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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.
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FPGAs
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a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
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offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Device Architecture
RAM512X18 exhibits slightly different behavior from RAM4K9, as it has dedicated read and write ports.

WW and RW
These signals enable the RAM to be configured in one of the two allowable aspect ratios (Table 2-30).

WD and RD
These are the input and output data signals, and they are 18 bits wide. When a 512×9 aspect ratio is
used for write, WD[17:9] are unused and must be grounded. If this aspect ratio is used for read, then
RD[17:9] are undefined. 

WADDR and RADDR
These are read and write addresses, and they are nine bits wide. When the 256×18 aspect ratio is used
for write or read, WADDR[8] or RADDR[8] are unused and must be grounded.

WCLK and RCLK
These signals are the write and read clocks, respectively. They are both active high.

WEN and REN
These signals are the write and read enables, respectively. They are both active low by default. These
signals can be configured as active high.

RESET
This active low signal resets the output to zero, disables reads and/or writes from the SRAM block, and
clears the data hold registers when asserted. It does not reset the contents of the memory.

PIPE 
This signal is used to specify pipelined read on the output. A Low on PIPE indicates a nonpipelined read,
and the data appears on the output in the same clock cycle. A High indicates a pipelined read, and data
appears on the output in the next clock cycle.

Clocking
The dual-port SRAM blocks are only clocked on the rising edge. SmartGen allows falling-edge-triggered
clocks by adding inverters to the netlist, hence achieving dual-port SRAM blocks that are clocked on
either edge (rising or falling). For dual-port SRAM, each port can be clocked on either edge or by
separate clocks, by port. 

Fusion devices support inversion (bubble pushing) throughout the FPGA architecture, including the clock
input to the SRAM modules. Inversions added to the SRAM clock pin on the design schematic or in the
HDL code will be automatically accounted for during design compile without incurring additional delay in
the clock path.

The two-port SRAM can be clocked on the rising edge or falling edge of WCLK and RCLK. 

If negative-edge RAM and FIFO clocking is selected for memory macros, clock edge inversion
management (bubble pushing) is automatically used within the Fusion development tools, without
performance penalty. 

Table 2-30 • Aspect Ratio Settings for WW[1:0]

WW[1:0] RW[1:0] D×W

01 01 512×9

10 10 256×18

00, 11 00, 11 Reserved
2-61 Revision 6



Device Architecture
Terminology

Accuracy

The accuracy of Fusion Current Monitor is ±2 mV minimum plus 5% of the differential voltage at the
input. The input accuracy can be translated to error at the ADC output by using EQ 4. The 10 V/V gain is
the gain of the Current Monitor Circuit, as described in the "Current Monitor" section on page 2-86. For 8-
bit mode, N = 8, VAREF= 2.56 V, zero differential voltage between AV and AC, the Error (EADC) is equal to
2 LSBs.

EQ 4

where

N is the number of bits

VAREF is the Reference voltage

VAV is the voltage at AV pad

VAC is the voltage at AC pad

Figure 2-73 • Negative Current Monitor
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Fusion Family of Mixed Signal FPGAs
Analog-to-Digital Converter Block
At the heart of the Fusion analog system is a programmable Successive Approximation Register (SAR)
ADC. The ADC can support 8-, 10-, or 12-bit modes of operation. In 12-bit mode, the ADC can resolve
500 ksps. All results are MSB-justified in the ADC. The input to the ADC is a large 32:1 analog input
multiplexer. A simplified block diagram of the Analog Quads, analog input multiplexer, and ADC is shown
in Figure 2-79. The ADC offers multiple self-calibrating modes to ensure consistent high performance
both at power-up and during runtime. 

Figure 2-79 • ADC Block Diagram
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Fusion Family of Mixed Signal FPGAs
There are several popular ADC architectures, each with advantages and limitations. 
The analog-to-digital converter in Fusion devices is a switched-capacitor Successive Approximation
Register (SAR) ADC. It supports 8-, 10-, and 12-bit modes of operation with a cumulative sample rate up
to 600 k samples per second (ksps). Built-in bandgap circuitry offers 1% internal voltage reference
accuracy or an external reference voltage can be used.

As shown in Figure 2-81, a SAR ADC contains N capacitors with binary-weighted values.

To begin a conversion, all of the capacitors are quickly discharged. Then VIN is applied to all the
capacitors for a period of time (acquisition time) during which the capacitors are charged to a value very
close to VIN. Then all of the capacitors are switched to ground, and thus –VIN is applied across the
comparator. Now the conversion process begins. First, C is switched to VREF. Because of the binary
weighting of the capacitors, the voltage at the input of the comparator is then shown by EQ 11.

