

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XF

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	252
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1afs1500-2fgg676

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Fusion Device Family Overview

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User Guide* for more information.

Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.

The I/Os are controlled by the JTAG Boundary Scan register during programming, except for the analog pins (AC, AT and AV). The Boundary Scan register of the AG pin can be used to enable/disable the gate driver in software v9.0.

- 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
- 2. From the FlashPro GUI, click **PDB Configuration**. A FlashPoint Programming File Generator window appears.
- Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
- 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-3).
- Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:

1 - I/O is set to drive out logic High

0 – I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

Port Name	Macro Cell	Pin Number	1/O State (Output Only)
BIST	ADLIB:INBUF	T2	1
BYPASS_IO	ADLIB:INBUF	К1	1
CLK	ADLIB:INBUF	B1	1
ENOUT	ADLIB:INBUF	J16	1
LED	ADLIB:OUTBUF	M3	0
MONITOR[0]	ADLIB:OUTBUF	B5	0
MONITOR[1]	ADLIB:OUTBUF	C7	Z
MONITOR[2]	ADLIB:OUTBUF	D9	Z
MONITOR[3]	ADLIB:OUTBUF	D7	Z
MONITOR[4]	ADLIB:OUTBUF	A11	Z
OEa	ADLIB:INBUF	E4	Z
OEb	ADLIB:INBUF	F1	Z
OSC_EN	ADLIB:INBUF	К3	Z
PAD[10]	ADLIB:BIBUF_LVCMOS33U	M8	Z
PAD[11]	ADLIB:BIBUF_LVCMOS33D	B7	Z
PAD[12]	ADLIB:BIBUF_LVCMOS33U	D11	Z
PAD[13]	ADLIB:BIBUF_LVCMOS33D	C12	Z
PAD[14]	ADLIB:BIBUF LVCMOS33U	B6	7

Figure 1-3 • I/O States During Programming Window

6. Click **OK** to return to the FlashPoint – Programming File Generator window.

I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

Device Architecture

Table 2-7 • AFS250 Global Resource Timing
Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter Description		-2		-1		Std.		Unite
Faranieter	Description		Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.89	1.12	1.02	1.27	1.20	1.50	ns
t _{RCKH}	Input High Delay for Global Clock	0.88	1.14	1.00	1.30	1.17	1.53	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.30		0.35	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-8 • AFS090 Global Resource Timing

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description		-2		-1		Std.	
Falailletei	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	0.84	1.07	0.96	1.21	1.13	1.43	ns
t _{RCKH}	Input High Delay for Global Clock	0.83	1.10	0.95	1.25	1.12	1.47	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.27		0.30		0.36	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

No-Glitch MUX (NGMUX)

Positioned downstream from the PLL/CCC blocks, the NGMUX provides a special switching sequence between two asynchronous clock domains that prevents generating any unwanted narrow clock pulses. The NGMUX is used to switch the source of a global between three different clock sources. Allowable inputs are either two PLL/CCC outputs or a PLL/CCC output and a regular net, as shown in Figure 2-24. The GLMUXCFG[1:0] configuration bits determine the source of the CLK inputs (i.e., internal signal or GLC). These are set by SmartGen during design but can also be changed by dynamically reconfiguring the PLL. The GLMUXSEL[1:0] bits control which clock source is passed through the NGMUX to the global network (GL). See Table 2-13.

Figure 2-24 • NGMUX

Table 2-13 • NGMUX	Configuration and	Selection	Table
--------------------	-------------------	-----------	-------

GLMUXCFG[1:0]	GLMUXSEL[1:0]		Selected Input Signal	MUX Type
00	Х	0	GLA	2 to 1 GLMUX
00	Х	1	GLC	2-10-1 GENIOX
01	Х	0	GLA	2 to 1 CLMUX
01	Х	1	GLINT	2-10-1 GEMOX

The NGMUX macro is simplified to show the two clock options that have been selected by the GLMUXCFG[1:0] bits. Figure 2-25 illustrates the NGMUX macro. During design, the two clock sources are connected to CLK0 and CLK1 and are controlled by GLMUXSEL[1:0] to determine which signal is to be passed through the MUX.

Figure 2-25 • NGMUX Macro

The sequence of switching between two clock sources (from CLK0 to CLK1) is as follows (Figure 2-26):

- GLMUXSEL[1:0] transitions to initiate a switch.
- GL drives one last complete CLK0 positive pulse (i.e., one rising edge followed by one falling edge).
- From that point, GL stays Low until the second rising edge of CLK1 occurs.
- At the second CLK1 rising edge, GL will begin to continuously deliver the CLK1 signal.
- Minimum t_{sw} = 0.05 ns at 25°C (typical conditions)

For examples of NGMUX operation, refer to the Fusion FPGA Fabric User Guide.

