.23	ns
^I RSTBQ	RESET Low to Data out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Terminology

Resolution

Resolution defines the smallest temperature change Fusion Temperature Monitor can resolve. For ADC configured as 8-bit mode, each LSB represents 4°C, and 1°C per LSB for 10-bit mode. With 12-bit mode, the Temperature Monitor can still only resolve 1°C due to Temperature Monitor design.

Offset

The Fusion Temperature Monitor has a systematic offset (Table 2-49 on page 2-117), excluding error due to board resistance and ideality factor of the external diode. Microsemi provides an IP block (CalibIP) that is required in order to mitigate the systematic temperature offset. For further details on CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

Table 2-49 • Analog Channel Specifications (continued)

Commercial Temperature Range Conditions, $T_J = 85^{\circ}C$ (unless noted otherwise), Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Digital Input usi	ing Analog Pads AV, AC	and AT		1 1		
VIND ^{2,3}	Input Voltage	Refer to Table 3-2 on page 3-3				
VHYSDIN	Hysteresis			0.3		V
VIHDIN	Input High			1.2		V
VILDIN	Input Low			0.9		V
VMPWDIN	Minimum Pulse With		50			ns
F _{DIN}	Maximum Frequency				10	MHz
ISTBDIN	Input Leakage Current			2		μA
IDYNDIN	Dynamic Current			20		μA
t _{INDIN}	Input Delay			10		ns
Gate Driver Out	put Using Analog Pad A	G	•			
VG	Voltage Range	Refer to Table 3-2 on page 3-3				
IG	Output Current Drive	High Current Mode ⁶ at 1.0 V			±20	mA
		Low Current Mode: ±1 µA	0.8	1.0	1.3	μA
		Low Current Mode: ±3 µA	2.0	2.7	3.3	μA
		Low Current Mode: ± 10 µA	7.4	9.0	11.5	μA
		Low Current Mode: ± 30 µA	21.0	27.0	32.0	μA
IOFFG	Maximum Off Current				100	nA
F _G	Maximum switching rate	High Current Mode ⁶ at 1.0 V, 1 k Ω resistive load		1.3		MHz
		Low Current Mode: ±1 μA, 3 MΩ resistive load		3		KHz
		Low Current Mode: ±3 μA, 1 MΩ resistive load		7		KHz
		Low Current Mode: $\pm 10 \ \mu$ A, 300 k Ω resistive load		25		KHz
		Low Current Mode: $\pm 30 \ \mu$ A, 105 k Ω resistive load		78		KHz

Notes:

1. VRSM is the maximum voltage drop across the current sense resistor.

2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no reliability concern on digital inputs as long as VIND does not exceed these limits.

3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.

4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance allowed across the AT pins is 500 pF.

- 5. The temperature offset is a fixed positive value.
- 6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.
- 7. When using SmartGen Analog System Builder, CalibIP is required to obtain specified offset. For further details on CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

Table 2-73 • Maximum I/O Frequency for Single-Ended, Voltage-Referenced, and Differential I/Os; All I/O Bank Types (maximum drive strength and high slew selected)

Specification	Performance Up To
LVTTL/LVCMOS 3.3 V	200 MHz
LVCMOS 2.5 V	250 MHz
LVCMOS 1.8 V	200 MHz
LVCMOS 1.5 V	130 MHz
PCI	200 MHz
PCI-X	200 MHz
HSTL-I	300 MHz
HSTL-II	300 MHz
SSTL2-I	300 MHz
SSTL2-II	300 MHz
SSTL3-I	300 MHz
SSTL3-II	300 MHz
GTL+ 3.3 V	300 MHz
GTL+ 2.5 V	300 MHz
GTL 3.3 V	300 MHz
GTL 2.5 V	300 MHz
LVDS	350 MHz
LVPECL	300 MHz

User I/O Naming Convention

Due to the comprehensive and flexible nature of Fusion device user I/Os, a naming scheme is used to show the details of the I/O (Figure 2-113 on page 2-158 and Figure 2-114 on page 2-159). The name identifies to which I/O bank it belongs, as well as the pairing and pin polarity for differential I/Os.