Voltage at input of comparator = –VIN + VREF / 2

EQ 11

If VIN is greater than VREF / 2, the output of the comparator is 1; otherwise, the comparator output is 0.
A register is clocked to retain this value as the MSB of the result. Next, if the MSB is 0, C is switched
back to ground; otherwise, it remains connected to VREF, and C / 2 is connected to VREF. The result at
the comparator input is now either –VIN + VREF / 4 or –VIN + 3 VREF / 4 (depending on the state of the
MSB), and the comparator output now indicates the value of the next most significant bit. This bit is
likewise registered, and the process continues for each subsequent bit until a conversion is completed.
The conversion process requires some acquisition time plus N + 1 ADC clock cycles to complete.

Figure 2-81 • Example SAR ADC Architecture
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Fusion Family of Mixed Signal FPGAs
The ADC can be powered down independently of the FPGA core, as an additional control or for power-
saving considerations, via the PWRDWN pin of the Analog Block. The PWRDWN pin controls only the
comparators in the ADC.

ADC Modes
The Fusion ADC can be configured to operate in 8-, 10-, or 12-bit modes, power-down after conversion,
and dynamic calibration. This is controlled by MODE[3:0], as defined in Table 2-41 on page 2-106.

The output of the ADC is the RESULT[11:0] signal. In 8-bit mode, the Most Significant 8 Bits
RESULT[11:4] are used as the ADC value and the Least Significant 4 Bits RESULT[3:0] are logical '0's.
In 10-bit mode, RESULT[11:2] are used the ADC value and RESULT[1:0] are logical 0s.

16 AV5

Analog Quad 517 AC5

18 AT5

19 AV6

Analog Quad 620 AC6

21 AT6

22 AV7

Analog Quad 723 AC7

24 AT7

25 AV8

Analog Quad 826 AC8

27 AT8

28 AV9

Analog Quad 929 AC9

30 AT9

31 Internal temperature monitor

Table 2-40 • Analog MUX Channels (continued)

Analog MUX Channel Signal Analog Quad Number

Table 2-41 • Mode Bits Function

Name Bits Function

MODE 3 0 – Internal calibration after every conversion; two ADCCLK cycles are used after the conversion.

1 – No calibration after every conversion

MODE 2 0 – Power-down after conversion

1 – No Power-down after conversion

MODE 1:0 00 – 10-bit

01 – 12-bit

10 – 8-bit

11 – Unused
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Fusion Family of Mixed Signal FPGAs
EQ 16 through EQ 18 can be used to calculate the acquisition time required for a given input. The STC
signal gives the number of sample periods in ADCCLK for the acquisition time of the desired signal. If the
actual acquisition time is higher than the STC value, the settling time error can affect the accuracy of the
ADC, because the sampling capacitor is only partially charged within the given sampling cycle. Example
acquisition times are given in Table 2-44 and Table 2-45. When controlling the sample time for the ADC
along with the use of the active bipolar prescaler, current monitor, or temperature monitor, the minimum
sample time(s) for each must be obeyed. EQ 19 can be used to determine the appropriate value of STC.

You can calculate the minimum actual acquisition time by using EQ 16:

VOUT = VIN(1 – e–t/RC)

EQ 16

For 0.5 LSB gain error, VOUT should be replaced with (VIN –(0.5 × LSB Value)):

(VIN – 0.5 × LSB Value) = VIN(1 – e–t/RC)

EQ 17

where VIN is the ADC reference voltage (VREF)

Solving EQ 17:

t = RC x ln (VIN / (0.5 x LSB Value))

EQ 18

where R = ZINAD + RSOURCE and C = CINAD.

Calculate the value of STC by using EQ 19.

tSAMPLE = (2 + STC) x (1 / ADCCLK) or tSAMPLE = (2 + STC) x (ADC Clock Period)

EQ 19

where ADCCLK = ADC clock frequency in MHz.

tSAMPLE = 0.449 µs from bit resolution in Table 2-44.

ADC Clock frequency = 10 MHz or a 100 ns period.

STC = (tSAMPLE / (1 / 10 MHz)) – 2 = 4.49 – 2 = 2.49. 

You must round up to 3 to accommodate the minimum sample time.

Sample Phase
A conversion is performed in three phases. In the first phase, the analog input voltage is sampled on the
input capacitor. This phase is called sample phase. During the sample phase, the output signals BUSY
and SAMPLE change from '0' to '1', indicating the ADC is busy and sampling the analog signal. The
sample time can be controlled by input signals STC[7:0]. The sample time can be calculated by EQ 20.
When controlling the sample time for the ADC along with the use of Prescaler or Current Monitor or
Temperature Monitor, the minimum sample time for each must be obeyed.

