

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	·
Total RAM Bits	276480
Number of I/O	119
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1afs1500-2fgg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Byte Number in Bank					4	4 LSB of ADDR (READ)									
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ba 3 N	7																
Bank Number 3 MSB of ADI	6																
of	5																
AD	4																
	3																
(R	2																
lumber of ADDR (READ)	1																
9	0																

Figure 2-45 • FlashROM Architecture

FlashROM Characteristics

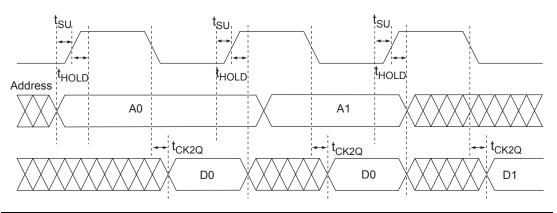


Figure 2-46 • FlashROM Timing Diagram

Table 2-26 • FlashROM Access Time

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{SU}	Address Setup Time	0.53	0.61	0.71	ns
t _{HOLD}	Address Hold Time	0.00	0.00	0.00	ns
t _{CK2Q}	Clock to Out	21.42	24.40	28.68	ns
F _{MAX}	Maximum Clock frequency	15.00	15.00	15.00	MHz

SRAM and **FIFO**

All Fusion devices have SRAM blocks along the north side of the device. Additionally, AFS600 and AFS1500 devices have an SRAM block on the south side of the device. To meet the needs of high-performance designs, the memory blocks operate strictly in synchronous mode for both read and write operations. The read and write clocks are completely independent, and each may operate at any desired frequency less than or equal to 350 MHz. The following configurations are available:

- 4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—two read, two write or one read, one write)
- 512×9, 256×18 (two-port RAM—one read and one write)
- Sync write, sync pipelined/nonpipelined read

The Fusion SRAM memory block includes dedicated FIFO control logic to generate internal addresses and external flag logic (FULL, EMPTY, AFULL, AEMPTY).

During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by internal MUXes. Refer to Figure 2-47 for more information about the implementation of the embedded FIFO controller.

The Fusion architecture enables the read and write sizes of RAMs to be organized independently, allowing for bus conversion. This is done with the WW (write width) and RW (read width) pins. The different D×W configurations are 256×18 , 512×9 , $1k \times 4$, $2k \times 2$, and $4k \times 1$. For example, the write size can be set to 256×18 and the read size to 512×9 .

Both the write and read widths for the RAM blocks can be specified independently with the WW (write width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1.

Refer to the allowable RW and WW values supported for each of the RAM macro types in Table 2-27 on page 2-58.

When a width of one, two, or four is selected, the ninth bit is unused. For example, when writing 9-bit values and reading 4-bit values, only the first four bits and the second four bits of each 9-bit value are addressable for read operations. The ninth bit is not accessible.

Temperature Monitor

The final pin in the Analog Quad is the Analog Temperature (AT) pin. The AT pin is used to implement an accurate temperature monitor in conjunction with an external diode-connected bipolar transistor (Figure 2-76). For improved temperature measurement accuracy, it is important to use the ATRTN pin for the return path of the current sourced by the AT pin. Each ATRTN pin is shared between two adjacent Analog Quads. Additionally, if not used for temperature monitoring, the AT pin can provide functionality similar to that of the AV pad. However, in this mode only positive voltages can be applied to the AT pin, and only two prescaler factors are available (16 V and 4 V ranges—refer to Table 2-57 on page 2-130).

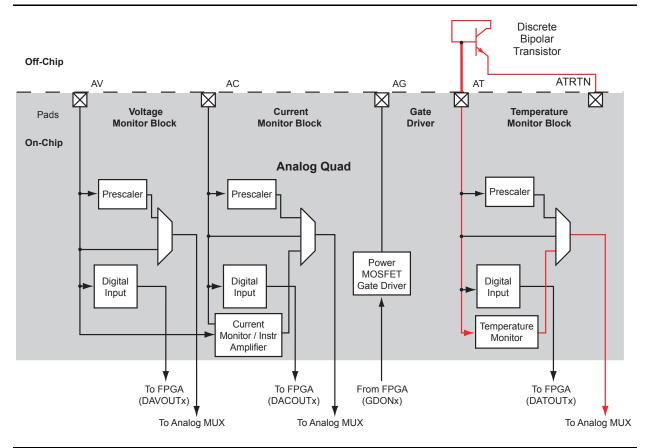


Figure 2-76 • Temperature Monitor Quad

Device Architecture

Integrated Voltage Reference

The Fusion device has an integrated on-chip 2.56 V reference voltage for the ADC. The value of this reference voltage was chosen to make the prescaling and postscaling factors for the prescaler blocks change in a binary fashion. However, if desired, an external reference voltage of up to 3.3 V can be connected between the VAREF and ADCGNDREF pins. The VAREFSEL control pin is used to select the reference voltage.

Table 2-42 • VAREF Bit Function

Name	Bit	Function
VAREF	0	Reference voltage selection
		0 – Internal voltage reference selected. VAREF pin outputs 2.56 V.
		1 – Input external voltage reference from VAREF and ADCGNDREF

ADC Clock

The speed of the ADC depends on its internal clock, ADCCLK, which is not accessible to users. The ADCCLK is derived from SYSCLK. Input signal TVC[7:0], Time Divider Control, determines the speed of the ADCCLK in relationship to SYSCLK, based on EQ 15.

