

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

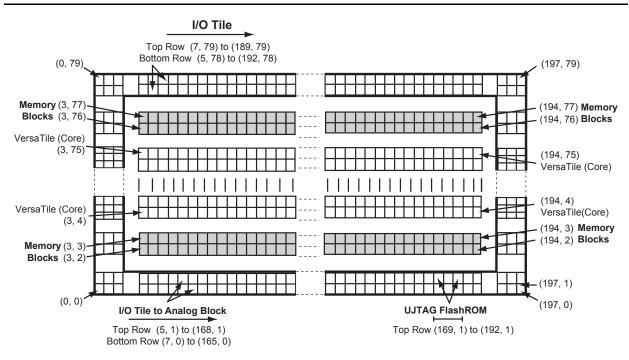
Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	119
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1afs1500-fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Array Coordinates

During many place-and-route operations in the Microsemi Designer software tool, it is possible to set constraints that require array coordinates. Table 2-3 is provided as a reference. The array coordinates are measured from the lower left (0, 0). They can be used in region constraints for specific logic groups/blocks, designated by a wildcard, and can contain core cells, memories, and I/Os.


Table 2-3 provides array coordinates of core cells and memory blocks.

I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed because there is not a one-to-one correspondence between I/O cells and edge core cells. In addition, the I/O coordinate system changes depending on the die/package combination. It is not listed in Table 2-3. The Designer ChipPlanner tool provides array coordinates of all I/O locations. I/O and cell coordinates are used for placement constraints. However, I/O placement is easier by package pin assignment.

Figure 2-7 illustrates the array coordinates of an AFS600 device. For more information on how to use array coordinates for region/placement constraints, see the *Designer User's Guide* or online help (available in the software) for Fusion software tools.

Table 2-3 • Array Coordinates

		Vers	saTiles		Memor	y Rows	All		
Device	М	in.	M	ax.	Bottom	Тор	Min.	Max.	
	х	у	х	у	(x, y)	(x, y)	(x, y)	(x, y)	
AFS090	3	2	98	25	None	(3, 26)	(0, 0)	(101, 29)	
AFS250	3	2	130	49	None	(3, 50)	(0, 0)	(133, 53)	
AFS600	3	4	194	75	(3, 2)	(3, 76)	(0, 0)	(197, 79)	
AFS1500	3	4	322	123	(3, 2)	(3, 124)	(0, 0)	(325, 129)	

Note: The vertical I/O tile coordinates are not shown. West side coordinates are {(0, 2) to (2, 2)} to {(0, 77) to (2, 77)}; east side coordinates are {(195, 2) to (197, 2)} to {(195, 77) to (197, 77)}.

Figure 2-7 • Array Coordinates for AFS600

2-7 Revision 6

Global Resource Characteristics

AFS600 VersaNet Topology

Clock delays are device-specific. Figure 2-15 is an example of a global tree used for clock routing. The global tree presented in Figure 2-15 is driven by a CCC located on the west side of the AFS600 device. It is used to drive all D-flip-flops in the device.

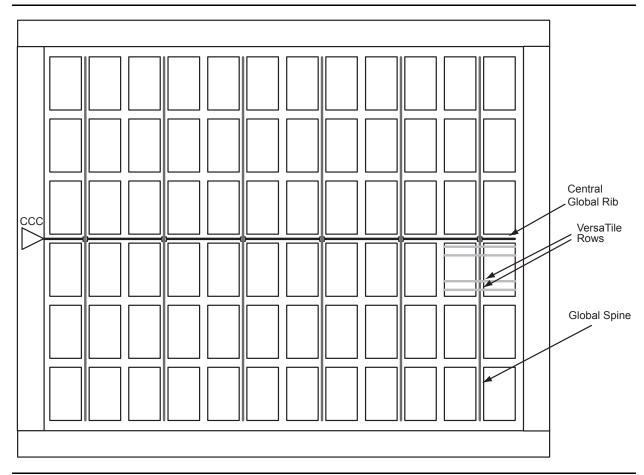


Figure 2-15 • Example of Global Tree Use in an AFS600 Device for Clock Routing

2-15 Revision 6

RAM4K9 Description

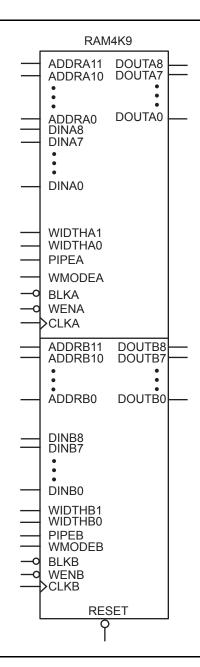


Figure 2-48 • RAM4K9

2-57 Revision 6

RAM512X18 Description

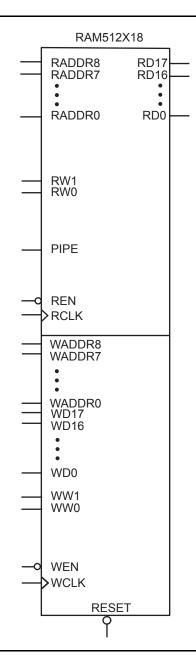


Figure 2-49 • RAM512X18

The following signals are used to configure the FIFO4K18 memory element.