Table 2-44 • Acquisition Time Example with VAREF = 2.56 V

VIN = 2.56V, R = 4K (RSOURCE ~ 0), C = 18 pF

Resolution LSB Value (mV) Min. Sample/Hold Time for 0.5 LSB (µs)

8 10 0.449

10 2.5 0.549

12 0.625 0.649

Table 2-45 • Acquisition Time Example with VAREF = 3.3 V

VIN = 3.3V, R = 4K (RSOURCE ~ 0), C = 18 pF

Resolution LSB Value (mV) Min. Sample/Hold time for 0.5 LSB (µs)

8 12.891 0.449

10 3.223 0.549

12 0.806 0.649
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Device Architecture
Typical Performance Characteristics

Figure 2-94 • Temperature Error

Figure 2-95 • Effect of External Sensor Capacitance
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Device Architecture
Similarly,

Min. Output Voltage = (Max. Negative input offset) + (Input Voltage x Max. Negative Channel Gain)

= (–88 mV) + (5 V x 0.96) = 4.712 V

Calculating Accuracy for a Calibrated Analog Channel

Formula

For a given prescaler range, EQ 31 gives the output voltage.

Output Voltage = Channel Error in V + Input Voltage

EQ 31

where

Channel Error in V = Total Channel Error in LSBs x Equivalent voltage per LSB

Example

Input Voltage = 5 V

Chosen Prescaler range = 8 V range

Refer to Table 2-52 on page 2-123.

Max. Output Voltage = Max. Positive Channel Error in V + Input Voltage

Max. Positive Channel Error in V = (6 LSB) × (8 mV per LSB in 10-bit mode) = 48 mV

Max. Output Voltage = 48 mV + 5 V = 5.048 V

Similarly,

Min. Output Voltage = Max. Negative Channel Error in V + Input Voltage = (–48 mV) + 5 V = 4.952 V

Calculating LSBs from a Given Error Budget

Formula

For a given prescaler range,

LSB count = ± (Input Voltage × Required % error) / (Equivalent voltage per LSB)

Example

Input Voltage = 3.3 V

Required error margin= 1%

Refer to Table 2-52 on page 2-123.

Equivalent voltage per LSB = 16 mV for a 16V prescaler, with ADC in 10-bit mode

LSB Count = ± (5.0 V × 1%) / (0.016)

LSB Count = ± 3.125

Equivalent voltage per LSB = 8 mV for an 8 V prescaler, with ADC in 10-bit mode

LSB Count = ± (5.0 V × 1%) / (0.008)

LSB Count = ± 6.25

The 8 V prescaler satisfies the calculated LSB count accuracy requirement (see Table 2-52 on
page 2-123).
2-125 Revision 6



Device Architecture
Table 2-88 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and 
Industrial Conditions
Applicable to Standard I/Os

I/O Standard
Drive 

Strength
Slew 
Rate

VIL VIH VOL VOH IOL IOH

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

3.3 V LVTTL /
3.3 V LVCMOS 

8 mA  High   –0.3   0.8   2   3.6   0.4   2.4  8 8

 2.5 V LVCMOS 8 mA  High   –0.3   0.7   1.7   3.6   0.7   1.7  8 8

 1.8 V LVCMOS 4 mA  High   –0.3   0.35 * VCCI  0.65 * VCCI  3.6   0.45   VCCI – 0.45  4 4

 1.5 V LVCMOS 2 mA  High   –0.3   0.35 * VCCI  0.65 * VCCI  3.6   0.25 * VCCI  0.75 * VCCI 2 2

Note: Currents are measured at 85°C junction temperature.

Table 2-89 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial 
Conditions
Applicable to All I/O Bank Types

DC I/O Standards

Commercial1 Industrial2

IIL3 IIH4 IIL3 IIH4

µA µA µA µA

3.3 V LVTTL / 3.3 V LVCMOS  10  10  15  15 

 2.5 V LVCMOS  10  10  15  15 

 1.8 V LVCMOS  10  10  15  15 

 1.5 V LVCMOS  10  10  15  15 

 3.3 V PCI  10  10  15  15 

 3.3 V PCI-X  10  10  15  15 

 3.3 V GTL  10  10  15  15 

 2.5 V GTL  10  10  15  15 

 3.3 V GTL+  10  10  15  15 

 2.5 V GTL+  10  10  15  15 

 HSTL (I)  10  10  15  15 

 HSTL (II)  10  10  15  15 

 SSTL2 (I)  10  10  15  15 

 SSTL2 (II)  10  10  15  15 

 SSTL3 (I)  10  10  15  15 

 SSTL3 (II)  10  10  15  15 

Notes:

1. Commercial range (0°C < TJ < 85°C)
2. Industrial range (–40°C < TJ < 100°C)

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
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Device Architecture
Table 2-105 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 3.0 V
Applicable to Pro I/Os