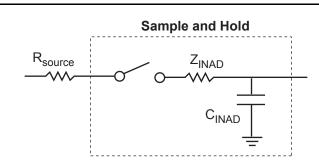
$$t_{ADCCLK} = 4 \times (1 + TVC) \times t_{SYSCLK}$$

EQ 15

TVC: Time Divider Control (0-255)

 t_{ADCCLK} is the period of ADCCLK, and must be between 0.5 MHz and 10 MHz t_{SYSCLK} is the period of SYSCLK

Table 2-43 • TVC Bits Function


Name	Bits	Function
TVC	[7:0]	SYSCLK divider control

The frequency of ADCCLK, f_{ADCCLK}, must be within 0.5 Hz to 10 MHz.

The inputs to the ADC are synchronized to SYSCLK. A conversion is initiated by asserting the ADCSTART signal on a rising edge of SYSCLK. Figure 2-90 on page 2-112 and Figure 2-91 on page 2-112 show the timing diagram for the ADC.

Acquisition Time or Sample Time Control

Acquisition time (t_{SAMPLE}) specifies how long an analog input signal has to charge the internal capacitor array. Figure 2-88 shows a simplified internal input sampling mechanism of a SAR ADC.

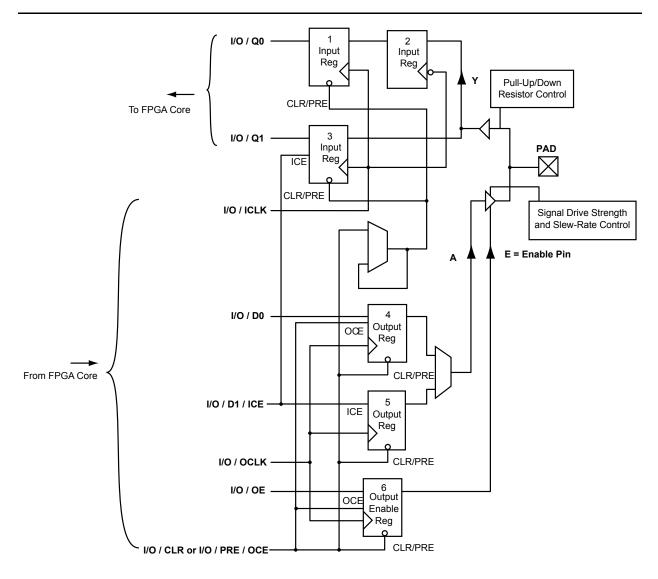
Figure 2-88 • Simplified Sample and Hold Circuitry

The internal impedance (Z_{INAD}), external source resistance (R_{SOURCE}), and sample capacitor (C_{INAD}) form a simple RC network. As a result, the accuracy of the ADC can be affected if the ADC is given insufficient time to charge the capacitor. To resolve this problem, you can either reduce the source resistance or increase the sampling time by changing the acquisition time using the STC signal.

Features Supported on Pro I/Os

Table 2-72 lists all features supported by transmitter/receiver for single-ended and differential I/Os.

Table 2-72 • Fusion Pro I/O Features


Feature	Description
Single-ended and voltage- referenced transmitter	 Hot insertion in every mode except PCI or 5 V input tolerant (these modes use clamp diodes and do not allow hot insertion)
features	Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.
	Weak pull-up and pull-down
	Two slew rates
	 Skew between output buffer enable/disable time: 2 ns delay (rising edge) and 0 ns delay (falling edge); see "Selectable Skew between Output Buffer Enable/Disable Time" on page 2-149 for more information
	Five drive strengths
	5 V-tolerant receiver ("5 V Input Tolerance" section on page 2-144)
	 LVTTL/LVCMOS 3.3 V outputs compatible with 5 V TTL inputs ("5 V Output Tolerance" section on page 2-148)
	High performance (Table 2-76 on page 2-143)
Single-ended receiver features	Schmitt trigger option
	ESD protection
	 Programmable delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 ns with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V)
	High performance (Table 2-76 on page 2-143)
	 Separate ground planes, GND/GNDQ, for input buffers only to avoid output- induced noise in the input circuitry
Voltage-referenced differential receiver features	 Programmable Delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 ns with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V)
	High performance (Table 2-76 on page 2-143)
	 Separate ground planes, GND/GNDQ, for input buffers only to avoid output- induced noise in the input circuitry
CMOS-style LVDS, BLVDS, M-LVDS, or LVPECL	 Two I/Os and external resistors are used to provide a CMOS-style LVDS, BLVDS, M-LVDS, or LVPECL transmitter solution.
transmitter	Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.
	Weak pull-up and pull-down
	Fast slew rate
LVDS/LVPECL differential	ESD protection
receiver features	High performance (Table 2-76 on page 2-143)
	 Programmable delay: 0.625 ns with '000' setting, 6.575 ns with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V)
	 Separate input buffer ground and power planes to avoid output-induced noise in the input circuitry

I/O Registers

Each I/O module contains several input, output, and enable registers. Refer to Figure 2-100 for a simplified representation of the I/O block.

The number of input registers is selected by a set of switches (not shown in Figure 2-100) between registers to implement single or differential data transmission to and from the FPGA core. The Designer software sets these switches for the user.

