

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	223
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1afs1500-2fgg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-10 • Very-Long-Line Resources

VersaNet Global Networks and Spine Access

The Fusion architecture contains a total of 18 segmented global networks that can access the VersaTiles, SRAM, and I/O tiles on the Fusion device. There are 6 chip (main) global networks that access the entire device and 12 quadrant networks (3 in each quadrant). Each device has a total of 18 globals. These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets, including clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-skew local networks using spines for up to 180 internal/external clocks (in an AFS1500 device) or other high-fanout nets in Fusion devices. Optimal usage of these low-skew networks can result in significant improvement in design performance on Fusion devices.

The nine spines available in a vertical column reside in global networks with two separate regions of scope: the quadrant global network, which has three spines, and the chip (main) global network, which has six spines. Note that there are three quadrant spines in each quadrant of the device. There are four quadrant global network regions per device (Figure 2-12 on page 2-12).

The spines are the vertical branches of the global network tree, shown in Figure 2-11 on page 2-11. Each spine in a vertical column of a chip (main) global network is further divided into two equal-length spine segments: one in the top and one in the bottom half of the die.

Each spine and its associated ribs cover a certain area of the Fusion device (the "scope" of the spine; see Figure 2-11 on page 2-11). Each spine is accessed by the dedicated global network MUX tree architecture, which defines how a particular spine is driven—either by the signal on the global network from a CCC, for example, or another net defined by the user (Figure 2-13). Quadrant spines can be driven from user I/Os on the north and south sides of the die, via analog I/Os configured as direct digital inputs. The ability to drive spines in the quadrant global networks can have a significant effect on system performance for high-fanout inputs to a design.

Details of the chip (main) global network spine-selection MUX are presented in Figure 2-13. The spine drivers for each spine are located in the middle of the die.

Quadrant spines are driven from a north or south rib. Access to the top and bottom ribs is from the corner CCC or from the I/Os on the north and south sides of the device. For details on using spines in Fusion devices, see the application note *Using Global Resources in Actel Fusion Devices*.

Figure 2-13 • Spine-Selection MUX of Global Tree

Signal Name	Width	Direction		Functio	n					
XTL_EN*	1		Enables the crystal. Active high.							
XTL_MODE*	2		Settings for the crystal clock for different frequency.							
			Value	Modes Frequency Range						
			b'00	RC network	32 KHz to 4 MHz					
			b'01	Low gain	32 to 200 KHz					
			b'10	Medium gain	0.20 to 2.0 MHz					
			b'11	High gain 2.0 to 20.0 MHz						
SELMODE	1	IN	Selects the source of XTL_MODE and also enables the XTL_EN. Connect from RTCXTLSEL from AB.							
			0	For normal operation or sl FPGA_EN, XTL_MODE depe	eep mode, XTL_EN depends on nds on MODE					
			1	For Standby mode, XTL_EN i RTC_MODE	s enabled, XTL_MODE depends on					
RTC_MODE[1:0]	2	IN	Settings for RTC_MODE	the crystal clock for different find the second sec	requency ranges. XTL_MODE uses					
MODE[1:0]	2	IN	Settings for MODE whe	the crystal clock for different find sELMODE is '0'. In Standby,	requency ranges. XTL_MODE uses MODE inputs will be 0's.					
FPGA_EN*	1	IN	0 when 1.5	V is not present for VCC 1 whe	en 1.5 V is present for VCC					
XTL	1	IN	Crystal Cloo	ck source						
CLKOUT	1	OUT	Crystal Cloo	ck output						

Table 2-10 • XTLOSC Signals Descriptions

Note: *Internal signal—does not exist in macro.

SRAM Characteristics

Timing Waveforms

Figure 2-51 • RAM Read for Pipelined Output. Applicable to both RAM4K9 and RAM512x18.