Drive 
Strength

 
Speed 
Grade tDOUT tDP tDIN tPY tPYS

tEOU

T tZL tZH tLZ tHZ tZLS tZHS

 
Units

4 mA  Std. 0.66 7.88 0.04 1.20 1.57 0.43 8.03 6.70 2.69 2.59 10.26 8.94  ns 

 –1 0.56 6.71 0.04 1.02 1.33 0.36 6.83 5.70 2.29 2.20 8.73 7.60  ns 

 –2 0.49 5.89 0.03 0.90 1.17 0.32 6.00 5.01 2.01 1.93 7.67 6.67  ns 

8 mA  Std. 0.66 5.08 0.04 1.20 1.57 0.43 5.17 4.14 3.05 3.21 7.41 6.38  ns 

 –1 0.56 4.32 0.04 1.02 1.33 0.36 4.40 3.52 2.59 2.73 6.30 5.43  ns 

 –2 0.49 3.79 0.03 0.90 1.17 0.32 3.86 3.09 2.28 2.40 5.53 4.76  ns 

12 mA  Std. 0.66 3.67 0.04 1.20 1.57 0.43 3.74 2.87 3.28 3.61 5.97 5.11  ns 

 –1 0.56 3.12 0.04 1.02 1.33 0.36 3.18 2.44 2.79 3.07 5.08 4.34  ns 

 –2 0.49 2.74 0.03 0.90 1.17 0.32 2.79 2.14 2.45 2.70 4.46 3.81  ns 

16 mA  Std. 0.66 3.46 0.04 1.20 1.57 0.43 3.53 2.61 3.33 3.72 5.76 4.84  ns 

 –1 0.56 2.95 0.04 1.02 1.33 0.36 3.00 2.22 2.83 3.17 4.90 4.12  ns 

 –2 0.49 2.59 0.03 0.90 1.17 0.32 2.63 1.95 2.49 2.78 4.30 3.62  ns 

24 mA  Std. 0.66 3.21 0.04 1.20 1.57 0.43 3.27 2.16 3.39 4.13 5.50 4.39  ns 

 –1 0.56 2.73 0.04 1.02 1.33 0.36 2.78 1.83 2.88 3.51 4.68 3.74  ns 

 –2 0.49 2.39 0.03 0.90 1.17 0.32 2.44 1.61 2.53 3.08 4.11 3.28  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Table 2-109 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V
Applicable to Standard I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  Units 

2 mA  Std. 0.66 7.07 0.04 1.00 0.43 7.20 6.23 2.07 2.15  ns 

 –1 0.56 6.01 0.04 0.85 0.36 6.12 5.30 1.76 1.83  ns 

 –2 2 0.49 5.28 0.03 0.75 0.32 5.37 4.65 1.55 1.60  ns 

4 mA  Std. 0.66 7.07 0.04 1.00 0.43 7.20 6.23 2.07 2.15  ns 

 –1 0.56 6.01 0.04 0.85 0.36 6.12 5.30 1.76 1.83  ns 

 –2 0.49 5.28 0.03 0.75 0.32 5.37 4.65 1.55 1.60  ns 

6 mA  Std. 0.66 4.41 0.04 1.00 0.43 4.49 3.75 2.39 2.69  ns 

 –1 0.56 3.75 0.04 0.85 0.36 3.82 3.19 2.04 2.29  ns 

 –2 0.49 3.29 0.03 0.75 0.32 3.36 2.80 1.79 2.01  ns 

8 mA  Std. 0.66 4.41 0.04 1.00 0.43 4.49 3.75 2.39 2.69  ns 

 –1 0.56 3.75 0.04 0.85 0.36 3.82 3.19 2.04 2.29  ns 

 –2 0.49 3.29 0.03 0.75 0.32 3.36 2.80 1.79 2.01  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Table 2-114 • 2.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