Figure 2-26 • NGMUX Waveform

Device Architecture

Table 2-25 • Flash Memory Block Timing (continued)Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{SUPGLOSSPRO}	Page Loss Protect Setup Time for the Control Logic	1.69	1.93	2.27	ns
t _{HDPGLOSSPRO}	Page Loss Protect Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SUPGSTAT}	Page Status Setup Time for the Control Logic	2.49	2.83	3.33	ns
t _{HDPGSTAT}	Page Status Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SUOVERWRPG}	Over Write Page Setup Time for the Control Logic	1.88	2.14	2.52	ns
t _{HDOVERWRPG}	Over Write Page Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SULOCKREQUEST}	Lock Request Setup Time for the Control Logic	0.87	0.99	1.16	ns
t _{HDLOCKREQUEST}	Lock Request Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{RECARNVM}	Reset Recovery Time	0.94	1.07	1.25	ns
t _{REMARNVM}	Reset Removal Time	0.00	0.00	0.00	ns
t _{mpwarnvm}	Asynchronous Reset Minimum Pulse Width for the Control Logic	10.00	12.50	12.50	ns
t _{MPWCLKNVM}	Clock Minimum Pulse Width for the Control Logic	4.00	5.00	5.00	ns
+	Maximum Frequency for Clock for the Control Logic – for AFS1500/AFS600	80.00	80.00	80.00	MHz
'FMAXCLKNVM	Maximum Frequency for Clock for the Control Logic – for AFS250/AFS090	100.00	80.00	80.00	MHz

FlashROM

Fusion devices have 1 kbit of on-chip nonvolatile flash memory that can be read from the FPGA core fabric. The FlashROM is arranged in eight banks of 128 bits during programming. The 128 bits in each bank are addressable as 16 bytes during the read-back of the FlashROM from the FPGA core (Figure 2-45).

The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly from the FPGA core. When programming, each of the eight 128-bit banks can be selectively reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports a synchronous read and can be read on byte boundaries. The upper three bits of the FlashROM address from the FPGA core define the bank that is being accessed. The lower four bits of the FlashROM address from the FPGA core define which of the 16 bytes in the bank is being accessed.

The maximum FlashROM access clock is given in Table 2-26 on page 2-54. Figure 2-46 shows the timing behavior of the FlashROM access cycle—the address has to be set up on the rising edge of the clock for DOUT to be valid on the next falling edge of the clock.

If the address is unchanged for two cycles:

- D0 becomes invalid t_{CK2Q} ns after the second rising edge of the clock.
- D0 becomes valid again t_{CK2Q} ns after the second falling edge.

If the address unchanged for three cycles:

- D0 becomes invalid t_{CK2Q} ns after the second rising edge of the clock.
- D0 becomes valid again t_{CK2Q} ns after the second falling edge.
- D0 becomes invalid t_{CK2Q} ns after the third rising edge of the clock.
- D0 becomes valid again t_{CK2Q} ns after the third falling edge.

Figure 2-52 • RAM Write, Output Retained. Applicable to both RAM4K9 and RAM512x18.

Figure 2-53 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 Only.

The diode's voltage is measured at each current level and the temperature is calculated based on EQ 7.

$$V_{\text{TMSLO}} - V_{\text{TMSHI}} = n \frac{kT}{q} \left(\ln \frac{I_{\text{TMSLO}}}{I_{\text{TMSHI}}} \right)$$

EQ 7

where

 $\textit{I}_{\textit{TMSLO}}$ is the current when the Temperature Strobe is Low, typically 100 μA

 I_{TMSHI} is the current when the Temperature Strobe is High, typically 10 μA

V_{TMSLO} is diode voltage while Temperature Strobe is Low

 V_{TMSHI} is diode voltage while Temperature Strobe is High

n is the non-ideality factor of the diode-connected transistor. It is typically 1.004 for the Microsemirecommended transistor type 2N3904.

- $K = 1.3806 \text{ x } 10^{-23} \text{ J/K}$ is the Boltzman constant
- $Q = 1.602 \times 10^{-19} C$ is the charge of a proton

When $I_{TMSLO} / I_{TMSHI} = 10$, the equation can be simplified as shown in EQ 8.

$$\Delta V = V_{\text{TMSLO}} - V_{\text{TMSHI}} = 1.986 \times 10^{-4} nT$$

EQ 8

In the Fusion TMB, the ideality factor *n* for 2N3904 is 1.004 and ΔV is amplified 12.5 times by an internal amplifier; hence the voltage before entering the ADC is as given in EQ 9.

$$V_{ADC} = \Delta V \times 12.5 = 2.5 \text{ mV}/(K \times T)$$

EQ 9

This means the temperature to voltage relationship is 2.5 mV per degree Kelvin. The unique design of Fusion has made the Temperature Monitor System simple for the user. When the 10-bit mode ADC is used, each LSB represents 1 degree Kelvin, as shown in EQ 10. That is, e. 25°C is equal to 293°K and is represented by decimal 293 counts from the ADC.

$$1K = 2.5 \text{ mV} \times \frac{2^{10}}{2.56 \text{ V}} = 1 \text{ LSB}$$

EQ 10

If 8-bit mode is used for the ADC resolution, each LSB represents 4 degrees Kelvin; however, the resolution remains as 1 degree Kelvin per LSB, even for 12-bit mode, due to the Temperature Monitor design. An example of the temperature data format for 10-bit mode is shown in Table 2-38.