I/O Nomenclature = Gmn/IOuxwByVz

Gmn is only used for I/Os that also have CCC access—i.e., global pins.

- G = Global
- m = Global pin location associated with each CCC on the device: A (northwest corner), B (northeast corner), C (east middle), D (southeast corner), E (southwest corner), and F (west middle).
- n = Global input MUX and pin number of the associated Global location m, either A0, A1, A2, B0, B1, B2, C0, C1, or C2. Figure 2-22 on page 2-25 shows the three input pins per clock source MUX at CCC location m.
- u = I/O pair number in the bank, starting at 00 from the northwest I/O bank and proceeding in a clockwise direction.
- x = P (Positive) or N (Negative) for differential pairs, or R (Regular single-ended) for the I/Os that support single-ended and voltage-referenced I/O standards only. U (Positive-LVDS only) or V (Negative-LVDS only) restrict the I/O differential pair from being selected as an LVPECL pair.
- w = D (Differential Pair), P (Pair), or S (Single-Ended). D (Differential Pair) if both members of the pair are bonded out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both members of the pair are bonded out but do not meet the adjacency requirement; or S (Single-Ended) if the I/O pair is not bonded out. For Differential (D) pairs, adjacency for ball grid packages means only vertical or horizontal. Diagonal adjacency does not meet the requirements for a true differential pair.

```
B = Bank
```

- y = Bank number (0–3). The Bank number starts at 0 from the northwest I/O bank and proceeds in a clockwise direction.
- V = Reference voltage
- z = Minibank number

Standard I/O Bank

Figure 2-113 • Naming Conventions of Fusion Devices with Three Digital I/O Banks

Table 2-96 • I/O Output Buffer Maximum Resistances ¹ (continued)

Standard	Drive Strength	R _{PULL-DOWN} (ohms) ²	R _{PULL-UP} (ohms) ³
HSTL (I)	8 mA	50	50
HSTL (II)	15 mA	25	25
SSTL2 (I)	17 mA	27	31
SSTL2 (II)	21 mA	13	15
SSTL3 (I)	16 mA	44	69
SSTL3 (II)	24 mA	18	32
Applicable to Advanced I/O Ba	nks		•
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
	24 mA	11	22
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
	12 mA	20	22
	16 mA	20	22
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

 These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/soc/techdocs/models/ibis.html.

2. R_(PULL-DOWN-MAX) = VOLspec / I_{OLspec}

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

Table 2-115 • 2.5 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.66	8.66	0.04	1.31	0.43	7.83	8.66	2.68	2.30	10.07	10.90	ns
	-1	0.56	7.37	0.04	1.11	0.36	6.66	7.37	2.28	1.96	8.56	9.27	ns
	-2	0.49	6.47	0.03	0.98	0.32	5.85	6.47	2.00	1.72	7.52	8.14	ns
8 mA	Std.	0.66	5.17	0.04	1.31	0.43	5.04	5.17	3.05	3.00	7.27	7.40	ns
	-1	0.56	4.39	0.04	1.11	0.36	4.28	4.39	2.59	2.55	6.19	6.30	ns
	-2	0.49	3.86	0.03	0.98	0.32	3.76	3.86	2.28	2.24	5.43	5.53	ns
12 mA	Std.	0.66	3.56	0.04	1.31	0.43	3.63	3.43	3.30	3.44	5.86	5.67	ns
	-1	0.56	3.03	0.04	1.11	0.36	3.08	2.92	2.81	2.92	4.99	4.82	ns
	-2	0.49	2.66	0.03	0.98	0.32	2.71	2.56	2.47	2.57	4.38	4.23	ns
16 mA	Std.	0.66	3.35	0.04	1.31	0.43	3.41	3.06	3.36	3.55	5.65	5.30	ns
	-1	0.56	2.85	0.04	1.11	0.36	2.90	2.60	2.86	3.02	4.81	4.51	ns
	-2	0.49	2.50	0.03	0.98	0.32	2.55	2.29	2.51	2.65	4.22	3.96	ns
24 mA	Std.	0.66	3.56	0.04	1.31	0.43	3.63	3.43	3.30	3.44	5.86	5.67	ns
	-1	0.56	3.03	0.04	1.11	0.36	3.08	2.92	2.81	2.92	4.99	4.82	ns
	-2	0.49	2.66	0.03	0.98	0.32	2.71	2.56	2.47	2.57	4.38	4.23	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-116 • 2.5 V LVCMOS Low Slew