4 mA  Std. 0.66 11.40 0.04 1.31 0.43 11.22 11.40 2.68 2.20 13.45 13.63  ns 

 –1 0.56 9.69 0.04 1.11 0.36 9.54 9.69 2.28 1.88 11.44 11.60  ns 

 –2 0.49 8.51 0.03 0.98 0.32 8.38 8.51 2.00 1.65 10.05 10.18  ns 

8 mA  Std. 0.66 7.96 0.04 1.31 0.43 8.11 7.81 3.05 2.89 10.34 10.05  ns 

 –1 0.56 6.77 0.04 1.11 0.36 6.90 6.65 2.59 2.46 8.80 8.55  ns 

 –2 0.49 5.94 0.03 0.98 0.32 6.05 5.84 2.28 2.16 7.72 7.50  ns 

12 mA  Std. 0.66 6.18 0.04 1.31 0.43 6.29 5.92 3.30 3.32 8.53 8.15  ns 

 –1 0.56 5.26 0.04 1.11 0.36 5.35 5.03 2.81 2.83 7.26 6.94  ns 

 –2 0.49 4.61 0.03 0.98 0.32 4.70 4.42 2.47 2.48 6.37 6.09  ns 

16 mA  Std. 0.66 6.18 0.04 1.31 0.43 6.29 5.92 3.30 3.32 8.53 8.15  ns 

 –1 0.56 5.26 0.04 1.11 0.36 5.35 5.03 2.81 2.83 7.26 6.94  ns 

 –2 0.49 4.61 0.03 0.98 0.32 4.70 4.42 2.47 2.48 6.37 6.09  ns 

24 mA  Std. 0.66 6.18 0.04 1.31 0.43 6.29 5.92 3.30 3.32 8.53 8.15  ns 

 –1 0.56 5.26 0.04 1.11 0.36 5.35 5.03 2.81 2.83 7.26 6.94  ns 

 –2 0.49 4.61 0.03 0.98 0.32 4.70 4.42 2.47 2.48 6.37 6.09  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics

Figure 2-143 • Input DDR Timing Diagram
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Table 2-180 • Input DDR Propagation Delays
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tDDRICLKQ1 Clock-to-Out Out_QR for Input DDR 0.39 0.44 0.52 ns

tDDRICLKQ2 Clock-to-Out Out_QF for Input DDR 0.27 0.31 0.37 ns

tDDRISUD Data Setup for Input DDR 0.28 0.32 0.38 ns

tDDRIHD Data Hold for Input DDR 0.00 0.00 0.00 ns

tDDRICLR2Q1 Asynchronous Clear-to-Out Out_QR for Input DDR 0.57 0.65 0.76 ns

tDDRICLR2Q2 Asynchronous Clear-to-Out Out_QF for Input DDR 0.46 0.53 0.62 ns

tDDRIREMCLR Asynchronous Clear Removal Time for Input DDR 0.00 0.00 0.00 ns

tDDRIRECCLR Asynchronous Clear Recovery Time for Input DDR 0.22 0.25 0.30 ns

tDDRIWCLR Asynchronous Clear Minimum Pulse Width for Input DDR 0.22 0.25 0.30 ns

tDDRICKMPWH Clock Minimum Pulse Width High for Input DDR 0.36 0.41 0.48 ns

tDDRICKMPWL Clock Minimum Pulse Width Low for Input DDR 0.32 0.37 0.43 ns

FDDRIMAX Maximum Frequency for Input DDR 1404 1232 1048 MHz

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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ATRTNx Temperature Monitor Return

AT returns are the returns for the temperature sensors. The cathode terminal of the external diodes
should be connected to these pins. There is one analog return pin for every two Analog Quads. The x in
the ATRTNx designator indicates the quad pairing (x = 0 for AQ1 and AQ2, x = 1 for AQ2 and AQ3, ...,
x = 4 for AQ8 and AQ9). The signals that drive these pins are called out as ATRETURNxy in the software
(where x and y refer to the quads that share the return signal). ATRTN is internally connected to ground.
It can be left floating when it is unused. The maximum capacitance allowed across the AT pins is 500 pF.

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the
global network (spines). Additionally, the global I/Os can be used as Pro I/Os since they have identical
capabilities. Unused GL pins are configured as inputs with pull-up resistors. See more detailed
descriptions of global I/O connectivity in the "Clock Conditioning Circuits" section on page 2-22.

Refer to the "User I/O Naming Convention" section on page 2-158 for a description of naming of global
pins.

JTAG Pins
Fusion devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any
voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate,
even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the Fusion
part must be supplied to allow JTAG signals to transition the Fusion device.

Isolating the JTAG power supply in a separate I/O bank gives greater flexibility with supply selection and
simplifies power supply and PCB design. If the JTAG interface is neither used nor planned to be used,
the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-
up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND or VJTAG through
a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired
state.

Note that to operate at all VJTAG voltages, 500  to 1 k will satisfy the requirements. Refer to
Table 2-183 for more information.

TDI Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor
on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage. 

Table 2-183 • Recommended Tie-Off Values for the TCK and TRST Pins

VJTAG Tie-Off Resistance2, 3

VJTAG at 3.3 V 200  to 1 k 

VJTAG at 2.5 V 200  to 1 k

VJTAG at 1.8 V 500  to 1 k

VJTAG at 1.5 V 500  to 1 k

Notes:

1. Equivalent parallel resistance if more than one device is on JTAG chain.
2. The TCK pin can be pulled up/down.

3. The TRST pin can only be pulled down.
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TMS Test Mode Select

The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an
internal weak pull-up resistor on the TMS pin. 