Table 2-32 • RAM512X18

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.09	0.10	0.12	ns
t _{ENH}	REN, WEN hold time	0.06	0.07	0.08	ns
t _{DS}	Input data (WD) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (WD) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on RD (output retained)	2.16	2.46	2.89	ns
t _{CKQ2}	Clock High to new data valid on RD (pipelined)	0.90	1.02	1.20	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.50	0.43	0.38	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address—Applicable to Opening Edge	0.59	0.50	0.44	ns
t 1	RESET Low to data out Low on RD (flow-through)	0.92	1.05	1.23	ns
' RSTBQ	RESET Low to data out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

FIFO4K18 Description

Figure 2-56 • FIFO4KX18

Signal Name	Number of Bits	Direction	Function	Location of Details
AG6	1	Output		Analog Quad
AT6	1	Input		Analog Quad
ATRETURN67	1	Input	Temperature monitor return shared by Analog Quads 6 and 7	Analog Quad
AV7	1	Input	Analog Quad 7	Analog Quad
AC7	1	Input		Analog Quad
AG7	1	Output		Analog Quad
AT7	1	Input		Analog Quad
AV8	1	Input	Analog Quad 8	Analog Quad
AC8	1	Input		Analog Quad
AG8	1	Output		Analog Quad
AT8	1	Input		Analog Quad
ATRETURN89	1	Input	Temperature monitor return shared by Analog Quads 8 and 9	Analog Quad
AV9	1	Input	Analog Quad 9	Analog Quad
AC9	1	Input		Analog Quad
AG9	1	Output		Analog Quad
AT9	1	Input		Analog Quad
RTCMATCH	1	Output	МАТСН	RTC
RTCPSMMATCH	1	Output	MATCH connected to VRPSM	RTC
RTCXTLMODE[1:0]	2	Output	Drives XTLOSC RTCMODE[1:0] pins	RTC
RTCXTLSEL	1	Output	Drives XTLOSC MODESEL pin	RTC
RTCCLK	1	Input	RTC clock input	RTC

Table 2-36 • Analog Block Pin Description (continued)

Analog Quad

With the Fusion family, Microsemi introduces the Analog Quad, shown in Figure 2-65 on page 2-81, as the basic analog I/O structure. The Analog Quad is a four-channel system used to precondition a set of analog signals before sending it to the ADC for conversion into a digital signal. To maximize the usefulness of the Analog Quad, the analog input signals can also be configured as LVTTL digital input signals. The Analog Quad is divided into four sections.

The first section is called the Voltage Monitor Block, and its input pin is named AV. It contains a twochannel analog multiplexer that allows an incoming analog signal to be routed directly to the ADC or allows the signal to be routed to a prescaler circuit before being sent to the ADC. The prescaler can be configured to accept analog signals between -12 V and 0 or between 0 and +12 V. The prescaler circuit scales the voltage applied to the ADC input pad such that it is compatible with the ADC input voltage range. The AV pin can also be used as a digital input pin.

The second section of the Analog Quad is called the Current Monitor Block. Its input pin is named AC. The Current Monitor Block contains all the same functions as the Voltage Monitor Block with one addition, which is a current monitoring function. A small external current sensing resistor (typically less than 1 Ω) is connected between the AV and AC pins and is in series with a power source. The Current Monitor Block contains a current monitor circuit that converts the current through the external resistor to a voltage that can then be read using the ADC.

Terminology

Resolution

Resolution defines the smallest temperature change Fusion Temperature Monitor can resolve. For ADC configured as 8-bit mode, each LSB represents 4°C, and 1°C per LSB for 10-bit mode. With 12-bit mode, the Temperature Monitor can still only resolve 1°C due to Temperature Monitor design.

Offset

The Fusion Temperature Monitor has a systematic offset (Table 2-49 on page 2-117), excluding error due to board resistance and ideality factor of the external diode. Microsemi provides an IP block (CalibIP) that is required in order to mitigate the systematic temperature offset. For further details on CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

Analog Quad ACM Description

Table 2-56 maps out the ACM space associated with configuration of the Analog Quads within the Analog Block. Table 2-56 shows the byte assignment within each quad and the function of each bit within each byte. Subsequent tables will explain each bit setting and how it corresponds to a particular configuration. After 3.3 V and 1.5 V are applied to Fusion, Analog Quad configuration registers are loaded with default settings until the initialization and configuration state machine changes them to user-defined settings.