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	11.00	0.04	1.29	0.43	10.37	11.00	2.03	1.83	ns
	-1	0.56	9.35	0.04	1.10	0.36	8.83	9.35	1.73	1.56	ns
	-2	0.49	8.21	0.03	0.96	0.32	7.75	8.21	1.52	1.37	ns
4 mA	Std.	0.66	11.00	0.04	1.29	0.43	10.37	11.00	2.03	1.83	ns
	-1	0.56	9.35	0.04	1.10	0.36	8.83	9.35	1.73	1.56	ns
	-2	0.49	8.21	0.03	0.96	0.32	7.75	8.21	1.52	1.37	ns
6 mA	Std.	0.66	7.50	0.04	1.29	0.43	7.36	7.50	2.39	2.46	ns
	-1	0.56	6.38	0.04	1.10	0.36	6.26	6.38	2.03	2.10	ns
	-2	0.49	5.60	0.03	0.96	0.32	5.49	5.60	1.78	1.84	ns
8 mA	Std.	0.66	7.50	0.04	1.29	0.43	7.36	7.50	2.39	2.46	ns
	-1	0.56	6.38	0.04	1.10	0.36	6.26	6.38	2.03	2.10	ns
	-2	0.49	5.60	0.03	0.96	0.32	5.49	5.60	1.78	1.84	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Pin Descriptions

Supply Pins

GND Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ needs to always be connected on the board to GND. Note: In FG256, FG484, and FG676 packages, GNDQ and GND pins are connected within the package and are labeled as GND pins in the respective package pin assignment tables.

ADCGNDREF Analog Reference Ground

Analog ground reference used by the ADC. This pad should be connected to a quiet analog ground.

GNDA Ground (analog)

Quiet ground supply voltage to the Analog Block of Fusion devices. The use of a separate analog ground helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.

GNDAQ Ground (analog quiet)

Quiet ground supply voltage to the analog I/O of Fusion devices. The use of a separate analog ground helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation. Note: In FG256, FG484, and FG676 packages, GNDAQ and GNDA pins are connected within the package and are labeled as GNDA pins in the respective package pin assignment tables.

GNDNVM Flash Memory Ground

Ground supply used by the Fusion device's flash memory block module(s).

GNDOSC Oscillator Ground

Ground supply for both integrated RC oscillator and crystal oscillator circuit.

VCC15A Analog Power Supply (1.5 V)

1.5 V clean analog power supply input for use by the 1.5 V portion of the analog circuitry.

VCC33A Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the 3.3 V portion of the analog circuitry.

VCC33N Negative 3.3 V Output

This is the -3.3 V output from the voltage converter. A 2.2 μ F capacitor must be connected from this pin to ground.

VCC33PMP Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the analog charge pump. To avoid high current draw, VCC33PMP should be powered up simultaneously with or after VCC33A.

VCCNVM Flash Memory Block Power Supply (1.5 V)

1.5 V power supply input used by the Fusion device's flash memory block module(s). To avoid high current draw, VCC should be powered up before or simultaneously with VCCNVM.

VCCOSC Oscillator Power Supply (3.3 V)

Power supply for both integrated RC oscillator and crystal oscillator circuit. The internal 100 MHz oscillator, powered by the VCCOSC pin, is needed for device programming, operation of the VDDN33 pump, and eNVM operation. VCCOSC is off only when VCCA is off. VCCOSC must be powered whenever the Fusion device needs to function.