A common CLR/PRE signal is employed by all I/O registers when I/O register combining is used. Input register 2 does not have a CLR/PRE pin, as this register is used for DDR implementation. The I/O register combining must satisfy some rules.

Note: Fusion I/Os have registers to support DDR functionality (see the "Double Data Rate (DDR) Support" section on page 2-139 for more information).

Figure 2-100 • I/O Block Logical Representation

Device Architecture

Table 2-81 • Fusion Pro I/O Default Attributes

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (tribuf and bibuf only)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER	IN_DELAY (input only)	IN_DELAY_VAL (input only)	SCHMITT_TRIGGER (input only)
LVTTL/LVCMO S 3.3 V	Refer to the following tables for more	Refer to the following tables for more information:	Off	None	35 pF	-	Off	0	Off
LVCMOS 2.5 V	information: Table 2-78 on page 2-152	Table 2-78 on page 2-152	Off	None	35 pF	-	Off	0	Off
LVCMOS 2.5/5.0 V	Table 2-79 on page 2-152 Table 2-79 on page 2-152 Table 2-80 on page 2-152	Table 2-79 on page 2-152 Table 2-80 on page 2-152	Off	None	35 pF	-	Off	0	Off
LVCMOS 1.8 V	1able 2-00 011 page 2-152	Table 2-00 off page 2-152	Off	None	35 pF	-	Off	0	Off
LVCMOS 1.5 V			Off	None	35 pF	-	Off	0	Off
PCI (3.3 V)			Off	None	10 pF	-	Off	0	Off
PCI-X (3.3 V)			Off	None	10 pF	-	Off	0	Off
GTL+ (3.3 V)			Off	None	10 pF	—	Off	0	Off
GTL+ (2.5 V)			Off	None	10 pF	_	Off	0	Off
GTL (3.3 V)			Off	None	10 pF	-	Off	0	Off
GTL (2.5 V)			Off	None	10 pF	-	Off	0	Off
HSTL Class I			Off	None	20 pF	-	Off	0	Off
HSTL Class II			Off	None	20 pF	-	Off	0	Off
SSTL2 Class I and II			Off	None	30 pF	-	Off	0	Off
SSTL3 Class I and II			Off	None	30 pF	-	Off	0	Off
LVDS, BLVDS, M-LVDS			Off	None	0 pF	-	Off	0	Off
LVPECL			Off	None	0 pF	-	Off	0	Off

Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-90 • Summary of AC Measuring Points Applicable to All I/O Bank Types

Standard	Input Reference Voltage (VREF_TYP)	Board Termination Voltage (VTT_REF)	Measuring Trip Point (Vtrip)		
3.3 V LVTTL / 3.3 V LVCMOS	-	_	1.4 V		
2.5 V LVCMOS	_	-	1.2 V		
1.8 V LVCMOS	_	-	0.90 V		
1.5 V LVCMOS	_	-	0.75 V		
3.3 V PCI	-	-	0.285 * VCCI (RR) 0.615 * VCCI (FF))		
3.3 V PCI-X	-	-	0.285 * VCCI (RR) 0.615 * VCCI (FF)		
3.3 V GTL	0.8 V	1.2 V	VREF		
2.5 V GTL	0.8 V	1.2 V	VREF		
3.3 V GTL+	1.0 V	1.5 V	VREF		
2.5 V GTL+	1.0 V	1.5 V	VREF		
HSTL (I)	0.75 V	0.75 V	VREF		
HSTL (II)	0.75 V	0.75 V	VREF		
SSTL2 (I)	1.25 V	1.25 V	VREF		
SSTL2 (II)	1.25 V	1.25 V	VREF		
SSTL3 (I)	1.5 V	1.485 V	VREF		
SSTL3 (II)	1.5 V	1.485 V	VREF		
LVDS	_	-	Cross point		
LVPECL	_	-	Cross point		

Table 2-91 • I/O AC Parameter Definitions

Parameter	Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer with Schmitt trigger disabled
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{PYS}	Pad to Data delay through the Input Buffer with Schmitt trigger enabled
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

Table 2-96 • I/O Output Buffer Maximum Resistances ¹ (continued)

Standard	Drive Strength	R _{PULL-DOWN} (ohms) ²	R _{PULL-UP} (ohms) ³
HSTL (I)	8 mA	50	50
HSTL (II)	15 mA	25	25
SSTL2 (I)	17 mA	27	31
SSTL2 (II)	21 mA	13	15
SSTL3 (I)	16 mA	44	69
SSTL3 (II)	24 mA	18	32
Applicable to Advanced I/O Ba	inks	I	
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
	24 mA	11	22
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
	12 mA	20	22
	16 mA	20	22
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

 These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/soc/techdocs/models/ibis.html.