WW and RW

These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 2-33).

Table 2-33 • Aspect Ratio Settings for WW[2:0]

WW2, WW1, WW0	RW2, RW1, RW0	D×W
000	000	4k×1
001	001	2k×2
010	010	1k×4
011	011	512×9
100	100	256×18
101, 110, 111	101, 110, 111	Reserved

WBLK and RBLK

These signals are active low and will enable the respective ports when Low. When the RBLK signal is High, the corresponding port's outputs hold the previous value.

WEN and REN

Read and write enables. WEN is active low and REN is active high by default. These signals can be configured as active high or low.

WCLK and RCLK

These are the clock signals for the synchronous read and write operations. These can be driven independently or with the same driver.

RPIPE

This signal is used to specify pipelined read on the output. A Low on RPIPE indicates a nonpipelined read, and the data appears on the output in the same clock cycle. A High indicates a pipelined read, and data appears on the output in the next clock cycle.

RESET

This active low signal resets the output to zero when asserted. It resets the FIFO counters. It also sets all the RD pins Low, the FULL and AFULL pins Low, and the EMPTY and AEMPTY pins High (Table 2-34).

Table 2-34 • Input Data Signal Usage for Different Aspect Ratios

D×W	WD/RD Unused
4k×1	WD[17:1], RD[17:1]
2k×2	WD[17:2], RD[17:2]
1k×4	WD[17:4], RD[17:4]
512×9	WD[17:9], RD[17:9]
256×18	-

WD

This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data width less than 18 is specified, unused higher-order signals must be grounded (Table 2-34).

RD

This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD bus, high-order bits become unusable if the data width is less than 18. The output data on unused pins is undefined (Table 2-34).

2-69 Revision 6

The rate at which the gate voltage of the external MOSFET slews is determined by the current, I_g , sourced or sunk by the AG pin and the gate-to-source capacitance, C_{GS} , of the external MOSFET. As an approximation, the slew rate is given by EQ 6.

$$dv/dt = I_g / C_{GS}$$

EQ6

 C_{GS} is not a fixed capacitance but, depending on the circuitry connected to its drain terminal, can vary significantly during the course of a turn-on or turn-off transient. Thus, EQ 6 on page 2-91 can only be used for a first-order estimate of the switching speed of the external MOSFET.

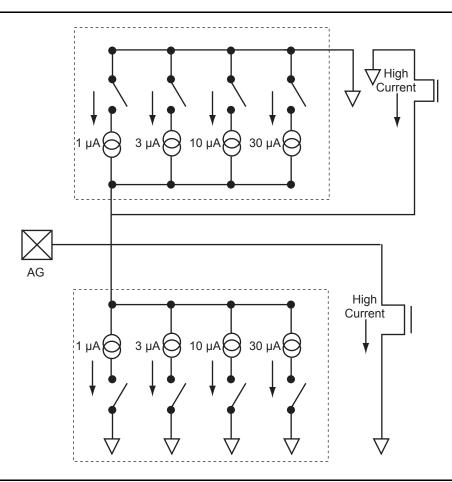


Figure 2-75 • Gate Driver Example

2-91 Revision 6

The diode's voltage is measured at each current level and the temperature is calculated based on EQ 7.

$$V_{\text{TMSLO}} - V_{\text{TMSHI}} = n \frac{kT}{q} \left(\ln \frac{I_{\text{TMSLO}}}{I_{\text{TMSHI}}} \right)$$

EQ7

where

 I_{TMSLO} is the current when the Temperature Strobe is Low, typically 100 μA

 I_{TMSHI} is the current when the Temperature Strobe is High, typically 10 μ A

V_{TMSLO} is diode voltage while Temperature Strobe is Low

*V*_{TMSHI} is diode voltage while Temperature Strobe is High

n is the non-ideality factor of the diode-connected transistor. It is typically 1.004 for the Microsemi-recommended transistor type 2N3904.