Symbol	Parameter	Commercial	Industrial	Units
AV, AC	Unpowered, ADC reset asserted or unconfigured	-11.0 to 12.6	-11.0 to 12.0	V
	Analog input (+16 V to +2 V prescaler range)	-0.4 to 12.6	-0.4 to 12.0	V
	Analog input (+1 V to +0.125 V prescaler range)	-0.4 to 3.75	-0.4 to 3.75	V
	Analog input (–16 V to –2 V prescaler range)	-11.0 to 0.4	-11.0 to 0.4	V
	Analog input (–1 V to –0.125 V prescaler range)	-3.75 to 0.4	-3.75 to 0.4	V
	Analog input (direct input to ADC)	-0.4 to 3.75	-0.4 to 3.75	V
	Digital input	-0.4 to 12.6	-0.4 to 12.0	V
AG	Unpowered, ADC reset asserted or unconfigured	-11.0 to 12.6	-11.0 to 12.0	V
	Low Current Mode (1 μ A, 3 μ A, 10 μ A, 30 μ A)	-0.4 to 12.6	-0.4 to 12.0	V
	Low Current Mode (–1 μΑ, –3 μΑ, –10 μΑ, –30 μΑ)	-11.0 to 0.4	-11.0 to 0.4	V
	High Current Mode ³	-11.0 to 12.6	-11.0 to 12.0	V
AT	Unpowered, ADC reset asserted or unconfigured	–0.4 to 16.0	-0.4 to 15.0	V
	Analog input (+16 V, 4 V prescaler range)	-0.4 to 16.0	-0.4 to 15.0	V
	Analog input (direct input to ADC)	-0.4 to 3.75	-0.4 to 3.75	V
	Digital input	-0.4 to 16.0	-0.4 to 15.0	V
T _{STG} ⁴	Storage temperature	-65	to +150	°C
T _J ⁴	Junction temperature	+	125	°C

Table 3-1 •	Absolute	Maximum	Ratings	(continued)
-------------	----------	---------	---------	-------------

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 3-4 on page 3-4.

2. Analog data not valid beyond 3.65 V.

3. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.

4. For flash programming and retention maximum limits, refer to Table 3-5 on page 3-5. For recommended operating limits refer to Table 3-2 on page 3-3.

Calculating Power Dissipation

Quiescent Supply Current

Table 3-8 • AFS1500 Quiescent Supply Current Characteristics

Parameter	Description	Conditions	Temp.	Min.	Тур.	Max.	Unit
ICC ¹	1.5 V quiescent current	Operational standby ⁴ ,	T _J = 25°C		20	40	mA
		VCC = 1.575 V	T _J = 85°C		32	65	mA
			T _J = 100°C		59	120	mA
		Standby mode ⁵ or Sleep mode ⁶ , VCC = 0 V			0	0	μA
ICC33 ²	3.3 V analog supplies	Operational standby ⁴ ,	T _J = 25°C		9.8	13	mA
	current	VCC33 = 3.63 V	T _J = 85°C		10.7	14	mA
			T _J = 100°C		10.8	15	mA
		Operational standby, only Analog Quad and –3.3 V output ON, VCC33 = 3.63 V	T _J = 25°C		0.31	2	mA
			T _J = 85°C		0.35	2	mA
			T _J = 100°C		0.45	2	mA
		Standby mode ⁵ , VCC33 = 3.63 V	T _J = 25°C		2.9	3.6	mA
			T _J = 85°C		2.9	4	mA
			T _J = 100°C		3.3	6	mA
		Sleep mode ⁶ , VCC33 = 3.63 V	T _J = 25°C		17	19	μA
			T _J = 85°C		18	20	μA
			T _J = 100°C		24	25	μA
ICCI ³	I/O quiescent current	Operational standby ⁴ ,	T _J = 25°C		417	649	μA
		Standby mode, and Sleep Mode ^o , VCCIx = 3.63 V	T _J = 85°C		417	649	μA
			T _J = 100°C		417	649	μA

Notes:

1. ICC is the 1.5 V power supplies, ICC and ICC15A.

2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.