2. R_(PULL-DOWN-MAX) = VOLspec / I_{OLspec}

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

Table 2-117 • 2.5 V LVCMOS High Slew
Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V
Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	8.20	0.04	1.29	0.43	7.24	8.20	2.03	1.91	ns
	-1	0.56	6.98	0.04	1.10	0.36	6.16	6.98	1.73	1.62	ns
	-2	0.49	6.13	0.03	0.96	0.32	5.41	6.13	1.52	1.43	ns
4 mA	Std.	0.66	8.20	0.04	1.29	0.43	7.24	8.20	2.03	1.91	ns
	-1	0.56	6.98	0.04	1.10	0.36	6.16	6.98	1.73	1.62	ns
	-2	0.49	6.13	0.03	0.96	0.32	5.41	6.13	1.52	1.43	ns
6 mA	Std.	0.66	4.77	0.04	1.29	0.43	4.55	4.77	2.38	2.55	ns
	-1	0.56	4.05	0.04	1.10	0.36	3.87	4.05	2.03	2.17	ns
	-2	0.49	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns
8 mA	Std.	0.66	4.77	0.04	1.29	0.43	4.55	4.77	2.38	2.55	ns
	-1	0.56	4.05	0.04	1.10	0.36	3.87	4.05	2.03	2.17	ns
	-2	0.49	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-122 • 1.8 V LVCMOS Low Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.66	15.53	0.04	1.31	0.43	14.11	15.53	2.78	1.60	16.35	17.77	ns
	-1	0.56	13.21	0.04	1.11	0.36	12.01	13.21	2.36	1.36	13.91	15.11	ns
	-2 ²	0.49	11.60	0.03	0.98	0.32	10.54	11.60	2.07	1.19	12.21	13.27	ns
4 mA	Std.	0.66	10.48	0.04	1.31	0.43	10.41	10.48	3.23	2.73	12.65	12.71	ns
	-1	0.56	8.91	0.04	1.11	0.36	8.86	8.91	2.75	2.33	10.76	10.81	ns
	-2	0.49	7.82	0.03	0.98	0.32	7.77	7.82	2.41	2.04	9.44	9.49	ns
8 mA	Std.	0.66	8.05	0.04	1.31	0.43	8.20	7.84	3.54	3.27	10.43	10.08	ns
	-1	0.56	6.85	0.04	1.11	0.36	6.97	6.67	3.01	2.78	8.88	8.57	ns
	-2	0.49	6.01	0.03	0.98	0.32	6.12	5.86	2.64	2.44	7.79	7.53	ns
12 mA	Std.	0.66	7.50	0.04	1.31	0.43	7.64	7.30	3.61	3.41	9.88	9.53	ns
	-1	0.56	6.38	0.04	1.11	0.36	6.50	6.21	3.07	2.90	8.40	8.11	ns
	-2	0.49	5.60	0.03	0.98	0.32	5.71	5.45	2.69	2.55	7.38	7.12	ns
16 mA	Std.	0.66	7.29	0.04	1.31	0.43	7.23	7.29	3.71	3.95	9.47	9.53	ns
	-1	0.56	6.20	0.04	1.11	0.36	6.15	6.20	3.15	3.36	8.06	8.11	ns
	-2	0.49	5.45	0.03	0.98	0.32	5.40	5.45	2.77	2.95	7.07	7.12	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Timing Characteristics

Table 2-128 • 1.5 V LVCMOS Low Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Pro I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	14.11	0.04	1.70	2.14	0.43	14.37	13.14	3.40	2.68	16.61	15.37	ns
	-1	0.56	12.00	0.04	1.44	1.82	0.36	12.22	11.17	2.90	2.28	14.13	13.08	ns
	-2	0.49	10.54	0.03	1.27	1.60	0.32	10.73	9.81	2.54	2.00	12.40	11.48	ns
4 mA	Std.	0.66	11.23	0.04	1.70	2.14	0.43	11.44	9.87	3.77	3.36	13.68	12.10	ns
	-1	0.56	9.55	0.04	1.44	1.82	0.36	9.73	8.39	3.21	2.86	11.63	10.29	ns
	-2	0.49	8.39	0.03	1.27	1.60	0.32	8.54	7.37	2.81	2.51	10.21	9.04	ns
8 mA	Std.	0.66	10.45	0.04	1.70	2.14	0.43	10.65	9.24	3.84	3.55	12.88	11.48	ns
	-1	0.56	8.89	0.04	1.44	1.82	0.36	9.06	7.86	3.27	3.02	10.96	9.76	ns
	-2	0.49	7.81	0.03	1.27	1.60	0.32	7.95	6.90	2.87	2.65	9.62	8.57	ns
12 mA	Std.	0.66	10.02	0.04	1.70	2.14	0.43	10.20	9.23	3.97	4.22	12.44	11.47	ns
	–1	0.56	8.52	0.04	1.44	1.82	0.36	8.68	7.85	3.38	3.59	10.58	9.75	ns
	-2	0.49	7.48	0.03	1.27	1.60	0.32	7.62	6.89	2.97	3.15	9.29	8.56	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-129 • 1.5 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Pro I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOU} т	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	8.53	0.04	1.70	2.14	0.43	7.26	8.53	3.39	2.79	9.50	10.77	ns
	-1	0.56	7.26	0.04	1.44	1.82	0.36	6.18	7.26	2.89	2.37	8.08	9.16	ns
	-2	0.49	6.37	0.03	1.27	1.60	0.32	5.42	6.37	2.53	2.08	7.09	8.04	ns
4 mA	Std.	0.66	5.41	0.04	1.70	2.14	0.43	5.22	5.41	3.75	3.48	7.45	7.65	ns
	-1	0.56	4.60	0.04	1.44	1.82	0.36	4.44	4.60	3.19	2.96	6.34	6.50	ns
	-2	0.49	4.04	0.03	1.27	1.60	0.32	3.89	4.04	2.80	2.60	5.56	5.71	ns
8 mA	Std.	0.66	4.80	0.04	1.70	2.14	0.43	4.89	4.75	3.83	3.67	7.13	6.98	ns
	-1	0.56	4.09	0.04	1.44	1.82	0.36	4.16	4.04	3.26	3.12	6.06	5.94	ns
	-2	0.49	3.59	0.03	1.27	1.60	0.32	3.65	3.54	2.86	2.74	5.32	5.21	ns
12 mA	Std.	0.66	4.42	0.04	1.70	2.14	0.43	4.50	3.62	3.96	4.37	6.74	5.86	ns
	-1	0.56	3.76	0.04	1.44	1.82	0.36	3.83	3.08	3.37	3.72	5.73	4.98	ns
	-2	0.49	3.30	0.03	1.27	1.60	0.32	3.36	2.70	2.96	3.27	5.03	4.37	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Parameter	Description	Conditions	Temp.	Min	Тур	Мах	Unit
ICC ¹	1.5 V quiescent current	Operational standby ⁴ ,	T _J = 25°C		13	25	mA
		VCC = 1.575 V	T _J = 85°C		20	45	mA
			T _J =100°C		25	75	mA
		Standby mode ⁵ or Sleep mode ⁶ , VCC = 0 V			0	0	μA
ICC33 ²	3.3 V analog supplies	Operational standby ⁴ ,	T _J = 25°C		9.8	13	mA
	current	VCC33 = 3.63 V	T _J = 85°C		10.7	14	mA
			T _J = 100°C		10.8	15	mA
		Operational standby,	T _J = 25°C		0.31	2	mA
		only Analog Quad and -3.3 V output ON, VCC33 = 3.63 V	T _J = 85°C		0.35	2	mA
			T _J = 100°C		0.45	2	mA
		Standby mode ⁵ ,	T _J = 25°C		2.8	3.6	mA
		VCC33 = 3.63 V	T _J = 85°C		2.9	4	mA
			T _J = 100°C		3.5	6	mA
		Sleep mode ⁶ , V _{CC33} = 3.63 V	T _J = 25°C		17	19	μA
			T _J = 85°C		18	20	μA
			T _J = 100°C		24	25	μA
ICCI ³	I/O quiescent current	Operational standby ⁴ ,	T _J = 25°C		417	648	μA
		VCCIx = 3.63 V	T _J = 85°C		417	648	μA
			T _J = 100°C		417	649	μA
IJTAG	JTAG I/O quiescent current	Operational standby ⁴ ,	T _J = 25°C		80	100	μA
		VJTAG = 3.63 V	T _J = 85°C		80	100	μA
			T _J = 100°C		80	100	μA
		Standby mode ⁵ or Sleep mode ⁶ , VJTAG = 0 V			0	0	μA