 $K = 1.3806 \times 10^{-23} \text{ J/K}$ is the Boltzman constant

 $Q = 1.602 \times 10^{-19} C$ is the charge of a proton

When $I_{TMSLO} / I_{TMSHI} = 10$, the equation can be simplified as shown in EQ 8.

$$\Delta V = V_{\text{TMSLO}} - V_{\text{TMSHI}} = 1.986 \times 10^{-4} nT$$

EQ8

In the Fusion TMB, the ideality factor n for 2N3904 is 1.004 and ΔV is amplified 12.5 times by an internal amplifier; hence the voltage before entering the ADC is as given in EQ 9.

$$V_{ADC} = \Delta V \times 12.5 = 2.5 \text{ mV}/(K \times T)$$

EQ9

This means the temperature to voltage relationship is 2.5 mV per degree Kelvin. The unique design of Fusion has made the Temperature Monitor System simple for the user. When the 10-bit mode ADC is used, each LSB represents 1 degree Kelvin, as shown in EQ 10. That is, e. 25°C is equal to 293°K and is represented by decimal 293 counts from the ADC.

$$1K = 2.5 \text{ mV} \times \frac{2^{10}}{2.56 \text{ V}} = 1 \text{ LSB}$$

EQ 10

If 8-bit mode is used for the ADC resolution, each LSB represents 4 degrees Kelvin; however, the resolution remains as 1 degree Kelvin per LSB, even for 12-bit mode, due to the Temperature Monitor design. An example of the temperature data format for 10-bit mode is shown in Table 2-38.

Table 2-38 • Temperature Data Format

Temperature	Temperature (K)	Digital Output (ADC 10-bit mode)
–40°C	233	00 1110 1001
–20°C	253	00 1111 1101
0°C	273	01 0001 0001
1°C	274	01 0001 0010
10 °C	283	01 0001 1011
25°C	298	01 0010 1010
50 °C	323	01 0100 0011
85 °C	358	01 0110 0110

EQ 16 through EQ 18 can be used to calculate the acquisition time required for a given input. The STC signal gives the number of sample periods in ADCCLK for the acquisition time of the desired signal. If the actual acquisition time is higher than the STC value, the settling time error can affect the accuracy of the ADC, because the sampling capacitor is only partially charged within the given sampling cycle. Example acquisition times are given in Table 2-44 and Table 2-45. When controlling the sample time for the ADC along with the use of the active bipolar prescaler, current monitor, or temperature monitor, the minimum sample time(s) for each must be obeyed. EQ 19 can be used to determine the appropriate value of STC.

$$VOUT = VIN(1 - e^{-t/RC})$$

EQ 16

For 0.5 LSB gain error, VOUT should be replaced with (VIN –(0.5 × LSB Value)):

You can calculate the minimum actual acquisition time by using EQ 16:

$$(VIN - 0.5 \times LSB \ Value) = VIN(1 - e^{-t/RC})$$

EQ 17

where VIN is the ADC reference voltage (VREF)

Solving EQ 17:

$$t = RC \times In (VIN / (0.5 \times LSB \ Value))$$

EQ 18

where $R = Z_{INAD} + R_{SOURCE}$ and $C = C_{INAD}$.

Calculate the value of STC by using EQ 19.

$$t_{SAMPLE}$$
 = (2 + STC) x (1 / ADCCLK) or t_{SAMPLE} = (2 + STC) x (ADC Clock Period)

EQ 19

where ADCCLK = ADC clock frequency in MHz.

 t_{SAMPLE} = 0.449 µs from bit resolution in Table 2-44.

ADC Clock frequency = 10 MHz or a 100 ns period.

STC = $(t_{SAMPLE} / (1 / 10 \text{ MHz})) - 2 = 4.49 - 2 = 2.49.$

You must round up to 3 to accommodate the minimum sample time.

Table 2-44 • Acquisition Time Example with VAREF = 2.56 V

	$VIN = 2.56V, R = 4K (R_{SOURCE} \sim 0), C = 18 pF$					
Resolution LSB Value (mV) Min. Sample/Hold Time for 0.5 LSB (µs)						
8	10	0.449				
10	2.5	0.549				
12	0.625	0.649				

Table 2-45 • Acquisition Time Example with VAREF = 3.3 V

VIN = 3.3V, R = 4K (R _{SOURCE} ~ 0), C = 18 pF					
Resolution LSB Value (mV) Min. Sample/Hold time for 0.5 LSB (μs)					
8	12.891	0.449			
10	3.223	0.549			
12	0.806	0.649			

Sample Phase

A conversion is performed in three phases. In the first phase, the analog input voltage is sampled on the input capacitor. This phase is called sample phase. During the sample phase, the output signals BUSY and SAMPLE change from '0' to '1', indicating the ADC is busy and sampling the analog signal. The sample time can be controlled by input signals STC[7:0]. The sample time can be calculated by EQ 20. When controlling the sample time for the ADC along with the use of Prescaler or Current Monitor or Temperature Monitor, the minimum sample time for each must be obeyed.