PLL/CCC Contribution—P_{PLL}

PLL is not used in this application.

 $P_{PLL} = 0 W$

Nonvolatile Memory—P_{NVM}

Nonvolatile memory is not used in this application.

 $P_{NVM} = 0 W$

Crystal Oscillator—P_{XTL-OSC}

The application utilizes standby mode. The crystal oscillator is assumed to be active.

Operating Mode

P_{XTL-OSC} = PAC18

 $P_{XTL-OSC} = 0.63 \text{ mW}$

Standby Mode

P_{XTL-OSC} = PAC18

P_{XTL-OSC} = 0.63 mW

Sleep Mode

 $P_{XTL-OSC} = 0 W$

RC Oscillator—P_{RC-OSC}

Operating Mode

P_{RC-OSC} = PAC19

 $P_{RC-OSC} = 3.30 \text{ mW}$

Standby Mode and Sleep Mode

 $P_{RC-OSC} = 0 W$

Analog System—P_{AB}

Number of Quads used: N_{QUADS} = 4

Operating Mode

P_{AB} = PAC20

 P_{AB} = 3.00 mW

Standby Mode and Sleep Mode

 $P_{AB} = 0 W$

Total Dynamic Power Consumption—P_{DYN}

Operating Mode

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL} + P_{NVM}+ P_{XTL-OSC} + P_{RC-OSC} + P_{AB} P_{DYN} = 41.28 mW + 21.1 mW + 4.35 mW + 19.25 mW + 1.30 mW + 47.47 mW + 1.38 mW + 0 + 0 + 0 + 0.63 mW + 3.30 mW + 3.00 mW

P_{DYN} = 143.06 mW

Standby Mode

 $P_{DYN} = P_{XTL-OSC}$ $P_{DYN} = 0.63 \text{ mW}$

Sleep Mode

 $P_{DYN} = 0 W$

Package Pin Assignments

PQ208			PQ208			
Pin Number	AFS250 Function	AFS600 Function	Pin Number	AFS250 Function	AFS600 Function	
1	VCCPLA	VCCPLA	38	IO60NDB3V0	GEB0/IO62NDB4V0	
2	VCOMPLA	VCOMPLA	39	GND	GEA1/IO61PDB4V0	
3	GNDQ	GAA2/IO85PDB4V0	40	VCCIB3	GEA0/IO61NDB4V0	
4	VCCIB3	IO85NDB4V0	41	GEB2/IO59PDB3V0	GEC2/IO60PDB4V0	
5	GAA2/IO76PDB3V0	GAB2/IO84PDB4V0	42	IO59NDB3V0	IO60NDB4V0	
6	IO76NDB3V0	IO84NDB4V0	43	GEA2/IO58PDB3V0	VCCIB4	
7	GAB2/IO75PDB3V0	GAC2/IO83PDB4V0	44	IO58NDB3V0	GNDQ	
8	IO75NDB3V0	IO83NDB4V0	45	VCC	VCC	
9	NC	IO77PDB4V0	45	VCC	VCC	
10	NC	IO77NDB4V0	46	VCCNVM	VCCNVM	
11	VCC	IO76PDB4V0	47	GNDNVM	GNDNVM	
12	GND	IO76NDB4V0	48	GND	GND	
13	VCCIB3	VCC	49	VCC15A	VCC15A	
14	IO72PDB3V0	GND	50	PCAP	PCAP	
15	IO72NDB3V0	VCCIB4	51	NCAP	NCAP	
16	GFA2/IO71PDB3V0	GFA2/IO75PDB4V0	52	VCC33PMP	VCC33PMP	
17	IO71NDB3V0	IO75NDB4V0	53	VCC33N	VCC33N	
18	GFB2/IO70PDB3V0	GFC2/IO73PDB4V0	54	GNDA	GNDA	
19	IO70NDB3V0	IO73NDB4V0	55	GNDAQ	GNDAQ	
20	GFC2/IO69PDB3V0	VCCOSC	56	NC	AV0	
21	IO69NDB3V0	XTAL1	57	NC	AC0	
22	VCC	XTAL2	58	NC	AG0	
23	GND	GNDOSC	59	NC	AT0	
24	VCCIB3	GFC1/IO72PDB4V0	60	NC	ATRTN0	
25	GFC1/IO68PDB3V0	GFC0/IO72NDB4V0	61	NC	AT1	
26	GFC0/IO68NDB3V0	GFB1/IO71PDB4V0	62	NC	AG1	
27	GFB1/IO67PDB3V0	GFB0/IO71NDB4V0	63	NC	AC1	
28	GFB0/IO67NDB3V0	GFA1/IO70PDB4V0	64	NC	AV1	
29	VCCOSC	GFA0/IO70NDB4V0	65	AV0	AV2	
30	XTAL1	IO69PDB4V0	66	AC0	AC2	
31	XTAL2	IO69NDB4V0	67	AG0	AG2	
32	GNDOSC	VCC	68	AT0	AT2	
33	GEB1/IO62PDB3V0	GND	69	ATRTN0	ATRTN1	
34	GEB0/IO62NDB3V0	VCCIB4	70	AT1	AT3	
35	GEA1/IO61PDB3V0	GEC1/IO63PDB4V0	71	AG1	AG3	
36	GEA0/IO61NDB3V0	GEC0/IO63NDB4V0	72	AC1	AC3	
37	GEC2/IO60PDB3V0	GEB1/IO62PDB4V0	73	AV1	AV3	