Notes:

1. ICC is the 1.5 V power supplies, ICC and ICC15A.

2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.

		FG256		
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function
K9	VCC	VCC	VCC	VCC
K10	GND	GND	GND	GND
K11	NC	GDC2/IO57PPB1V0	GDC2/IO57PPB2V0	GDC2/IO84PPB2V0
K12	GND	GND	GND	GND
K13	NC	GDA0/IO54NDB1V0	GDA0/IO54NDB2V0	GDA0/IO81NDB2V0
K14	NC	GDA2/IO55PPB1V0	GDA2/IO55PPB2V0	GDA2/IO82PPB2V0
K15	VCCIB1	VCCIB1	VCCIB2	VCCIB2
K16	NC	GDB1/IO53PPB1V0	GDB1/IO53PPB2V0	GDB1/IO80PPB2V0
L1	NC	GEC1/IO63PDB3V0	GEC1/IO63PDB4V0	GEC1/IO90PDB4V0
L2	NC	GEC0/IO63NDB3V0	GEC0/IO63NDB4V0	GEC0/IO90NDB4V0
L3	NC	GEB1/IO62PDB3V0	GEB1/IO62PDB4V0	GEB1/IO89PDB4V0
L4	NC	GEB0/IO62NDB3V0	GEB0/IO62NDB4V0	GEB0/IO89NDB4V0
L5	NC	IO60NDB3V0	IO60NDB4V0	IO87NDB4V0
L6	NC	GEC2/IO60PDB3V0	GEC2/IO60PDB4V0	GEC2/IO87PDB4V0
L7	GNDA	GNDA	GNDA	GNDA
L8	AC0	AC0	AC2	AC2
L9	AV2	AV2	AV4	AV4
L10	AC3	AC3	AC5	AC5
L11	PTEM	PTEM	PTEM	PTEM
L12	TDO	TDO	TDO	TDO
L13	VJTAG	VJTAG	VJTAG	VJTAG
L14	NC	IO57NPB1V0	IO57NPB2V0	IO84NPB2V0
L15	GDB2/IO41PPB1V0	GDB2/IO56PPB1V0	GDB2/IO56PPB2V0	GDB2/IO83PPB2V0
L16	NC	IO55NPB1V0	IO55NPB2V0	IO82NPB2V0
M1	GND	GND	GND	GND
M2	NC	GEA1/IO61PDB3V0	GEA1/IO61PDB4V0	GEA1/IO88PDB4V0
M3	NC	GEA0/IO61NDB3V0	GEA0/IO61NDB4V0	GEA0/IO88NDB4V0
M4	VCCIB3	VCCIB3	VCCIB4	VCCIB4
M5	NC	IO58NPB3V0	IO58NPB4V0	IO85NPB4V0
M6	NC	NC	AV0	AV0
M7	NC	NC	AC1	AC1
M8	AG1	AG1	AG3	AG3
M9	AC2	AC2	AC4	AC4
M10	AC4	AC4	AC6	AC6
M11	NC	AG5	AG7	AG7
M12	VPUMP	VPUMP	VPUMP	VPUMP
M13	VCCIB1	VCCIB1	VCCIB2	VCCIB2
M14	TMS	TMS	TMS	TMS