Temperature	Temperature (K)	Digital Output (ADC 10-bit mode)
-40°C	233	00 1110 1001
–20°C	253	00 1111 1101
0°C	273	01 0001 0001
1°C	274	01 0001 0010
10 °C	283	01 0001 1011
25°C	298	01 0010 1010
50 °C	323	01 0100 0011
85 °C	358	01 0110 0110

Table 2-38 • Temperature Data Format

This process results in a binary approximation of VIN. Generally, there is a fixed interval T, the sampling period, between the samples. The inverse of the sampling period is often referred to as the sampling frequency $f_S = 1 / T$. The combined effect is illustrated in Figure 2-82.

Figure 2-82 • Conversion Example

Figure 2-82 demonstrates that if the signal changes faster than the sampling rate can accommodate, or if the actual value of VIN falls between counts in the result, this information is lost during the conversion. There are several techniques that can be used to address these issues.

First, the sampling rate must be chosen to provide enough samples to adequately represent the input signal. Based on the Nyquist-Shannon Sampling Theorem, the minimum sampling rate must be at least twice the frequency of the highest frequency component in the target signal (Nyquist Frequency). For example, to recreate the frequency content of an audio signal with up to 22 KHz bandwidth, the user must sample it at a minimum of 44 ksps. However, as shown in Figure 2-82, significant post-processing of the data is required to interpolate the value of the waveform during the time between each sample.

Similarly, to re-create the amplitude variation of a signal, the signal must be sampled with adequate resolution. Continuing with the audio example, the dynamic range of the human ear (the ratio of the amplitude of the threshold of hearing to the threshold of pain) is generally accepted to be 135 dB, and the dynamic range of a typical symphony orchestra performance is around 85 dB. Most commercial recording media provide about 96 dB of dynamic range using 16-bit sample resolution. But 16-bit fidelity does not necessarily mean that you need a 16-bit ADC. As long as the input is sampled at or above the Nyquist Frequency, post-processing techniques can be used to interpolate intermediate values and reconstruct the original input signal to within desired tolerances.

If sophisticated digital signal processing (DSP) capabilities are available, the best results are obtained by implementing a reconstruction filter, which is used to interpolate many intermediate values with higher resolution than the original data. Interpolating many intermediate values increases the effective number of samples, and higher resolution increases the effective number of bits in the sample. In many cases, however, it is not cost-effective or necessary to implement such a sophisticated reconstruction algorithm. For applications that do not require extremely fine reproduction of the input signal, alternative methods can enhance digital sampling results with relatively simple post-processing. The details of such techniques are out of the scope of this chapter; refer to the *Improving ADC Results through Oversampling and Post-Processing of Data* white paper for more information.