TRST Boundary Scan Reset Pin

The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan
circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-
down resistor could be included to ensure the TAP is held in reset mode. The resistor values must be
chosen from Table 2-183 and must satisfy the parallel resistance value requirement. The values in
Table 2-183 correspond to the resistor recommended when a single device is used and to the equivalent
parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entering an undesired JTAG state. In such
cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500  to 1 k will satisfy the requirements.

Special Function Pins

NC No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be
left floating with no effect on the operation of the device.

DC Don't Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

NCAP Negative Capacitor

Negative Capacitor is where the negative terminal of the charge pump capacitor is connected. A
capacitor, with a 2.2 µF recommended value, is required to connect between PCAP and NCAP.

PCAP Positive Capacitor

Positive Capacitor is where the positive terminal of the charge pump capacitor is connected. A capacitor,
with a 2.2 µF recommended value, is required to connect between PCAP and NCAP.

PUB Push Button

Push button is the connection for the external momentary switch used to turn on the 1.5 V voltage
regulator and can be floating if not used.

PTBASE Pass Transistor Base

Pass Transistor Base is the control signal of the voltage regulator. This pin should be connected to the
base of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if
not used.

PTEM Pass Transistor Emitter

Pass Transistor Emitter is the feedback input of the voltage regulator.

This pin should be connected to the emitter of the external pass transistor used with the 1.5 V internal
voltage regulator and can be floating if not used.

XTAL1 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or
external clock input. When using an external crystal or ceramic oscillator, external capacitors are also
recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the
case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the
XTAL2 pin should be left floating.
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XTAL2 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or
external clock input. When using an external crystal or ceramic oscillator, external capacitors are also
recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the
case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the
XTAL2 pin should be left floating.

Security
Fusion devices have a built-in 128-bit AES decryption core. The decryption core facilitates highly secure,
in-system programming of the FPGA core array fabric and the FlashROM. The FlashROM and the FPGA
core fabric can be programmed independently from each other, allowing the FlashROM to be updated
without the need for change to the FPGA core fabric. The AES master key is stored in on-chip nonvolatile
memory (flash). The AES master key can be preloaded into parts in a security-protected programming
environment (such as the Microsemi in-house programming center), and then "blank" parts can be
shipped to an untrusted programming or manufacturing center for final personalization with an AES-
encrypted bitstream. Late stage product changes or personalization can be implemented easily and with
high level security by simply sending a STAPL file with AES-encrypted data. Highly secure remote field
updates over public networks (such as the Internet) are possible by sending and programming a STAPL
file with AES-encrypted data. For more information, refer to the Fusion Security application note.

128-Bit AES Decryption
The 128-bit AES standard (FIPS-197) block cipher is the National Institute of Standards and Technology
(NIST) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to protect
sensitive government information well into the 21st century. It replaces the aging DES, which NIST
adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect
sensitive, unclassified information. The 128-bit AES standard has 3.4 × 1038 possible 128-bit key
variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text
using exhaustive techniques. Keys are stored (protected with security) in Fusion devices in nonvolatile
flash memory. All programming files sent to the device can be authenticated by the part prior to
programming to ensure that bad programming data is not loaded into the part that may possibly damage
it. All programming verification is performed on-chip, ensuring that the contents of Fusion devices remain
as secure as possible.

AES decryption can also be used on the 1,024-bit FlashROM to allow for remote updates of the
FlashROM contents. This allows for easy support of subscription model products and protects them with
measures designed to provide the highest level of security available. See the application note Fusion
Security for more details.

AES for Flash Memory
AES decryption can also be used on the flash memory blocks. This provides the best available security
during update of the flash memory blocks. During runtime, the encrypted data can be clocked in via the
JTAG interface. The data can be passed through the internal AES decryption engine, and the decrypted
data can then be stored in the flash memory block.

Programming 
Programming can be performed using various programming tools, such as Silicon Sculptor II (BP Micro
Systems) or FlashPro3 (Microsemi). 

The user can generate STP programming files from the Designer software and can use these files to
program a device.