FG484

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.

Package Pin Assignments

FG484			FG484			
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function	
A1	GND	GND	AA14	AG7	AG7	
A2	VCC	NC	AA15	AG8	AG8	
A3	GAA1/IO01PDB0V0	GAA1/IO01PDB0V0	AA16	GNDA	GNDA	
A4	GAB0/IO02NDB0V0	GAB0/IO02NDB0V0	AA17	AG9	AG9	
A5	GAB1/IO02PDB0V0	GAB1/IO02PDB0V0	AA18	VAREF	VAREF	
A6	IO07NDB0V1	IO07NDB0V1	AA19	VCCIB2	VCCIB2	
A7	IO07PDB0V1	IO07PDB0V1	AA20	PTEM	PTEM	
A8	IO10PDB0V1	IO09PDB0V1	AA21	GND	GND	
A9	IO14NDB0V1	IO13NDB0V2	AA22	VCC	NC	
A10	IO14PDB0V1	IO13PDB0V2	AB1	GND	GND	
A11	IO17PDB1V0	IO24PDB1V0	AB2	VCC	NC	
A12	IO18PDB1V0	IO26PDB1V0	AB3	NC	IO94NSB4V0	
A13	IO19NDB1V0	IO27NDB1V1	AB4	GND	GND	
A14	IO19PDB1V0	IO27PDB1V1	AB5	VCC33N	VCC33N	
A15	IO24NDB1V1	IO35NDB1V2	AB6	AT0	AT0	
A16	IO24PDB1V1	IO35PDB1V2	AB7	ATRTN0	ATRTN0	
A17	GBC0/IO26NDB1V1	GBC0/IO40NDB1V2	AB8	AT1	AT1	
A18	GBA0/IO28NDB1V1	GBA0/IO42NDB1V2	AB9	AT2	AT2	
A19	IO29NDB1V1	IO43NDB1V2	AB10	ATRTN1	ATRTN1	
A20	IO29PDB1V1	IO43PDB1V2	AB11	AT3	AT3	
A21	VCC	NC	AB12	AT6	AT6	
A22	GND	GND	AB13	ATRTN3	ATRTN3	
AA1	VCC	NC	AB14	AT7	AT7	
AA2	GND	GND	AB15	AT8	AT8	
AA3	VCCIB4	VCCIB4	AB16	ATRTN4	ATRTN4	
AA4	VCCIB4	VCCIB4	AB17	AT9	AT9	
AA5	PCAP	PCAP	AB18	VCC33A	VCC33A	
AA6	AG0	AG0	AB19	GND	GND	
AA7	GNDA	GNDA	AB20	NC	IO76NPB2V0	
AA8	AG1	AG1	AB21	VCC	NC	
AA9	AG2	AG2	AB22	GND	GND	
AA10	GNDA	GNDA	B1	VCC	NC	
AA11	AG3	AG3	B2	GND	GND	
AA12	AG6	AG6	B3	GAA0/IO01NDB0V0	GAA0/IO01NDB0V0	
AA13	GNDA	GNDA	B4	GND	GND	