ADC Interface Timing

Table 2-48 • ADC Interface Timing Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{SUMODE}	Mode Pin Setup Time	0.56	0.64	0.75	ns
t _{HDMODE}	Mode Pin Hold Time	0.26	0.29	0.34	ns
t _{SUTVC}	Clock Divide Control (TVC) Setup Time	0.68	0.77	0.90	ns
t _{HDTVC}	Clock Divide Control (TVC) Hold Time	0.32	0.36	0.43	ns
t _{SUSTC}	Sample Time Control (STC) Setup Time	1.58	1.79	2.11	ns
t _{HDSTC}	Sample Time Control (STC) Hold Time	1.27	1.45	1.71	ns
t _{SUVAREFSEL}	Voltage Reference Select (VAREFSEL) Setup Time	0.00	0.00	0.00	ns
t _{HDVAREFSEL}	Voltage Reference Select (VAREFSEL) Hold Time	0.67	0.76	0.89	ns
t _{SUCHNUM}	Channel Select (CHNUMBER) Setup Time	0.90	1.03	1.21	ns
t _{HDCHNUM}	Channel Select (CHNUMBER) Hold Time	0.00	0.00	0.00	ns
t _{SUADCSTART}	Start of Conversion (ADCSTART) Setup Time	0.75	0.85	1.00	ns
t _{HDADCSTART}	Start of Conversion (ADCSTART) Hold Time	0.43	0.49	0.57	ns
t _{CK2QBUSY}	Busy Clock-to-Q	1.33	1.51	1.78	ns
t _{CK2QCAL}	Power-Up Calibration Clock-to-Q	0.63	0.71	0.84	ns
t _{CK2QVAL}	Valid Conversion Result Clock-to-Q	3.12	3.55	4.17	ns
t _{CK2QSAMPLE}	Sample Clock-to-Q	0.22	0.25	0.30	ns
t _{CK2QRESULT}	Conversion Result Clock-to-Q	2.53	2.89	3.39	ns
t _{CLR2QBUSY}	Busy Clear-to-Q	2.06	2.35	2.76	ns
t _{CLR2QCAL}	Power-Up Calibration Clear-to-Q	2.15	2.45	2.88	ns
t _{CLR2QVAL}	Valid Conversion Result Clear-to-Q	2.41	2.74	3.22	ns
t _{CLR2QSAMPLE}	Sample Clear-to-Q	2.17	2.48	2.91	ns
t _{CLR2QRESULT}	Conversion result Clear-to-Q	2.25	2.56	3.01	ns
t _{RECCLR}	Recovery Time of Clear	0.00	0.00	0.00	ns
t _{REMCLR}	Removal Time of Clear	0.63	0.72	0.84	ns
t _{MPWSYSCLK}	Clock Minimum Pulse Width for the ADC	4.00	4.00	4.00	ns
t _{FMAXSYSCLK}	Clock Maximum Frequency for the ADC	100.00	100.00	100.00	MHz

Figure 2-96 • Temperature Reading Noise When Averaging is Used

Table 2-57 details the settings available to control the prescaler values of the AV, AC, and AT pins. Note that the AT pin has a reduced number of available prescaler values.

Control Lines Bx[2:0]	Scaling Factor, Pad to ADC Input	LSB for an 8-Bit Conversion ¹ (mV)	LSB for a 10-Bit Conversion ¹ (mV)	LSB for a 12-Bit Conversion ¹ (mV)	Full-Scale Voltage in 10-Bit Mode ²	Range Name
000 ³	0.15625	64	16	4	16.368 V	16 V
001	0.3125	32	8	2	8.184 V	8 V
010 ³	0.625	16	4	1	4.092 V	4 V
011	1.25	8	2	0.5	2.046 V	2 V
100	2.5	4	1	0.25	1.023 V	1 V
101	5.0	2	0.5	0.125	0.5115 V	0.5 V
110	10.0	1	0.25	0.0625	0.25575 V	0.25 V
111	20.0	0.5	0.125	0.03125	0.127875 V	0.125 V

Table 2-57 • Prescaler Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Notes:

1. LSB voltage equivalences assume VAREF = 2.56 V.

2. Full Scale voltage for n-bit mode: ((2ⁿ) - 1) x (LSB for a n-bit Conversion)

3. These are the only valid ranges for the Temperature Monitor Block Prescaler.

Table 2-58 details the settings available to control the MUX within each of the AV, AC, and AT circuits. This MUX determines whether the signal routed to the ADC is the direct analog input, prescaled signal, or output of either the Current Monitor Block or the Temperature Monitor Block.

Table 2-58 • Analog Multiplexer Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[4]	Control Lines Bx[3]	ADC Connected To
0	0	Prescaler
0	1	Direct input
1	0	Current amplifier temperature monitor
1	1	Not valid

Table 2-59 details the settings available to control the Direct Analog Input switch for the AV, AC, and AT pins.

Table 2-59 • Direct Analog Input Switch Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[5]	Direct Input Switch
0	Off
1	On

Table 2-60 details the settings available to control the polarity of the signals coming to the AV, AC, and AT pins. Note that the only valid setting for the AT pin is logic 0 to support positive voltages.

Table 2-60 • Voltage Polarity Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)*

Control Lines Bx[6]	Input Signal Polarity
0	Positive
1	Negative

Note: *The B3[6] signal for the AT pad should be kept at logic 0 to accept only positive voltages.

Device Architecture

Table 2-85 • Fusion Pro I/O Attributes vs. I/O Standard Applications

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (all macros with OE)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER	IN_DELAY (input only)	IN_DELAY_VAL (input only)	SCHMITT_TRIGGER (input only)	HOT_SWAPPABLE
LVTTL/LVCMOS 3.3 V	3	3	3	3	3	3	3	3	3	3
LVCMOS 2.5 V	3	3	3	3	3	3	3	3	3	3
LVCMOS 2.5/5.0 V	3	3	3	3	3	3	3	3	3	3
LVCMOS 1.8 V	3	3	3	3	3	3	3	3	3	3
LVCMOS 1.5 V	3	3	3	3	3	3	3	3	3	3
PCI (3.3 V)			3		3	3	3	3		
PCI-X (3.3 V)	3		3		3	3	3	3		
GTL+ (3.3 V)			3		3	3	3	3		3
GTL+ (2.5 V)			3		3	3	3	3		3
GTL (3.3 V)			3		3	3	3	3		3
GTL (2.5 V)			3		3	3	3	3		3
HSTL Class I			3		3	3	3	3		3
HSTL Class II			3		3	3	3	3		3
SSTL2 Class I and II			3		3	3	3	3		3
SSTL3 Class I and II			3		3	3	3	3		3
LVDS, BLVDS, M-LVDS			3			3	3	3		3
LVPECL						3	3	3		3