Fusion devices can be programmed in-system. During programming, VCCOSC is needed in order to
power the internal 100 MHz oscillator. This oscillator is used as a source for the 20 MHz oscillator that is
used to drive the charge pump for programming.
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Table 3-11 • AFS090 Quiescent Supply Current Characteristics

Parameter Description Conditions Temp. Min Typ Max Unit

ICC1 1.5 V quiescent current Operational standby4, 
VCC = 1.575 V

TJ = 25°C 5 7.5 mA

TJ = 85°C 6.5 20 mA

TJ = 100°C 14 48 mA

Standby mode5 or Sleep
mode6, VCC = 0 V

0 0 µA

ICC332 3.3 V analog supplies
current

Operational standby4, 
VCC33 = 3.63 V

TJ = 25°C 9.8 12 mA

TJ = 85°C 9.8 12 mA

TJ = 100°C 10.7 15 mA

Operational standby, only
Analog Quad and –3.3 V
output ON, VCC33 = 3.63 V

TJ = 25°C 0.30 2 mA

TJ = 85°C 0.30 2 mA

TJ = 100°C 0.45 2 mA

Standby mode5, 
VCC33 = 3.63 V

TJ = 25°C 2.9 2.9 mA

TJ = 85°C 2.9 3.0 mA

TJ = 100°C 3.5 6 mA

Sleep mode6, VCC33 = 3.63 V TJ = 25°C 17 18 µA

TJ = 85°C 18 20 µA

TJ = 100°C 24 25 µA

ICCI3 I/O quiescent current Operational standby6, 
VCCIx = 3.63 V

TJ = 25°C 260 437 µA

TJ = 85°C 260 437 µA

TJ = 100°C 260 437 µA

IJTAG JTAG I/O quiescent current Operational standby4, 
VJTAG = 3.63 V

TJ = 25°C 80 100 µA

TJ = 85°C 80 100 µA

TJ = 100°C 80 100 µA

Standby mode5 or Sleep
mode6, VJTAG = 0 V

0 0 µA

IPP Programming supply
current

Non-programming mode,
VPUMP = 3.63 V

TJ = 25°C 37 80 µA

TJ = 85°C 37 80 µA

TJ = 100°C 80 100 µA

Standby mode5 or Sleep
mode6, VPUMP = 0 V

0 0 µA

Notes:

1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, and ICCI2.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.
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DC and Power Characteristics
Differential 

LVDS – 2.5 7.74 88.92

LVPECL – 3.3 19.54 166.52

Applicable to Standard I/O Banks

Single-Ended 

3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 431.08

2.5 V LVCMOS 35 2.5 – 247.36

1.8 V LVCMOS 35 1.8 – 128.46

1.5 V LVCMOS (JESD8-11) 35 1.5 – 89.46

Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings1  (continued)

CLOAD (pF) VCCI (V) 
Static Power
PDC8 (mW)2 

Dynamic Power
PAC10 (µW/MHz)3

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.
2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.
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Package Pin Assignments
H3 XTAL2 XTAL2 XTAL2 XTAL2