Table	2-56 •	Analog	Quad	Bvte /	Assianme	nt
1 4010	200	Analog	auuu .		Rooiginno	

Byte	Bit	Signal (Bx)	Function	Default Setting
Byte 0	0	B0[0]	Scaling factor control – prescaler	Highest voltage range
(AV)	1	B0[1]		
	2	B0[2]	-	
	3	B0[3]	Analog MUX select	Prescaler
	4	B0[4]	Current monitor switch	Off
	5	B0[5]	Direct analog input switch	Off
	6	B0[6]	Selects V-pad polarity	Positive
	7	B0[7]	Prescaler op amp mode	Power-down
Byte 1	0	B1[0]	Scaling factor control – prescaler	Highest voltage range
(AC)	1	B1[1]		
	2	B1[2]		
	3	B1[3]	Analog MUX select	Prescaler
	4	B1[4]		
	5	B1[5]	Direct analog input switch	Off
	6	B1[6]	Selects C-pad polarity	Positive
	7	B1[7]	Prescaler op amp mode	Power-down
Byte 2	0	B2[0]	Internal chip temperature monitor *	Off
(AG)	1	B2[1]	Spare	-
	2	B2[2]	Current drive control	Lowest current
	3	B2[3]		
	4	B2[4]	Spare	-
	5	B2[5]	Spare	-
	6	B2[6]	Selects G-pad polarity	Positive
	7	B2[7]	Selects low/high drive	Low drive
Byte 3	0	B3[0]	Scaling factor control – prescaler	Highest voltage range
(AT)	1	B3[1]	-	
	2	B3[2]	-	
	3	B3[3]	Analog MUX select	Prescaler
	4	B3[4]		
	5	B3[5]	Direct analog input switch	Off
	6	B3[6]	_	-
	7	B3[7]	Prescaler op amp mode	Power-down

Note: *For the internal temperature monitor to function, Bit 0 of Byte 2 for all 10 Quads must be set.

Temporary overshoots are allowed according to Table 3-4 on page 3-4.

Figure 2-103 • Solution 1

Solution 2

The board-level design must ensure that the reflected waveform at the pad does not exceed limits provided in Table 3-4 on page 3-4. This is a long-term reliability requirement.

This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the external resistors and Zener, as shown in Figure 2-104. Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

Figure 2-104 • Solution 2

I/O Standard	Input/Output Supply Voltage (VCCI_TYP)	Input Reference Voltage (VREF_TYP)	Board Termination Voltage (VTT_TYP)
LVTTL/LVCMOS 3.3 V	3.30 V	-	-
LVCMOS 2.5 V	2.50 V	-	-
LVCMOS 2.5 V / 5.0 V Input	2.50 V	-	-
LVCMOS 1.8 V	1.80 V	-	-
LVCMOS 1.5 V	1.50 V	-	-
PCI 3.3 V	3.30 V	-	-
PCI-X 3.3 V	3.30 V	-	-
GTL+ 3.3 V	3.30 V	1.00 V	1.50 V
GTL+ 2.5 V	2.50 V	1.00 V	1.50 V
GTL 3.3 V	3.30 V	0.80 V	1.20 V
GTL 2.5 V	2.50 V	0.80 V	1.20 V
HSTL Class I	1.50 V	0.75 V	0.75 V
HSTL Class II	1.50 V	0.75 V	0.75 V
SSTL3 Class I	3.30 V	1.50 V	1.50 V
SSTL3 Class II	3.30 V	1.50 V	1.50 V
SSTL2 Class I	2.50 V	1.25 V	1.25 V
SSTL2 Class II	2.50 V	1.25 V	1.25 V
LVDS, BLVDS, M-LVDS	2.50 V	-	-
LVPECL	3.30 V	_	-

Table 2-83 • Fusion Pro I/O Supported Standards and Corresponding VREF and VTT Voltages

Table 2-92 • Summary of I/O Timing Characteristics – Software Default SettingsCommercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,Worst-Case VCCI = I/O Standard DependentApplicable to Pro I/Os