🌜 Microsemi.

Package Pin Assignments

FG676		FG676		FG676	
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function
C9	IO07PDB0V1	D19	GBC1/IO40PDB1V2	F3	IO121NDB4V0
C10	IO09PDB0V1	D20	GBA1/IO42PDB1V2	F4	GND
C11	IO13NDB0V2	D21	GND	F5	IO123NDB4V0
C12	IO13PDB0V2	D22	VCCPLB	F6	GAC2/IO123PDB4V0
C13	IO24PDB1V0	D23	GND	F7	GAA2/IO125PDB4V0
C14	IO26PDB1V0	D24	NC	F8	GAC0/IO03NDB0V0
C15	IO27NDB1V1	D25	NC	F9	GAC1/IO03PDB0V0
C16	IO27PDB1V1	D26	NC	F10	IO10NDB0V1
C17	IO35NDB1V2	E1	GND	F11	IO10PDB0V1
C18	IO35PDB1V2	E2	IO122NPB4V0	F12	IO14NDB0V2
C19	GBC0/IO40NDB1V2	E3	IO121PDB4V0	F13	IO23NDB1V0
C20	GBA0/IO42NDB1V2	E4	IO122PPB4V0	F14	IO23PDB1V0
C21	IO43NDB1V2	E5	IO00NDB0V0	F15	IO32NPB1V1
C22	IO43PDB1V2	E6	IO00PDB0V0	F16	IO34NDB1V1
C23	NC	E7	VCCIB0	F17	IO34PDB1V1
C24	GND	E8	IO05NDB0V1	F18	IO37PDB1V2
C25	NC	E9	IO05PDB0V1	F19	GBB1/IO41PDB1V2
C26	NC	E10	VCCIB0	F20	VCCIB2
D1	NC	E11	IO11NDB0V1	F21	IO47PPB2V0
D2	NC	E12	IO14PDB0V2	F22	IO44NDB2V0
D3	NC	E13	VCCIB0	F23	GND
D4	GND	E14	VCCIB1	F24	IO45NDB2V0
D5	GAA0/IO01NDB0V0	E15	IO29NDB1V1	F25	VCCIB2
D6	GND	E16	IO29PDB1V1	F26	NC
D7	IO04NDB0V0	E17	VCCIB1	G1	NC
D8	IO04PDB0V0	E18	IO37NDB1V2	G2	IO119PPB4V0
D9	GND	E19	GBB0/IO41NDB1V2	G3	IO120NDB4V0
D10	IO09NDB0V1	E20	VCCIB1	G4	IO120PDB4V0
D11	IO11PDB0V1	E21	VCOMPLB	G5	VCCIB4
D12	GND	E22	GBA2/IO44PDB2V0	G6	GAB2/IO124PDB4V0
D13	IO24NDB1V0	E23	IO48PPB2V0	G7	IO125NDB4V0
D14	IO26NDB1V0	E24	GBB2/IO45PDB2V0	G8	GND
D15	GND	E25	NC	G9	VCCIB0
D16	IO31NDB1V1	E26	GND	G10	IO08NDB0V1
D17	IO31PDB1V1	F1	NC	G11	IO08PDB0V1
D18	GND	F2	VCCIB4	G12	GND

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.