User I/O Naming Convention

Due to the comprehensive and flexible nature of Fusion device user I/Os, a naming scheme is used to show the details of the I/O (Figure 2-113 on page 2-158 and Figure 2-114 on page 2-159). The name identifies to which I/O bank it belongs, as well as the pairing and pin polarity for differential I/Os.

I/O Nomenclature = Gmn/IOuxwByVz

Gmn is only used for I/Os that also have CCC access—i.e., global pins.

- G = Global
- m = Global pin location associated with each CCC on the device: A (northwest corner), B (northeast corner), C (east middle), D (southeast corner), E (southwest corner), and F (west middle).
- n = Global input MUX and pin number of the associated Global location m, either A0, A1, A2, B0, B1, B2, C0, C1, or C2. Figure 2-22 on page 2-25 shows the three input pins per clock source MUX at CCC location m.
- u = I/O pair number in the bank, starting at 00 from the northwest I/O bank and proceeding in a clockwise direction.
- x = P (Positive) or N (Negative) for differential pairs, or R (Regular single-ended) for the I/Os that support single-ended and voltage-referenced I/O standards only. U (Positive-LVDS only) or V (Negative-LVDS only) restrict the I/O differential pair from being selected as an LVPECL pair.
- w = D (Differential Pair), P (Pair), or S (Single-Ended). D (Differential Pair) if both members of the pair are bonded out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both members of the pair are bonded out but do not meet the adjacency requirement; or S (Single-Ended) if the I/O pair is not bonded out. For Differential (D) pairs, adjacency for ball grid packages means only vertical or horizontal. Diagonal adjacency does not meet the requirements for a true differential pair.

```
B = Bank
```

- y = Bank number (0–3). The Bank number starts at 0 from the northwest I/O bank and proceeds in a clockwise direction.
- V = Reference voltage
- z = Minibank number

Standard I/O Bank

Figure 2-113 • Naming Conventions of Fusion Devices with Three Digital I/O Banks

ATRTNx Temperature Monitor Return

AT returns are the returns for the temperature sensors. The cathode terminal of the external diodes should be connected to these pins. There is one analog return pin for every two Analog Quads. The x in the ATRTNx designator indicates the quad pairing (x = 0 for AQ1 and AQ2, x = 1 for AQ2 and AQ3, ..., x = 4 for AQ8 and AQ9). The signals that drive these pins are called out as ATRETURNxy in the software (where x and y refer to the quads that share the return signal). ATRTN is internally connected to ground. It can be left floating when it is unused. The maximum capacitance allowed across the AT pins is 500 pF.

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as Pro I/Os since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors. See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits" section on page 2-22.

Refer to the "User I/O Naming Convention" section on page 2-158 for a description of naming of global pins.

JTAG Pins

Fusion devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the Fusion part must be supplied to allow JTAG signals to transition the Fusion device.

Isolating the JTAG power supply in a separate I/O bank gives greater flexibility with supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned to be used, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND or VJTAG through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 2-183 for more information.

VJTAG	Tie-Off Resistance ^{2, 3}
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Table 2-183 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

- 1. Equivalent parallel resistance if more than one device is on JTAG chain.
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin can only be pulled down.

TDI Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the TAP is held in reset mode. The resistor values must be chosen from Table 2-183 and must satisfy the parallel resistance value requirement. The values in Table 2-183 correspond to the resistor recommended when a single device is used and to the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entering an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin. Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

Special Function Pins

NC No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC Don't Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

NCAP Negative Capacitor

Negative Capacitor is where the negative terminal of the charge pump capacitor is connected. A capacitor, with a 2.2 μ F recommended value, is required to connect between PCAP and NCAP.

PCAP Positive Capacitor

Positive Capacitor is where the positive terminal of the charge pump capacitor is connected. A capacitor, with a 2.2 μ F recommended value, is required to connect between PCAP and NCAP.

PUB Push Button

Push button is the connection for the external momentary switch used to turn on the 1.5 V voltage regulator and can be floating if not used.

PTBASE Pass Transistor Base

Pass Transistor Base is the control signal of the voltage regulator. This pin should be connected to the base of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if not used.