I/O Standard	Drive Strength (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (Ohm)	t DOUT	top	t _{DIN}	tpy	t _{PY} S	teour	tzı	ьtzh	tız	tHz	tzıs	tzHS	Units
3.3 V LVTTL/ 3.3 V LVCMOS	12 mA	High	35	-	0.49	2.74	0.03	0.90	1.17	0.32	2.79	2.14	2.45	2.70	4.46	3.81	ns
2.5 V LVCMOS	12 mA	High	35	-	0.49	2.80	0.03	1.13	1.24	0.32	2.85	2.61	2.51	2.61	4.52	4.28	ns
1.8 V LVCMOS	12 mA	High	35	_	0.49	2.83	0.03	1.08	1.42	0.32	2.89	2.31	2.79	3.16	4.56	3.98	ns
1.5 V LVCMOS	12 mA	High	35	_	0.49	3.30	0.03	1.27	1.60	0.32	3.36	2.70	2.96	3.27	5.03	4.37	ns
3.3 V PCI	Per PCI spec	High	10	25 ²	0.49	2.09	0.03	0.78	1.25	0.32	2.13	1.49	2.45	2.70	3.80	3.16	ns
3.3 V PCI-X	Per PCI-X spec	High	10	25 ²	0.49	2.09	0.03	0.77	1.17	0.32	2.13	1.49	2.45	2.70	3.80	3.16	ns
3.3 V GTL	20 mA	High	10	25	0.49	1.55	0.03	2.19	_	0.32	1.52	1.55	0.00	0.00	3.19	3.22	ns
2.5 V GTL	20 mA	High	10	25	0.49	1.59	0.03	1.83	-	0.32	1.61	1.59	0.00	0.00	3.28	3.26	ns
3.3 V GTL+	35 mA	High	10	25	0.49	1.53	0.03	1.19	_	0.32	1.56	1.53	0.00	0.00	3.23	3.20	ns
2.5 V GTL+	33 mA	High	10	25	0.49	1.65	0.03	1.13	_	0.32	1.68	1.57	0.00	0.00	3.35	3.24	ns
HSTL (I)	8 mA	High	20	50	0.49	2.37	0.03	1.59	_	0.32	2.42	2.35	0.00	0.00	4.09	4.02	ns
HSTL (II)	15 mA	High	20	25	0.49	2.26	0.03	1.59	_	0.32	2.30	2.03	0.00	0.00	3.97	3.70	ns
SSTL2 (I)	17 mA	High	30	50	0.49	1.59	0.03	1.00	_	0.32	1.62	1.38	0.00	0.00	3.29	3.05	ns
SSTL2 (II)	21 mA	High	30	25	0.49	1.62	0.03	1.00	-	0.32	1.65	1.32	0.00	0.00	3.32	2.99	ns
SSTL3 (I)	16 mA	High	30	50	0.49	1.72	0.03	0.93	-	0.32	1.75	1.37	0.00	0.00	3.42	3.04	ns
SSTL3 (II)	24 mA	High	30	25	0.49	1.54	0.03	0.93	_	0.32	1.57	1.25	0.00	0.00	3.24	2.92	ns
LVDS	24 mA	High	_	_	0.49	1.57	0.03	1.36	_	_	_	_	_	_	_	_	ns
LVPECL	24 mA	High	-	-	0.49	1.60	0.03	1.22	1	_	_	-	-	_	_	-	ns

Notes:

1. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values.

2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-123 on page 2-197 for connectivity. This resistor is not required during normal operation.

Table 2-99 • Short Current Event Duration before Failure

Temperature	Time Before Failure
-40°C	>20 years
0°C	>20 years
25°C	>20 years
70°C	5 years
85°C	2 years
100°C	6 months

Table 2-100 • Schmitt Trigger Input Hysteresis Hysteresis Voltage Value (typ.) for Schmitt Mode Input Buffers

Input Buffer Configuration	Hysteresis Value (typ.)
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)	240 mV
2.5 V LVCMOS (Schmitt trigger mode)	140 mV
1.8 V LVCMOS (Schmitt trigger mode)	80 mV
1.5 V LVCMOS (Schmitt trigger mode)	60 mV

Table 2-101 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)	Reliability
LVTTL/LVCMOS (Schmitt trigger disabled)	No requirement	10 ns*	20 years (100°C)
LVTTL/LVCMOS (Schmitt trigger enabled)	No requirement	No requirement, but input noise voltage cannot exceed Schmitt hysteresis	20 years (100°C)
HSTL/SSTL/GTL	No requirement	10 ns*	10 years (100°C)
LVDS/BLVDS/M-LVDS/LVPECL	No requirement	10 ns*	10 years (100°C)

Note: * The maximum input rise/fall time is related only to the noise induced into the input buffer trace. If the noise is low, the rise time and fall time of input buffers, when Schmitt trigger is disabled, can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure there is no excessive noise coupling into input signals.