Solution 3

The board-level design must ensure that the reflected waveform at the pad does not exceed limits provided in Table 3-4 on page 3-4. This is a long-term reliability requirement.

This scheme will also work for a 3.3 V PCI/PCIX configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the bus switch, as shown in Figure 2-105. Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

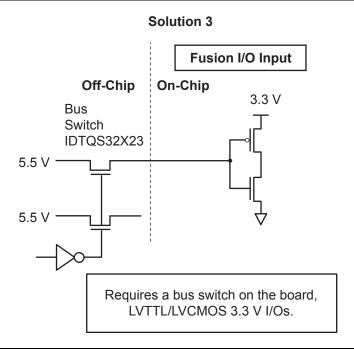


Figure 2-105 • Solution 3

Solution 4

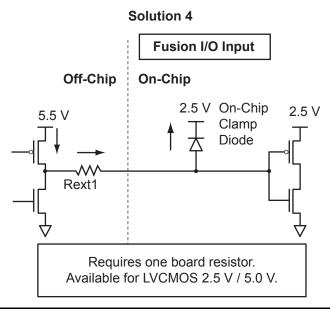


Figure 2-106 • Solution 4

5 V Output Tolerance

Fusion I/Os must be set to 3.3 V LVTTL or 3.3 V LVCMOS mode to reliably drive 5 V TTL receivers. It is also critical that there be NO external I/O pull-up resistor to 5 V, since this resistor would pull the I/O pad voltage beyond the 3.6 V absolute maximum value and consequently cause damage to the I/O.

When set to 3.3 V LVTTL or 3.3 V LVCMOS mode, Fusion I/Os can directly drive signals into 5 V TTL receivers. In fact, VOL = 0.4 V and VOH = 2.4 V in both 3.3 V LVTTL and 3.3 V LVCMOS modes exceed the VIL = 0.8 V and VIH = 2 V level requirements of 5 V TTL receivers. Therefore, level '1' and level '0' will be recognized correctly by 5 V TTL receivers.

Simultaneously Switching Outputs and PCB Layout

- Simultaneously switching outputs (SSOs) can produce signal integrity problems on adjacent signals that are not part of the SSO bus. Both inductive and capacitive coupling parasitics of bond wires inside packages and of traces on PCBs will transfer noise from SSO busses onto signals adjacent to those busses. Additionally, SSOs can produce ground bounce noise and VCCI dip noise. These two noise types are caused by rapidly changing currents through GND and VCCI package pin inductances during switching activities:
- Ground bounce noise voltage = L(GND) * di/dt
- VCCI dip noise voltage = L(VCCI) * di/dt

Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The shielding should be done both on the board and inside the package unless otherwise described.

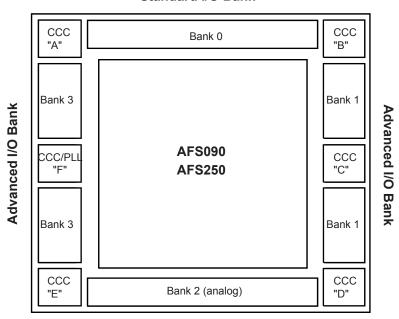
In-package shielding can be achieved in several ways; the required shielding will vary depending on whether pins next to SSO bus are LVTTL/LVCMOS inputs, LVTTL/LVCMOS outputs, or GTL/SSTL/HSTL/LVDS/LVPECL inputs and outputs. Board traces in the vicinity of the SSO bus have to be adequately shielded from mutual coupling and inductive noise that can be generated by the SSO bus. Also, noise generated by the SSO bus needs to be reduced inside the package.

PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time, maintaining signal integrity between devices.

Key issues that need to considered are as follows:

- Power and ground plane design and decoupling network design
- · Transmission line reflections and terminations

User I/O Naming Convention


Due to the comprehensive and flexible nature of Fusion device user I/Os, a naming scheme is used to show the details of the I/O (Figure 2-113 on page 2-158 and Figure 2-114 on page 2-159). The name identifies to which I/O bank it belongs, as well as the pairing and pin polarity for differential I/Os.

I/O Nomenclature = Gmn/IOuxwByVz

Gmn is only used for I/Os that also have CCC access—i.e., global pins.