PTEM Pass Transistor Emitter

Pass Transistor Emitter is the feedback input of the voltage regulator.

This pin should be connected to the emitter of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if not used.

XTAL1 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or external clock input. When using an external crystal or ceramic oscillator, external capacitors are also recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the XTAL2 pin should be left floating.

Power Consumption

Table 3-18 • Power Consumption

Parameter	Description	Condition	Min.	Typical	Max.	Units
Crystal Oscillator						•
ISTBXTAL	Standby Current of Crystal Oscillator			10		μΑ
IDYNXTAL	Operating Current	RC		0.6		mA
		0.032–0.2		0.19		mA
		0.2–2.0		0.6		mA
		2.0–20.0		0.6		mA
RC Oscillator						•
IDYNRC	Operating Current			1		mA
ACM						•
	Operating Current (fixed clock)			200		µA/MHz
	Operating Current (user clock)			30		μΑ
NVM System	•					
	NVM Array Operating Power	Idle		795		μA
		Read operation		See Table 3-15 on page 3-23.		See Table 3-15 on page 3-23.
		Erase		900		μA
		Write		900		μA
PNVMCTRL	NVM Controller Operating Power			20		µW/MHz

Package Pin Assignments

FG256							
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function			
H3	XTAL2	XTAL2	XTAL2	XTAL2			
H4	XTAL1	XTAL1	XTAL1	XTAL1			
H5	GNDOSC	GNDOSC	GNDOSC	GNDOSC			
H6	VCCOSC	VCCOSC	VCCOSC	VCCOSC			
H7	VCC	VCC	VCC	VCC			
H8	GND	GND	GND	GND			
H9	VCC	VCC	VCC	VCC			
H10	GND	GND	GND	GND			
H11	GDC0/IO38NDB1V0	IO51NDB1V0	IO47NDB2V0	IO69NDB2V0			
H12	GDC1/IO38PDB1V0	IO51PDB1V0	IO47PDB2V0	IO69PDB2V0			
H13	GDB1/IO39PDB1V0	GCA1/IO49PDB1V0	GCA1/IO45PDB2V0	GCA1/IO64PDB2V0			
H14	GDB0/IO39NDB1V0	GCA0/IO49NDB1V0	GCA0/IO45NDB2V0	GCA0/IO64NDB2V0			
H15	GCA0/IO36NDB1V0	GCB0/IO48NDB1V0	GCB0/IO44NDB2V0	GCB0/IO63NDB2V0			
H16	GCA1/IO36PDB1V0	GCB1/IO48PDB1V0	GCB1/IO44PDB2V0	GCB1/IO63PDB2V0			
J1	GEA0/IO44NDB3V0	GFA0/IO66NDB3V0	GFA0/IO70NDB4V0	GFA0/IO105NDB4V0			
J2	GEA1/IO44PDB3V0	GFA1/IO66PDB3V0	GFA1/IO70PDB4V0	GFA1/IO105PDB4V0			
J3	IO43NDB3V0	GFB0/IO67NDB3V0	GFB0/IO71NDB4V0	GFB0/IO106NDB4V0			
J4	GEC2/IO43PDB3V0	GFB1/IO67PDB3V0	GFB1/IO71PDB4V0	GFB1/IO106PDB4V0			
J5	NC	GFC0/IO68NDB3V0	GFC0/IO72NDB4V0	GFC0/IO107NDB4V0			
J6	NC	GFC1/IO68PDB3V0	GFC1/IO72PDB4V0	GFC1/IO107PDB4V0			
J7	GND	GND	GND	GND			
J8	VCC	VCC	VCC	VCC			
J9	GND	GND	GND	GND			
J10	VCC	VCC	VCC	VCC			
J11	GDC2/IO41NPB1V0	IO56NPB1V0	IO56NPB2V0	IO83NPB2V0			
J12	NC	GDB0/IO53NPB1V0	GDB0/IO53NPB2V0	GDB0/IO80NPB2V0			
J13	NC	GDA1/IO54PDB1V0	GDA1/IO54PDB2V0	GDA1/IO81PDB2V0			
J14	GDA0/IO40PDB1V0	GDC1/IO52PPB1V0	GDC1/IO52PPB2V0	GDC1/IO79PPB2V0			
J15	NC	IO50NPB1V0	IO51NSB2V0	IO77NSB2V0			
J16	GDA2/IO40NDB1V0	GDC0/IO52NPB1V0	GDC0/IO52NPB2V0	GDC0/IO79NPB2V0			
K1	NC	IO65NPB3V0	IO67NPB4V0	IO92NPB4V0			
K2	VCCIB3	VCCIB3	VCCIB4	VCCIB4			
K3	NC	IO65PPB3V0	IO67PPB4V0	IO92PPB4V0			
K4	NC	IO64PDB3V0	IO65PDB4V0	IO96PDB4V0			
K5	GND	GND	GND	GND			
K6	NC	IO64NDB3V0	IO65NDB4V0	IO96NDB4V0			
K7	VCC	VCC	VCC	VCC			
K8	GND	GND	GND	GND			