Table 2-132 • 1.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V
Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	12.33	0.04	1.42	0.43	11.79	12.33	2.45	2.32	ns
	-1	0.56	10.49	0.04	1.21	0.36	10.03	10.49	2.08	1.98	ns
	-2	0.49	9.21	0.03	1.06	0.32	8.81	9.21	1.83	1.73	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-133 • 1.5 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.65	0.04	1.42	0.43	6.31	7.65	2.45	2.45	ns
	-1	0.56	6.50	0.04	1.21	0.36	5.37	6.50	2.08	2.08	ns
	-2	0.49	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

3.3 V PCI, 3.3 V PCI-X

The Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

Table 2-134 • Minimum and Maximum DC Input and Output Levels

3.3 V PCI/PCI-X	v	IL	V	IH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Per PCI specification	Per PCI curves							10	10			

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-123.

Figure 2-123 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the data path; Microsemi loading for tristate is described in Table 2-135.

Table 2-135 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for t _{DP(R)}	-	10
		0.615 * VCCI for t _{DP(F)}		

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

I/O Register Specifications Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 2-137 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

DC and Power Characteristics

Table 3-10 • AFS250 Q	Quiescent Supply Current	Characteristics (continued)
-----------------------	--------------------------	-----------------------------

Parameter	Description	Conditions	Temp.	Min	Тур	Мах	Unit
IPP	Programming supply	Non-programming mode,	T _J = 25°C		37	80	μA
	current	VPUMP = 3.63 V	T _J = 85°C		37	80	μA
			T _J = 100°C		80	100	μA
		Standby mode ⁵ or Sleep mode ⁶ , VPUMP = 0 V			0	0	μA
ICCNVM	Embedded NVM current	Reset asserted, VCCNVM = 1.575 V	T _J = 25°C		10	40	μA
			T _J = 85°C		14	40	μA
			T _J = 100°C		14	40	μA
ICCPLL	1.5 V PLL quiescent current	Operational standby, VCCPLL = 1.575 V	T _J = 25°C		65	100	μA
			T _J = 85°C		65	100	μA
			T _J = 100°C		65	100	μA

Notes:

- 1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.
- 2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.
- 3. ICCI includes all ICCI0, ICCI1, and ICCI2.
- 4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.
- 5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.
- 6. Sleep Mode, VCC = VJTA G = VPUMP = 0 V.

Microsemi

Package Pin Assignments

	QN108		QN108	QN108			
Pin Number	AFS090 Function	Pin Number	AFS090 Function	Pin Number	AFS090 Function		
A1	NC	A39	GND	B21	AC2		
A2	GNDQ	A40	GCB1/IO35PDB1V0	B22	ATRTN1		
A3	GAA2/IO52PDB3V0	A41	GCB2/IO33PDB1V0	B23	AG3		
A4	GND	A42	GBA2/IO31PDB1V0	B24	AV3		
A5	GFA1/IO47PDB3V0	A43	NC	B25	VCC33A		
A6	GEB1/IO45PDB3V0	A44	GBA1/IO30RSB0V0	B26	VAREF		
A7	VCCOSC	A45	GBB1/IO28RSB0V0	B27	PUB		
A8	XTAL2	A46	GND	B28	VCC33A		
A9	GEA1/IO44PPB3V0	A47	VCC	B29	PTBASE		
A10	GEA0/IO44NPB3V0	A48	GBC1/IO26RSB0V0	B30	VCCNVM		
A11	GEB2/IO42PDB3V0	A49	IO21RSB0V0	B31	VCC		
A12	VCCNVM	A50	IO19RSB0V0	B32	TDI		
A13	VCC15A	A51	IO09RSB0V0	B33	TDO		
A14	PCAP	A52	GAC0/IO04RSB0V0	B34	VJTAG		
A15	NC	A53	VCCIB0	B35	GDC0/IO38NDB1V		
A16	GNDA	A54	GND		0		
A17	AV0	A55	GAB0/IO02RSB0V0	B36	VCCIB1		
A18	AG0	A56	GAA0/IO00RSB0V0	B37	GCB0/IO35NDB1V0		
A19	ATRTN0	B1	VCOMPLA	B38	GCC2/IO33NDB1V		
A20	AT1	B2	VCCIB3	B39			
A21	AC1	B3	GAB2/IO52NDB3V0	B40	VCCIB1		
A22	AV2	B4	VCCIB3	B 10 B41	GNDO		
A23	AG2	B5	GFA0/IO47NDB3V0	B42	GBA0/IO29RSB0\/0		
A24	AT2	B6	GEB0/IO45NDB3V0	B43	VCCIB0		
A25	AT3	B7	XTAL1	B 18	GBB0/IO27RSB0V0		
A26	AC3	B8	GNDOSC	B45	GBC0/IO25RSB0V0		
A27	GNDAQ	B9	GEC2/IO43PSB3V0	B46	IO20RSB0V0		
A28	ADCGNDREF	B10	GEA2/IO42NDB3V0	B47	IO10RSB0V0		
A29	NC	B11	VCC	B48	GAC1/IO05RSB0V0		
A30	GNDA	B12	GNDNVM	B49	GAB1/IO03RSB0V0		
A31	PTEM	B13	NCAP	B50	VCC		
A32	GNDNVM	B14	VCC33PMP	B51	GAA1/IO01RSB0V0		
A33	VPUMP	B15	VCC33N	B52	VCCPLA		
A34	TCK	B16	GNDAQ				
A35	TMS	B17	AC0				
A36	TRST	B18	AT0				
A37	GDB1/IO39PSB1V0	B19	AG1				
A38	GDC1/IO38PDB1V0	B20	AV1				