H4 XTAL1 XTAL1 XTAL1 XTAL1

H5 GNDOSC GNDOSC GNDOSC GNDOSC

H6 VCCOSC VCCOSC VCCOSC VCCOSC

H7 VCC VCC VCC VCC

H8 GND GND GND GND

H9 VCC VCC VCC VCC

H10 GND GND GND GND

H11 GDC0/IO38NDB1V0 IO51NDB1V0 IO47NDB2V0 IO69NDB2V0

H12 GDC1/IO38PDB1V0 IO51PDB1V0 IO47PDB2V0 IO69PDB2V0

H13 GDB1/IO39PDB1V0 GCA1/IO49PDB1V0 GCA1/IO45PDB2V0 GCA1/IO64PDB2V0

H14 GDB0/IO39NDB1V0 GCA0/IO49NDB1V0 GCA0/IO45NDB2V0 GCA0/IO64NDB2V0

H15 GCA0/IO36NDB1V0 GCB0/IO48NDB1V0 GCB0/IO44NDB2V0 GCB0/IO63NDB2V0

H16 GCA1/IO36PDB1V0 GCB1/IO48PDB1V0 GCB1/IO44PDB2V0 GCB1/IO63PDB2V0

J1 GEA0/IO44NDB3V0 GFA0/IO66NDB3V0 GFA0/IO70NDB4V0 GFA0/IO105NDB4V0

J2 GEA1/IO44PDB3V0 GFA1/IO66PDB3V0 GFA1/IO70PDB4V0 GFA1/IO105PDB4V0

J3 IO43NDB3V0 GFB0/IO67NDB3V0 GFB0/IO71NDB4V0 GFB0/IO106NDB4V0

J4 GEC2/IO43PDB3V0 GFB1/IO67PDB3V0 GFB1/IO71PDB4V0 GFB1/IO106PDB4V0

J5 NC GFC0/IO68NDB3V0 GFC0/IO72NDB4V0 GFC0/IO107NDB4V0

J6 NC GFC1/IO68PDB3V0 GFC1/IO72PDB4V0 GFC1/IO107PDB4V0

J7 GND GND GND GND

J8 VCC VCC VCC VCC

J9 GND GND GND GND

J10 VCC VCC VCC VCC

J11 GDC2/IO41NPB1V0 IO56NPB1V0 IO56NPB2V0 IO83NPB2V0

J12 NC GDB0/IO53NPB1V0 GDB0/IO53NPB2V0 GDB0/IO80NPB2V0

J13 NC GDA1/IO54PDB1V0 GDA1/IO54PDB2V0 GDA1/IO81PDB2V0

J14 GDA0/IO40PDB1V0 GDC1/IO52PPB1V0 GDC1/IO52PPB2V0 GDC1/IO79PPB2V0

J15 NC IO50NPB1V0 IO51NSB2V0 IO77NSB2V0

J16 GDA2/IO40NDB1V0 GDC0/IO52NPB1V0 GDC0/IO52NPB2V0 GDC0/IO79NPB2V0

K1 NC IO65NPB3V0 IO67NPB4V0 IO92NPB4V0

K2 VCCIB3 VCCIB3 VCCIB4 VCCIB4

K3 NC IO65PPB3V0 IO67PPB4V0 IO92PPB4V0

K4 NC IO64PDB3V0 IO65PDB4V0 IO96PDB4V0

K5 GND GND GND GND

K6 NC IO64NDB3V0 IO65NDB4V0 IO96NDB4V0

K7 VCC VCC VCC VCC

K8 GND GND GND GND

FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function
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v2.0, Revision 1
(continued)

The data in the 2.5 V LCMOS and LVCMOS 2.5 V / 5.0 V rows were updated in
Table 2-75 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance
Capabilities. 

2-143

In Table 2-78 • Fusion Standard I/O Standards—OUT_DRIVE Settings, LVCMOS
1.5 V, for OUT_DRIVE 2, was changed from a dash to a check mark.

2-152

The "VCC15A Analog Power Supply (1.5 V)" definition was changed from "A 1.5 V
analog power supply input should be used to provide this input" to "1.5 V clean
analog power supply input for use by the 1.5 V portion of the analog circuitry."

2-223

In the "VCC33PMP Analog Power Supply (3.3 V)" pin description, the following text
was changed from "VCC33PMP should be powered up before or simultaneously
with VCC33A" to "VCC33PMP should be powered up simultaneously with or after
VCC33A."

2-223

The "VCCOSC Oscillator Power Supply (3.3 V)" section was updated to include
information about when to power the pin.

2-223

In the "128-Bit AES Decryption" section, FIPS-192 was incorrect and changed to
FIPS-197.

2-228

The note in Table 2-84 • Fusion Standard and Advanced I/O Attributes vs. I/O
Standard Applications was updated.

2-156

For 1.5 V LVCMOS, the VIL and VIH parameters, 0.30 * VCCI was changed to 0.35 *
VCCI and 0.70 * VCCI was changed to 0.65 * VCCI in Table 2-86 • Summary of
Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
Industrial Conditions, Table 2-87 • Summary of Maximum and Minimum DC Input
and Output Levels Applicable to Commercial and Industrial Conditions, and
Table 2-88 • Summary of Maximum and Minimum DC Input and Output Levels
Applicable to Commercial and Industrial Conditions. 

In Table 2-87 • Summary of Maximum and Minimum DC Input and Output Levels
Applicable to Commercial and Industrial Conditions, the VIH max column was
updated.

2-164 to 
2-165 

Table 2-89 • Summary of Maximum and Minimum DC Input Levels Applicable to
Commercial and Industrial Conditions was updated to include notes 3 and 4. The
temperature ranges were also updated in notes 1 and 2.

2-165

The titles in Table 2-92 • Summary of I/O Timing Characteristics – Software Default
Settings to Table 2-94 • Summary of I/O Timing Characteristics – Software Default
Settings were updated to "VCCI = I/O Standard Dependent."

2-167 to 
2-168

Below Table 2-98 • I/O Short Currents IOSH/IOSL, the paragraph was updated to
change 110°C to 100°C and three months was changed to six months.

2-172

Table 2-99 • Short Current Event Duration before Failure was updated to remove
110°C data. 

2-174

In Table 2-101 • I/O Input Rise Time, Fall Time, and Related I/O Reliability,
LVTTL/LVCMOS rows were changed from 110°C to 100°C.

2-174

VCC33PMP was added to Table 3-1 • Absolute Maximum Ratings. In addition,
conditions for AV, AC, AG, and AT were also updated.

3-1

VCC33PMP was added to Table 3-2 • Recommended Operating Conditions1. In
addition, conditions for AV, AC, AG, and AT were also updated.

3-3

Table 3-5 • FPGA Programming, Storage, and Operating Limits was updated to
include new data and the temperature ranges were changed. The notes were
removed from the table.

3-5
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