- G = Global
- m = Global pin location associated with each CCC on the device: A (northwest corner), B (northeast corner), C (east middle), D (southeast corner), E (southwest corner), and F (west middle).
- n = Global input MUX and pin number of the associated Global location m, either A0, A1, A2, B0, B1, B2, C0, C1, or C2. Figure 2-22 on page 2-25 shows the three input pins per clock source MUX at CCC location m.
- u = I/O pair number in the bank, starting at 00 from the northwest I/O bank and proceeding in a clockwise direction.
- x = P (Positive) or N (Negative) for differential pairs, or R (Regular single-ended) for the I/Os that support single-ended and voltage-referenced I/O standards only. U (Positive-LVDS only) or V (Negative-LVDS only) restrict the I/O differential pair from being selected as an LVPECL pair.
- w = D (Differential Pair), P (Pair), or S (Single-Ended). D (Differential Pair) if both members of the pair are bonded out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both members of the pair are bonded out but do not meet the adjacency requirement; or S (Single-Ended) if the I/O pair is not bonded out. For Differential (D) pairs, adjacency for ball grid packages means only vertical or horizontal. Diagonal adjacency does not meet the requirements for a true differential pair.
- B = Bank
- y = Bank number (0-3). The Bank number starts at 0 from the northwest I/O bank and proceeds in a clockwise direction.
- V = Reference voltage
- z = Minibank number

Standard I/O Bank

Analog Quads

Figure 2-113 • Naming Conventions of Fusion Devices with Three Digital I/O Banks

Table 2-105 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Pro I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOU}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.66	7.88	0.04	1.20	1.57	0.43	8.03	6.70	2.69	2.59	10.26	8.94	ns
	-1	0.56	6.71	0.04	1.02	1.33	0.36	6.83	5.70	2.29	2.20	8.73	7.60	ns
	-2	0.49	5.89	0.03	0.90	1.17	0.32	6.00	5.01	2.01	1.93	7.67	6.67	ns
8 mA	Std.	0.66	5.08	0.04	1.20	1.57	0.43	5.17	4.14	3.05	3.21	7.41	6.38	ns
	-1	0.56	4.32	0.04	1.02	1.33	0.36	4.40	3.52	2.59	2.73	6.30	5.43	ns
	-2	0.49	3.79	0.03	0.90	1.17	0.32	3.86	3.09	2.28	2.40	5.53	4.76	ns
12 mA	Std.	0.66	3.67	0.04	1.20	1.57	0.43	3.74	2.87	3.28	3.61	5.97	5.11	ns
	-1	0.56	3.12	0.04	1.02	1.33	0.36	3.18	2.44	2.79	3.07	5.08	4.34	ns
	-2	0.49	2.74	0.03	0.90	1.17	0.32	2.79	2.14	2.45	2.70	4.46	3.81	ns
16 mA	Std.	0.66	3.46	0.04	1.20	1.57	0.43	3.53	2.61	3.33	3.72	5.76	4.84	ns
	-1	0.56	2.95	0.04	1.02	1.33	0.36	3.00	2.22	2.83	3.17	4.90	4.12	ns
	-2	0.49	2.59	0.03	0.90	1.17	0.32	2.63	1.95	2.49	2.78	4.30	3.62	ns
24 mA	Std.	0.66	3.21	0.04	1.20	1.57	0.43	3.27	2.16	3.39	4.13	5.50	4.39	ns
	-1	0.56	2.73	0.04	1.02	1.33	0.36	2.78	1.83	2.88	3.51	4.68	3.74	ns
	-2	0.49	2.39	0.03	0.90	1.17	0.32	2.44	1.61	2.53	3.08	4.11	3.28	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

2-177 Revision 6

Table 2-169 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)
1.075	1.325	Cross point	_

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Timing Characteristics

Table 2-170 • LVDS

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Pro I/Os

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	2.10	0.04	1.82	ns
-1	0.56	1.79	0.04	1.55	ns
-2	0.49	1.57	0.03	1.36	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

BLVDS/M-LVDS

Bus LVDS (BLVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations can contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by BLVDS and M-LVDS to accommodate the loading. The driver requires series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus, since the driver can be located anywhere on the bus. These configurations can be implemented using TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-135. The input and output buffer delays are available in the LVDS section in Table 2-171.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case industrial operating conditions at the farthest receiver: R_S = 60 Ω and R_T = 70 Ω , given Z_0 = 50 Ω (2") and Z_{stub} = 50 Ω (~1.5").

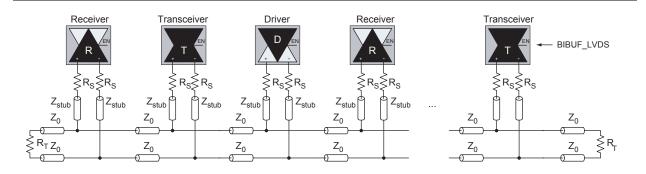


Figure 2-135 • BLVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

DDR Module Specifications

Input DDR Module

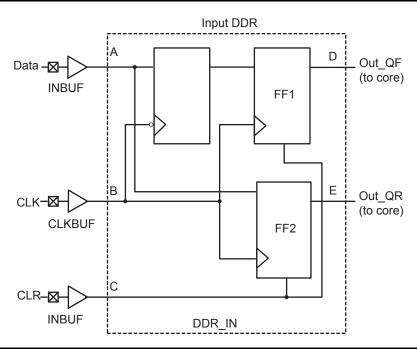


Figure 2-142 • Input DDR Timing Model

Table 2-179 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D
t _{DDRICLKQ2}	Clock-to-Out Out_QF	B, E
t _{DDRISUD}	Data Setup Time of DDR Input	A, B
t _{DDRIHD}	Data Hold Time of DDR Input	A, B
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E
t _{DDRIREMCLR}	Clear Removal	C, B
t _{DDRIRECCLR}	Clear Recovery	C, B