FG256								
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function				
C7	IO09RSB0V0	IO12RSB0V0	IO06NDB0V0	IO09NDB0V1				
C8	IO14RSB0V0	IO22RSB0V0	IO16PDB1V0	IO23PDB1V0				
C9	IO15RSB0V0	IO23RSB0V0	IO16NDB1V0	IO23NDB1V0				
C10	IO22RSB0V0	IO30RSB0V0	IO25NDB1V1	IO31NDB1V1				
C11	IO20RSB0V0	IO31RSB0V0	IO25PDB1V1	IO31PDB1V1				
C12	VCCIB0	VCCIB0	VCCIB1	VCCIB1				
C13	GBB1/IO28RSB0V0	GBC1/IO35RSB0V0	GBC1/IO26PPB1V1	GBC1/IO40PPB1V2				
C14	VCCIB1	VCCIB1	VCCIB2	VCCIB2				
C15	GND	GND	GND	GND				
C16	VCCIB1	VCCIB1	VCCIB2	VCCIB2				
D1	GFC2/IO50NPB3V0	IO75NDB3V0	IO84NDB4V0	IO124NDB4V0				
D2	GFA2/IO51NDB3V0	GAB2/IO75PDB3V0	GAB2/IO84PDB4V0	GAB2/IO124PDB4V0				
D3	GAC2/IO51PDB3V0	IO76NDB3V0	IO85NDB4V0	IO125NDB4V0				
D4	GAA2/IO52PDB3V0	GAA2/IO76PDB3V0	GAA2/IO85PDB4V0	GAA2/IO125PDB4V0				
D5	GAB2/IO52NDB3V0	GAB0/IO02RSB0V0	GAB0/IO02NPB0V0	GAB0/IO02NPB0V0				
D6	GAC0/IO04RSB0V0	GAC0/IO04RSB0V0	GAC0/IO03NDB0V0	GAC0/IO03NDB0V0				
D7	IO08RSB0V0	IO13RSB0V0	IO06PDB0V0	IO09PDB0V1				
D8	NC	IO20RSB0V0	IO14NDB0V1	IO15NDB0V2				
D9	NC	IO21RSB0V0	IO14PDB0V1	IO15PDB0V2				
D10	IO21RSB0V0	IO28RSB0V0	IO23PDB1V1	IO37PDB1V2				
D11	IO23RSB0V0	GBB0/IO36RSB0V0	GBB0/IO27NDB1V1	GBB0/IO41NDB1V2				
D12	NC	NC	VCCIB1	VCCIB1				
D13	GBA2/IO31PDB1V0	GBA2/IO40PDB1V0	GBA2/IO30PDB2V0	GBA2/IO44PDB2V0				
D14	GBB2/IO31NDB1V0	IO40NDB1V0	IO30NDB2V0	IO44NDB2V0				
D15	GBC2/IO32PDB1V0	GBB2/IO41PDB1V0	GBB2/IO31PDB2V0	GBB2/IO45PDB2V0				
D16	GCA2/IO32NDB1V0	IO41NDB1V0	IO31NDB2V0	IO45NDB2V0				
E1	GND	GND	GND	GND				
E2	GFB0/IO48NPB3V0	IO73NDB3V0	IO81NDB4V0	IO118NDB4V0				
E3	GFB2/IO50PPB3V0	IO73PDB3V0	IO81PDB4V0	IO118PDB4V0				
E4	VCCIB3	VCCIB3	VCCIB4	VCCIB4				
E5	NC	IO74NPB3V0	IO83NPB4V0	IO123NPB4V0				
E6	NC	IO08RSB0V0	IO04NPB0V0	IO05NPB0V1				
E7	GND	GND	GND	GND				
E8	NC	IO18RSB0V0	IO08PDB0V1	IO11PDB0V1				
E9	NC	NC	IO20NDB1V0	IO27NDB1V1				
E10	GND	GND	GND	GND				
E11	IO24RSB0V0	GBB1/IO37RSB0V0	GBB1/IO27PDB1V1	GBB1/IO41PDB1V2				
E12	NC	IO50PPB1V0	IO33PSB2V0	IO48PSB2V0				