	FG484		FG484		
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function
H13	GND	GND	K4	IO75NDB4V0	IO110NDB4V0
H14	VCCIB1	VCCIB1	K5	GND	GND
H15	GND	GND	K6	NC	IO104NDB4V0
H16	GND	GND	K7	NC	IO111NDB4V0
H17	NC	IO53NDB2V0	K8	GND	GND
H18	IO38PDB2V0	IO57PDB2V0	K9	VCC	VCC
H19	GCA2/IO39PDB2V0	GCA2/IO59PDB2V0	K10	GND	GND
H20	VCCIB2	VCCIB2	K11	VCC	VCC
H21	IO37NDB2V0	IO54NDB2V0	K12	GND	GND
H22	IO37PDB2V0	IO54PDB2V0	K13	VCC	VCC
J1	NC	IO112PPB4V0	K14	GND	GND
J2	IO76NDB4V0	IO113NDB4V0	K15	GND	GND
J3	GFB2/IO74PDB4V0	GFB2/IO109PDB4V0	K16	IO40NDB2V0	IO60NDB2V0
J4	GFA2/IO75PDB4V0	GFA2/IO110PDB4V0	K17	NC	IO58PDB2V0
J5	NC	IO112NPB4V0	K18	GND	GND
J6	NC	IO104PDB4V0	K19	NC	IO68NPB2V0
J7	NC	IO111PDB4V0	K20	IO41NDB2V0	IO61NDB2V0
J8	VCCIB4	VCCIB4	K21	GND	GND
J9	GND	GND	K22	IO42NDB2V0	IO56NDB2V0
J10	VCC	VCC	L1	IO73NDB4V0	IO108NDB4V0
J11	GND	GND	L2	VCCOSC	VCCOSC
J12	VCC	VCC	L3	VCCIB4	VCCIB4
J13	GND	GND	L4	XTAL2	XTAL2
J14	VCC	VCC	L5	GFC1/IO72PDB4V0	GFC1/IO107PDB4V0
J15	VCCIB2	VCCIB2	L6	VCCIB4	VCCIB4
J16	GCB2/IO40PDB2V0	GCB2/IO60PDB2V0	L7	GFB1/IO71PDB4V0	GFB1/IO106PDB4V0
J17	NC	IO58NDB2V0	L8	VCCIB4	VCCIB4
J18	IO38NDB2V0	IO57NDB2V0	L9	GND	GND
J19	IO39NDB2V0	IO59NDB2V0	L10	VCC	VCC
J20	GCC2/IO41PDB2V0	GCC2/IO61PDB2V0	L11	GND	GND
J21	NC	IO55PSB2V0	L12	VCC	VCC
J22	IO42PDB2V0	IO56PDB2V0	L13	GND	GND
K1	GFC2/IO73PDB4V0	GFC2/IO108PDB4V0	L14	VCC	VCC
K2	GND	GND	L15	VCCIB2	VCCIB2
K3	IO74NDB4V0	IO109NDB4V0	L16	IO48PDB2V0	IO70PDB2V0

🌜 Microsemi.