Microsemi

Package Pin Assignments

FG676			FG676		FG676			
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function			
A1	NC	AA11	AV2	AB21	PTBASE			
A2	GND	AA12	GNDA	AB22	GNDNVM			
A3	NC	AA13	AV3	AB23	VCCNVM			
A4	NC	AA14	AV6	AB24	VPUMP			
A5	GND	AA15	GNDA	AB25	NC			
A6	NC	AA16	AV7	AB26	GND			
A7	NC	AA17	AV8	AC1	NC			
A8	GND	AA18	GNDA	AC2	NC			
A9	IO17NDB0V2	AA19	AV9	AC3	NC			
A10	IO17PDB0V2	AA20	VCCIB2	AC4	GND			
A11	GND	AA21	IO68PPB2V0	AC5	VCCIB4			
A12	IO18NDB0V2	AA22	ТСК	AC6	VCCIB4			
A13	IO18PDB0V2	AA23	GND	AC7	PCAP			
A14	IO20NDB0V2	AA24	IO76PPB2V0	AC8	AG0			
A15	IO20PDB0V2	AA25	VCCIB2	AC9	GNDA			
A16	GND	AA26	NC	AC10	AG1			
A17	IO21PDB0V2	AB1	GND	AC11	AG2			
A18	IO21NDB0V2	AB2	NC	AC12	GNDA			
A19	GND	AB3	GEC2/IO87PDB4V0	AC13	AG3			
A20	IO39NDB1V2	AB4	IO87NDB4V0	AC14	AG6			
A21	IO39PDB1V2	AB5	GEA2/IO85PDB4V0	AC15	GNDA			
A22	GND	AB6	IO85NDB4V0	AC16	AG7			
A23	NC	AB7	NCAP	AC17	AG8			
A24	NC	AB8	AC0	AC18	GNDA			
A25	GND	AB9	VCC33A	AC19	AG9			
A26	NC	AB10	AC1	AC20	VAREF			
AA1	NC	AB11	AC2	AC21	VCCIB2			
AA2	VCCIB4	AB12	VCC33A	AC22	PTEM			
AA3	IO93PDB4V0	AB13	AC3	AC23	GND			
AA4	GND	AB14	AC6	AC24	NC			
AA5	IO93NDB4V0	AB15	VCC33A	AC25	NC			
AA6	GEB2/IO86PDB4V0	AB16	AC7	AC26	NC			
AA7	IO86NDB4V0	AB17	AC8	AD1	NC			
AA8	AV0	AB18	VCC33A	AD2	NC			
AA9	GNDA	AB19	AC9	AD3	GND			
AA10	AV1	AB20	ADCGNDREF	AD4	NC			

🌜 Microsemi.

Package Pin Assignments

	FG676		FG676		FG676
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function
L17	VCCIB2	N1	NC	P11	VCC
L18	GCB2/IO60PDB2V0	N2	NC	P12	GND
L19	IO58NDB2V0	N3	IO108NDB4V0	P13	VCC
L20	IO57NDB2V0	N4	VCCOSC	P14	GND
L21	IO59NDB2V0	N5	VCCIB4	P15	VCC
L22	GCC2/IO61PDB2V0	N6	XTAL2	P16	GND
L23	IO55PPB2V0	N7	GFC1/IO107PDB4V0	P17	VCCIB2
L24	IO56PDB2V0	N8	VCCIB4	P18	IO70NDB2V0
L25	IO55NPB2V0	N9	GFB1/IO106PDB4V0	P19	VCCIB2
L26	GND	N10	VCCIB4	P20	IO69NDB2V0
M1	NC	N11	GND	P21	GCA0/IO64NDB2V0
M2	VCCIB4	N12	VCC	P22	VCCIB2
M3	GFC2/IO108PDB4V0	N13	GND	P23	GCB0/IO63NDB2V0
M4	GND	N14	VCC	P24	GCB1/IO63PDB2V0
M5	IO109NDB4V0	N15	GND	P25	IO66NDB2V0
M6	IO110NDB4V0	N16	VCC	P26	IO67PDB2V0
M7	GND	N17	VCCIB2	R1	NC
M8	IO104NDB4V0	N18	IO70PDB2V0	R2	VCCIB4
M9	IO111NDB4V0	N19	VCCIB2	R3	IO103NDB4V0
M10	GND	N20	IO69PDB2V0	R4	GND
M11	VCC	N21	GCA1/IO64PDB2V0	R5	IO101PDB4V0
M12	GND	N22	VCCIB2	R6	IO100NPB4V0
M13	VCC	N23	GCC0/IO62NDB2V0	R7	GND
M14	GND	N24	GCC1/IO62PDB2V0	R8	IO99PDB4V0
M15	VCC	N25	IO66PDB2V0	R9	IO97PDB4V0
M16	GND	N26	IO65NDB2V0	R10	GND
M17	GND	P1	NC	R11	GND
M18	IO60NDB2V0	P2	NC	R12	VCC
M19	IO58PDB2V0	P3	IO103PDB4V0	R13	GND
M20	GND	P4	XTAL1	R14	VCC
M21	IO68NPB2V0	P5	VCCIB4	R15	GND
M22	IO61NDB2V0	P6	GNDOSC	R16	VCC
M23	GND	P7	GFC0/IO107NDB4V0	R17	GND
M24	IO56NDB2V0	P8	VCCIB4	R18	GDB2/IO83PDB2V0
M25	VCCIB2	P9	GFB0/IO106NDB4V0	R19	IO78PDB2V0
M26	IO65PDB2V0	P10	VCCIB4	R20	GND