🌜 Microsemi.

Package Pin Assignments

	FG676		FG676	FG676			
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function		
C9	IO07PDB0V1	D19	GBC1/IO40PDB1V2	F3	IO121NDB4V0		
C10	IO09PDB0V1	D20	GBA1/IO42PDB1V2	F4	GND		
C11	IO13NDB0V2	D21	GND	F5	IO123NDB4V0		
C12	IO13PDB0V2	D22	VCCPLB	F6	GAC2/IO123PDB4V0		
C13	IO24PDB1V0	D23	GND	F7	GAA2/IO125PDB4V0		
C14	IO26PDB1V0	D24	NC	F8	GAC0/IO03NDB0V0		
C15	IO27NDB1V1	D25	NC	F9	GAC1/IO03PDB0V0		
C16	IO27PDB1V1	D26	NC	F10	IO10NDB0V1		
C17	IO35NDB1V2	E1	GND	F11	IO10PDB0V1		
C18	IO35PDB1V2	E2	IO122NPB4V0	F12	IO14NDB0V2		
C19	GBC0/IO40NDB1V2	E3	IO121PDB4V0	F13	IO23NDB1V0		
C20	GBA0/IO42NDB1V2	E4	IO122PPB4V0	F14	IO23PDB1V0		
C21	IO43NDB1V2	E5	IO00NDB0V0	F15	IO32NPB1V1		
C22	IO43PDB1V2	E6	IO00PDB0V0	F16	IO34NDB1V1		
C23	NC	E7	VCCIB0	F17	IO34PDB1V1		
C24	GND	E8	IO05NDB0V1	F18	IO37PDB1V2		
C25	NC	E9	IO05PDB0V1	F19	GBB1/IO41PDB1V2		
C26	NC	E10	VCCIB0	F20	VCCIB2		
D1	NC	E11	IO11NDB0V1	F21	IO47PPB2V0		
D2	NC	E12	IO14PDB0V2	F22	IO44NDB2V0		
D3	NC	E13	VCCIB0	F23	GND		
D4	GND	E14	VCCIB1	F24	IO45NDB2V0		
D5	GAA0/IO01NDB0V0	E15	IO29NDB1V1	F25	VCCIB2		
D6	GND	E16	IO29PDB1V1	F26	NC		
D7	IO04NDB0V0	E17	VCCIB1	G1	NC		
D8	IO04PDB0V0	E18	IO37NDB1V2	G2	IO119PPB4V0		
D9	GND	E19	GBB0/IO41NDB1V2	G3	IO120NDB4V0		
D10	IO09NDB0V1	E20	VCCIB1	G4	IO120PDB4V0		
D11	IO11PDB0V1	E21	VCOMPLB	G5	VCCIB4		
D12	GND	E22	GBA2/IO44PDB2V0	G6	GAB2/IO124PDB4V0		
D13	IO24NDB1V0	E23	IO48PPB2V0	G7	IO125NDB4V0		
D14	IO26NDB1V0	E24	GBB2/IO45PDB2V0	G8	GND		
D15	GND	E25	NC	G9	VCCIB0		
D16	IO31NDB1V1	E26	GND	G10	IO08NDB0V1		
D17	IO31PDB1V1	F1	NC	G11	IO08PDB0V1		
D18	GND	F2	VCCIB4	G12	GND		