Package Pin Assignments

	FG676	FG676		FG676	
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function
C9	IO07PDB0V1	D19	GBC1/IO40PDB1V2	F3	IO121NDB4V0
C10	IO09PDB0V1	D20	GBA1/IO42PDB1V2	F4	GND
C11	IO13NDB0V2	D21	GND	F5	IO123NDB4V0
C12	IO13PDB0V2	D22	VCCPLB	F6	GAC2/IO123PDB4V0
C13	IO24PDB1V0	D23	GND	F7	GAA2/IO125PDB4V0
C14	IO26PDB1V0	D24	NC	F8	GAC0/IO03NDB0V0
C15	IO27NDB1V1	D25	NC	F9	GAC1/IO03PDB0V0
C16	IO27PDB1V1	D26	NC	F10	IO10NDB0V1
C17	IO35NDB1V2	E1	GND	F11	IO10PDB0V1
C18	IO35PDB1V2	E2	IO122NPB4V0	F12	IO14NDB0V2
C19	GBC0/IO40NDB1V2	E3	IO121PDB4V0	F13	IO23NDB1V0
C20	GBA0/IO42NDB1V2	E4	IO122PPB4V0	F14	IO23PDB1V0
C21	IO43NDB1V2	E5	IO00NDB0V0	F15	IO32NPB1V1
C22	IO43PDB1V2	E6	IO00PDB0V0	F16	IO34NDB1V1
C23	NC	E7	VCCIB0	F17	IO34PDB1V1
C24	GND	E8	IO05NDB0V1	F18	IO37PDB1V2
C25	NC	E9	IO05PDB0V1	F19	GBB1/IO41PDB1V2
C26	NC	E10	VCCIB0	F20	VCCIB2
D1	NC	E11	IO11NDB0V1	F21	IO47PPB2V0
D2	NC	E12	IO14PDB0V2	F22	IO44NDB2V0
D3	NC	E13	VCCIB0	F23	GND
D4	GND	E14	VCCIB1	F24	IO45NDB2V0
D5	GAA0/IO01NDB0V0	E15	IO29NDB1V1	F25	VCCIB2
D6	GND	E16	IO29PDB1V1	F26	NC
D7	IO04NDB0V0	E17	VCCIB1	G1	NC
D8	IO04PDB0V0	E18	IO37NDB1V2	G2	IO119PPB4V0
D9	GND	E19	GBB0/IO41NDB1V2	G3	IO120NDB4V0
D10	IO09NDB0V1	E20	VCCIB1	G4	IO120PDB4V0
D11	IO11PDB0V1	E21	VCOMPLB	G5	VCCIB4
D12	GND	E22	GBA2/IO44PDB2V0	G6	GAB2/IO124PDB4V0
D13	IO24NDB1V0	E23	IO48PPB2V0	G7	IO125NDB4V0
D14	IO26NDB1V0	E24	GBB2/IO45PDB2V0	G8	GND
D15	GND	E25	NC	G9	VCCIB0
D16	IO31NDB1V1	E26	GND	G10	IO08NDB0V1
D17	IO31PDB1V1	F1	NC	G11	IO08PDB0V1
D18	GND	F2	VCCIB4	G12	GND

Fusion Family of Mixed Signal FPGAs

Revision	Changes	Page
Advance v0.8 (continued)	This sentence was updated in the "No-Glitch MUX (NGMUX)" section to delete GLA: The GLMUXCFG[1:0] configuration bits determine the source of the CLK inputs (i.e., internal signal or GLC).	2-32
	In Table 2-13 • NGMUX Configuration and Selection Table, 10 and 11 were deleted.	2-32
	The method to enable sleep mode was updated for bit 0 in Table 2-16 • RTC Control/Status Register.	2-38
	S2 was changed to D2 in Figure 2-39 • Read Waveform (Pipe Mode, 32-bit access) for RD[31:0] was updated.	2-51
	The definitions for bits 2 and 3 were updated in Table 2-24 • Page Status Bit Definition.	2-52
	Figure 2-46 • FlashROM Timing Diagram was updated.	2-58
	Table 2-26 • FlashROM Access Time is new.	2-58
	Figure 2-55 • Write Access After Write onto Same Address, Figure 2-56 • Read Access After Write onto Same Address, and Figure 2-57 • Write Access After Read onto Same Address are new.	2-68– 2-70
	Table 2-31 • RAM4K9 and Table 2-32 • RAM512X18 were updated.	2-71, 2-72
	The VAREF and SAMPLE functions were updated in Table 2-36 • Analog Block Pin Description.	2-82
	The title of Figure 2-72 • Timing Diagram for Current Monitor Strobe was updated to add the word "positive."	2-91
	The "Gate Driver" section was updated to give information about the switching rate in High Current Drive mode.	2-94
	The "ADC Description" section was updated to include information about the SAMPLE and BUSY signals and the maximum frequencies for SYSCLK and ADCCLK. EQ 2 was updated to add parentheses around the entire expression in the denominator.	2-102
	Table 2-46 \cdot Analog Channel Specifications and Table 2-47 \cdot ADC Characteristics in Direct Input Mode were updated.	2-118, 2-121
	The note was removed from Table 2-55 • Analog Multiplexer Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$).	2-131
	Table 2-63 • Internal Temperature Monitor Control Truth Table is new.	2-132
	The "Cold-Sparing Support" section was updated to add information about cases where current draw can occur.	2-143
	Figure 2-104 • Solution 4 was updated.	2-147
	Table 2-75 • Fusion Standard I/O Standards—OUT_DRIVE Settings was updated.	2-153
	The "GNDA Ground (analog)" section and "GNDAQ Ground (analog quiet)" section were updated to add information about maximum differential voltage.	2-224
	The "V _{AREF} Analog Reference Voltage" section and "VPUMP Programming Supply Voltage" section were updated.	2-226
	The "V _{CCPLA/B} PLL Supply Voltage" section was updated to include information about the east and west PLLs.	2-225
	The V _{COMPLF} pin description was deleted.	N/A
	The "Axy Analog Input/Output" section was updated with information about grounding and floating the pin.	2-226