Fusion Family of Mixed Signal FPGAs

	FG676		FG676		FG676
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function
R21	IO72NDB2V0	U5	VCCIB4	V15	AC5
R22	IO72PDB2V0	U6	IO91PDB4V0	V16	NC
R23	GND	U7	IO91NDB4V0	V17	GNDA
R24	IO71PDB2V0	U8	IO92PDB4V0	V18	IO77PPB2V0
R25	VCCIB2	U9	GND	V19	IO74PDB2V0
R26	IO67NDB2V0	U10	GND	V20	VCCIB2
T1	GND	U11	VCC33A	V21	IO82NDB2V0
T2	NC	U12	GNDA	V22	GDA2/IO82PDB2V0
Т3	GFA1/IO105PDB4V0	U13	VCC33A	V23	GND
T4	GFA0/IO105NDB4V0	U14	GNDA	V24	GDC1/IO79PDB2V0
Т5	IO101NDB4V0	U15	VCC33A	V25	VCCIB2
Т6	IO96PDB4V0	U16	GNDA	V26	NC
Τ7	IO96NDB4V0	U17	VCC	W1	GND
Т8	IO99NDB4V0	U18	GND	W2	IO94PPB4V0
Т9	IO97NDB4V0	U19	IO74NDB2V0	W3	IO98PDB4V0
T10	VCCIB4	U20	GDA0/IO81NDB2V0	W4	IO98NDB4V0
T11	VCC	U21	GDB0/IO80NDB2V0	W5	GEC1/IO90PDB4V0
T12	GND	U22	VCCIB2	W6	GEC0/IO90NDB4V0
T13	VCC	U23	IO75NDB2V0	W7	GND
T14	GND	U24	IO75PDB2V0	W8	VCCNVM
T15	VCC	U25	NC	W9	VCCIB4
T16	GND	U26	NC	W10	VCC15A
T17	VCCIB2	V1	NC	W11	GNDA
T18	IO83NDB2V0	V2	VCCIB4	W12	AC4
T19	IO78NDB2V0	V3	IO100PPB4V0	W13	VCC33A
T20	GDA1/IO81PDB2V0	V4	GND	W14	GNDA
T21	GDB1/IO80PDB2V0	V5	IO95PDB4V0	W15	AG5
T22	IO73NDB2V0	V6	IO95NDB4V0	W16	GNDA
T23	IO73PDB2V0	V7	VCCIB4	W17	PUB
T24	IO71NDB2V0	V8	IO92NDB4V0	W18	VCCIB2
T25	NC	V9	GNDNVM	W19	TDI
T26	GND	V10	GNDA	W20	GND
U1	NC	V11	NC	W21	IO84NDB2V0
U2	NC	V12	AV4	W22	GDC2/IO84PDB2V0
U3	IO102PDB4V0	V13	NC	W23	IO77NPB2V0
U4	IO102NDB4V0	V14	AV5	W24	GDC0/IO79NDB2V0

Revision	Changes	Page
Advance v1.5 (continued)	This bullet was added to the "Integrated A/D Converter (ADC) and Analog I/O" section: ADC Accuracy is Better than 1%	I
	In the "Integrated Analog Blocks and Analog I/Os" section, ±4 LSB was changed to 0.72. The following sentence was deleted:	1-4
	The input range for voltage signals is from -12 V to $+12$ V with full-scale output values from 0.125 V to 16 V.	
	In addition, 2°C was changed to 3°C:	
	"One analog input in each quad can be connected to an external temperature monitor diode and achieves detection accuracy of $\pm 3^{\circ}$ C."	
	The following sentence was deleted:	
	The input range for voltage signals is from -12 V to $+12$ V with full-scale output values from 0.125 V to 16 V.	
	The title of the datasheet changed from Actel Programmable System Chips to Actel Fusion Mixed Signal FPGAs. In addition, all instances of programmable system chip were changed to mixed signal FPGA.	N/A
Advance v1.4 (July 2008)	In Table 3-8 · Quiescent Supply Current Characteristics (IDDQ)1, footnote references were updated for I _{DC2} and I _{DC3} . Footnote 3 and 4 were updated and footnote 5 is new.	3-11
Advance v1.3 (July 2008)	The "ADC Description" section was significantly updated. Please review carefully.	2-102
Advance v1.2	Table 2-25 • Flash Memory Block Timing was significantly updated.	2-55
(May 2008)	The "V _{AREF} Analog Reference Voltage" pin description section was significantly update. Please review it carefully.	2-226
	Table 2-45 • ADC Interface Timing was significantly updated.	2-110
	Table 2-56 • Direct Analog Input Switch Control Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$) was significantly updated.	2-131
	The following sentence was deleted from the "Voltage Monitor" section: The Analog Quad inputs are tolerant up to 12 V + 10%.	2-86
	The "180-Pin QFN" figure was updated. D1 to D4 are new and the figure was changed to bottom view. The note below the figure is new.	3-3
Advance v1.1	The following text was incorrect and therefore deleted:	2-204
(May 2008)	VCC33A Analog Power Filter	
	Analog power pin for the analog power supply low-pass filter. An external 100 pF capacitor should be connected between this pin and ground.	
	There is still a description of V _{CC33A} on page 2-224.	