2-219 Revision 6

IEEE 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/Os" section on page 2-132 for more details.

Timing Characteristics

Table 2-186 • JTAG 1532

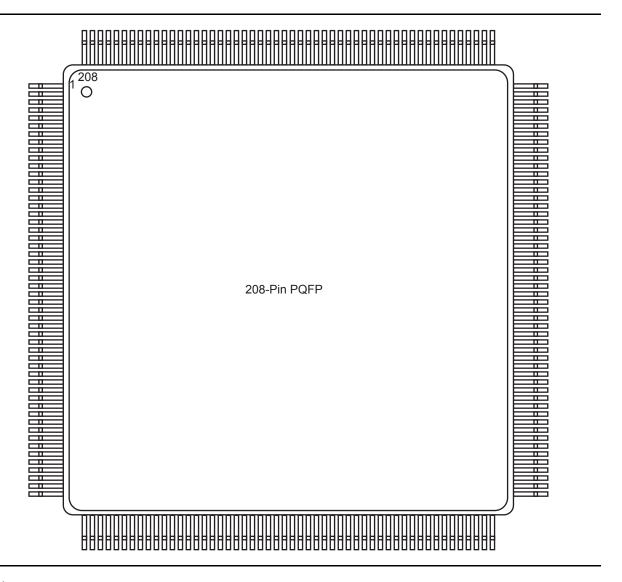
Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{DISU}	Test Data Input Setup Time	0.50	0.57	0.67	ns
t _{DIHD}	Test Data Input Hold Time	1.00	1.13	1.33	ns
t _{TMSSU}	Test Mode Select Setup Time	0.50	0.57	0.67	ns
t _{TMDHD}	Test Mode Select Hold Time	1.00	1.13	1.33	ns
t _{TCK2Q}	Clock to Q (data out)	6.00	6.80	8.00	ns
t _{RSTB2Q}	Reset to Q (data out)	20.00	22.67	26.67	ns
F _{TCKMAX}	TCK Maximum Frequency	25.00	22.00	19.00	MHz
t _{TRSTREM}	ResetB Removal Time	0.00	0.00	0.00	ns
t _{TRSTREC}	ResetB Recovery Time	0.20	0.23	0.27	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	TBD	TBD	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

2-231 Revision 6

Table 3-9 • AFS600 Quiescent Supply Current Characteristics


Parameter	Description	Conditions	Temp.	Min	Тур	Max	Unit
ICC ¹	1.5 V quiescent current	Operational standby ⁴ ,	T _J = 25°C		13	25	mA
		VCC = 1.575 V	T _J = 85°C		20	45	mA
			T _J =100°C		25	75	mA
		Standby mode ⁵ or Sleep mode ⁶ , VCC = 0 V			0	0	μA
ICC33 ²	3.3 V analog supplies current	Operational standby ⁴ ,	T _J = 25°C		9.8	13	mA
		VCC33 = 3.63 V	T _J = 85°C		10.7	14	mA
			T _J = 100°C		10.8	15	mA
		Operational standby, only Analog Quad and –3.3 V output ON, VCC33 = 3.63 V	$T_J = 25^{\circ}C$		0.31	2	mA
			$T_J = 85^{\circ}C$		0.35	2	mA
			T _J = 100°C		0.45	2	mA
		Standby mode ⁵ ,	$T_J = 25^{\circ}C$		2.8	3.6	mA
		VCC33 = 3.63 V	T _J = 85°C		2.9	4	mA
			T _J = 100°C		3.5	6	mA
		Sleep mode ⁶ , V _{CC33} = 3.63 V	$T_J = 25^{\circ}C$		17	19	μΑ
			T _J = 85°C		18	20	μΑ
			T _J = 100°C		24	25	μΑ
ICCI ³	I/O quiescent current	Operational standby ⁴ , VCCIx = 3.63 V	T _J = 25°C		417	648	μΑ
			T _J = 85°C		417	648	μΑ
			T _J = 100°C		417	649	μΑ
IJTAG	JTAG I/O quiescent current	Operational standby ⁴ , VJTAG = 3.63 V	T _J = 25°C		80	100	μΑ
			T _J = 85°C		80	100	μΑ
			T _J = 100°C		80	100	μΑ
		Standby mode ⁵ or Sleep mode ⁶ , VJTAG = 0 V			0	0	μA

Notes:

- 1. ICC is the 1.5 V power supplies, ICC and ICC15A.
- 2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.
- 3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.
- 4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.
- 5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.
- 6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.