Datasheet Information

Revision	Changes	Page
Advance v1.0 (continued)	This change table states that in the "208-Pin PQFP" table listed under the Advance v0.8 changes, the AFS090 device had a pin change. That is incorrect. Pin 102 was updated for AFS250 and AFS600. The function name changed from $V_{CC33ACAP}$ to V_{CC33A} .	3-8
Advance v0.9 (October 2007)	In the "Package I/Os: Single-/Double-Ended (Analog)" table, the AFS1500/M7AFS1500 I/O counts were updated for the following devices: FG484: 223/109 FG676: 252/126	Ш
	In the "108-Pin QFN" table, the function changed from $V_{CC33ACAP}$ to V_{CC33A} for the following pin: B25	3-2
	In the "180-Pin QFN" table, the function changed from V _{CC33ACAP} to V _{CC33A} for the following pins: AFS090: B29 AFS250: B29	3-4
	In the "208-Pin PQFP" table, the function changed from V _{CC33ACAP} to V _{CC33A} for the following pins: AFS090: 102 AFS250: 102	3-8
	In the "256-Pin FBGA" table, the function changed from $V_{CC33ACAP}$ to V_{CC33A} for the following pins: AFS090: T14 AFS250: T14 AFS600: T14 AFS1500: T14	3-12
Advance v0.9 (continued)	In the "484-Pin FBGA" table, the function changed from V _{CC33ACAP} to V _{CC33A} for the following pins: AFS600: AB18 AFS1500: AB18	3-20
	In the "676-Pin FBGA" table, the function changed from V _{CC33ACAP} to V _{CC33A} for the following pins: AFS1500: AD20	3-28
Advance v0.8 (June 2007)	Figure 2-16 • Fusion Clocking Options and the "RC Oscillator" section were updated to change GND_OSC and VCC_OSC to GNDOSC and VCCOSC.	2-20, 2-21
	Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro was updated to change the positions of OADIVRST and OADIVHALF, and a note was added.	2-25
	The "Crystal Oscillator" section was updated to include information about controlling and enabling/disabling the crystal oscillator.	2-22
	Table 2-11 \cdot Electrical Characteristics of the Crystal Oscillator was updated to change the typical value of I _{DYNXTAL} for 0.032–0.2 MHz to 0.19.	2-24
	The "1.5 V Voltage Regulator" section was updated to add "or floating" in the paragraph stating that an external pull-down is required on TRST to power down the VR.	2-41
	The "1.5 V Voltage Regulator" section was updated to include information on powering down with the VR.	2-41

Datasheet Information

Revision	Changes	Page		
Advance v0.5	The low power modes of operation were updated and clarified.	N/A		
(June 2006)	The AFS1500 digital I/O count was updated in Table 1 • Fusion Family.	i		
	The AFS1500 digital I/O count was updated in the "Package I/Os: Single-/Double- Ended (Analog)" table.	ii		
	The "Voltage Regulator Power Supply Monitor (VRPSM)" was updated.	2-36		
	Figure 2-45 • FlashROM Timing Diagram was updated.	2-53		
	The "256-Pin FBGA" table for the AFS1500 is new.	3-12		
Advance v0.4 (April 2006)	The G was moved in the "Product Ordering Codes" section.	III		
Advance v0.3	The "Features and Benefits" section was updated.	I		
April 2006)	The "Fusion Family" table was updated.	I.		
	The "Package I/Os: Single-/Double-Ended (Analog)" table was updated.			
	The "Product Ordering Codes" table was updated.	Ш		
	The "Temperature Grade Offerings" table was updated.			
	The "General Description" section was updated to include ARM information.			
	Figure 2-46 • FlashROM Timing Diagram was updated.			
	The "FlashROM" section was updated.	2-57		
	The "RESET" section was updated.	2-61		
	The "RESET" section was updated.	2-64		
	Figure 2-27 · Real-Time Counter System was updated.	2-35		
	Table 2-19 • Flash Memory Block Pin Names was updated.	2-43		
	Figure 2-33 • Flash Memory Block Diagram was updated to include AUX block information.	2-45		
	Figure 2-34 • Flash Memory Block Organization was updated to include AUX block information.	2-46		
	The note in the "Program Operation" section was updated.	2-48		
	Figure 2-76 • Gate Driver Example was updated.	2-95		
	The "Analog Quad ACM Description" section was updated.	2-130		
	Information about the maximum pad input frequency was added to the "Gate Driver" section.	2-94		
	Figure 2-65 • Analog Block Macro was updated.	2-81		
	Figure 2-65 • Analog Block Macro was updated.	2-81		
	The "Analog Quad" section was updated.	2-84		
	The "Voltage Monitor" section was updated.	2-86		
	The "Direct Digital Input" section was updated.	2-89		
	The "Current Monitor" section was updated.	2-90		
	Information about the maximum pad input frequency was added to the "Gate Driver" section.	2-94		