PQ208

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.

4-7 Revision 6

	PQ208				
Pin Number	AFS250 Function	AFS600 Function			
147	GCC1/IO47PDB1V0	IO39NDB2V0			
148	IO42NDB1V0	GCA2/IO39PDB2V0			
149	GBC2/IO42PDB1V0	IO31NDB2V0			
150	VCCIB1	GBB2/IO31PDB2V0			
151	GND	IO30NDB2V0			
152	VCC	GBA2/IO30PDB2V0			
153	IO41NDB1V0	VCCIB2			
154	GBB2/IO41PDB1V0	GNDQ			
155	IO40NDB1V0	VCOMPLB			
156	GBA2/IO40PDB1V0	VCCPLB			
157	GBA1/IO39RSB0V0	VCCIB1			
158	GBA0/IO38RSB0V0	GNDQ			
159	GBB1/IO37RSB0V0	GBB1/IO27PPB1V1			
160	GBB0/IO36RSB0V0	GBA1/IO28PPB1V1			
161	GBC1/IO35RSB0V0	GBB0/IO27NPB1V1			
162	VCCIB0	GBA0/IO28NPB1V1			
163	GND	VCCIB1			
164	VCC	GND			
165	GBC0/IO34RSB0V0	VCC			
166	IO33RSB0V0	GBC1/IO26PDB1V1			
167	IO32RSB0V0	GBC0/IO26NDB1V1			
168	IO31RSB0V0	IO24PPB1V1			
169	IO30RSB0V0	IO23PPB1V1			
170	IO29RSB0V0	IO24NPB1V1			
171	IO28RSB0V0	IO23NPB1V1			
172	IO27RSB0V0	IO22PPB1V0			
173	IO26RSB0V0	IO21PPB1V0			
174	IO25RSB0V0	IO22NPB1V0			
175	VCCIB0	IO21NPB1V0			
176	GND	IO20PSB1V0			
177	VCC	IO19PSB1V0			
178	IO24RSB0V0	IO14NSB0V1			
179	IO23RSB0V0	IO12PDB0V1			
180	IO22RSB0V0	IO12NDB0V1			
181	IO21RSB0V0	VCCIB0			
182	IO20RSB0V0	GND			
183	IO19RSB0V0	VCC			

	PQ208			
Pin Number	AFS250 Function	AFS600 Function		
184	IO18RSB0V0	IO10PPB0V1		
185	IO17RSB0V0	IO09PPB0V1		
186	IO16RSB0V0	IO10NPB0V1		
187	IO15RSB0V0	IO09NPB0V1		
188	VCCIB0	IO08PPB0V1		
189	GND	IO07PPB0V1		
190	VCC	IO08NPB0V1		
191	IO14RSB0V0	IO07NPB0V1		
192	IO13RSB0V0	IO06PPB0V0		
193	IO12RSB0V0	IO05PPB0V0		
194	IO11RSB0V0	IO06NPB0V0		
195	IO10RSB0V0	IO04PPB0V0		
196	IO09RSB0V0	IO05NPB0V0		
197	IO08RSB0V0	IO04NPB0V0		
198	IO07RSB0V0	GAC1/IO03PDB0V0		
199	IO06RSB0V0	GAC0/IO03NDB0V0		
200	GAC1/IO05RSB0V0	VCCIB0		
201	VCCIB0	GND		
202	GND	VCC		
203	VCC	GAB1/IO02PDB0V0		
204	GAC0/IO04RSB0V0	GAB0/IO02NDB0V0		
205	GAB1/IO03RSB0V0	GAA1/IO01PDB0V0		
206	GAB0/IO02RSB0V0	GAA0/IO01NDB0V0		
207	GAA1/IO01RSB0V0	GNDQ		
208	GAA0/IO00RSB0V0	VCCIB0		

4-10 Revision 6

Package Pin Assignments

FG676			
Pin Number	AFS1500 Function		
L17	VCCIB2		
L18	GCB2/IO60PDB2V0		
L19	IO58NDB2V0		
L20	IO57NDB2V0		
L21	IO59NDB2V0		
L22	GCC2/IO61PDB2V0		
L23	IO55PPB2V0		
L24	IO56PDB2V0		
L25	IO55NPB2V0		
L26	GND		
M1	NC		
M2	VCCIB4		
M3	GFC2/IO108PDB4V0		
M4	GND		
M5	IO109NDB4V0		
M6	IO110NDB4V0		
M7	GND		
M8	IO104NDB4V0		
M9	IO111NDB4V0		
M10	GND		
M11	∨cc		
M12	GND		
M13	VCC		
M14	GND		
M15	VCC		
M16	GND		
M17	GND		
M18	IO60NDB2V0		
M19	IO58PDB2V0		
M20	GND		
M21	IO68NPB2V0		
M22	IO61NDB2V0		
M23	GND		
M24	IO56NDB2V0		
M25	VCCIB2		
M26	IO65PDB2V0		

FG676			
Pin Number	AFS1500 Function		
N1	NC		
N2	NC		
N3	IO108NDB4V0		
N4	vccosc		
N5	VCCIB4		
N6	XTAL2		
N7	GFC1/IO107PDB4V0		
N8	VCCIB4		
N9	GFB1/IO106PDB4V0		
N10	VCCIB4		
N11	GND		
N12	VCC		
N13	GND		
N14	VCC		
N15	GND		
N16	VCC		
N17	VCCIB2		
N18	IO70PDB2V0		
N19	VCCIB2		
N20	IO69PDB2V0		
N21	GCA1/IO64PDB2V0		
N22	VCCIB2		
N23	GCC0/IO62NDB2V0		
N24	GCC1/IO62PDB2V0		
N25	IO66PDB2V0		
N26	IO65NDB2V0		
P1	NC		
P2	NC		
P3	IO103PDB4V0		
P4	XTAL1		
P5	VCCIB4		
P6	GNDOSC		
P7	GFC0/IO107NDB4V0		
P8	VCCIB4		
P9	GFB0/IO106NDB4V0		
P10	VCCIB4		

FG676			
	AFS1500 Function		
P11	VCC		
P12	GND		
P13	VCC		
P14	GND		
P15	VCC		
P16	GND		
P17	VCCIB2		
P18	IO70NDB2V0		
P19	VCCIB2		
P20	IO69NDB2V0		
P21	GCA0/IO64NDB2V0		
P22	VCCIB2		
P23	GCB0/IO63NDB2V0		
P24	GCB1/IO63PDB2V0		
P25	IO66NDB2V0		
P26	IO67PDB2V0		
R1	NC		
R2	VCCIB4		
R3	IO103NDB4V0		
R4	GND		
R5	IO101PDB4V0		
R6	IO100NPB4V0		
R7	GND		
R8	IO99PDB4V0		
R9	IO97PDB4V0		
R10	GND		
R11	GND		
R12	VCC		
R13	GND		
R14	VCC		
R15	GND		
R16	VCC		
R17	GND		
R18	GDB2/IO83PDB2V0		
R19	IO78PDB2V0		
R20	GND		

4-32 Revision 6

5 - Datasheet Information

List of Changes

The following table lists critical changes that were made in each revision of the Fusion datasheet.

Revision	Changes	Page
Revision 6 (March 2014)	Note added for the discontinuance of QN108 and QN180 packages to the "Package I/Os: Single-/Double-Ended (Analog)" table and the "Temperature Grade Offerings" table (SAR 55113, PDN 1306).	
	Updated details about page programming time in the "Program Operation" section (SAR 49291).	2-46
	ADC_START changed to ADCSTART in the "ADC Operation" section (SAR 44104).	2-104
Revision 5 (January 2014)	Calibrated offset values (AFS090, AFS250) of the external temperature monitor in Table 2-49 • Analog Channel Specifications have been updated (SAR 51464).	2-117
	Specifications for the internal temperature monitor in Table 2-49 • Analog Channel Specifications have been updated (SAR 50870).	2-117
Revision 4 (January 2013)	The "Product Ordering Codes" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43177).	III
	The note in Table 2-12 • Fusion CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42563).	2-28
	Table 2-49 • Analog Channel Specifications was modified to update the uncalibrated offset values (AFS250) of the external and internal temperature monitors (SAR 43134).	2-117
	In Table 2-57 • Prescaler Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3), changed the column heading from 'Full-Scale Voltage' to 'Full Scale Voltage in 10-Bit Mode', and added and updated Notes as required (SAR 20812).	2-130
	The values for the Speed Grade (-1 and Std.) for FDDRIMAX (Table 2-180 • Input DDR Propagation Delays) and values for the Speed Grade (-2 and Std.) for FDDOMAX (Table 2-182 • Output DDR Propagation Delays) had been inadvertently interchanged. This has been rectified (SAR 38514).	2-220, 2-222
	Added description about what happens if a user connects VAREF to an external 3.3 V on their board to the "VAREF Analog Reference Voltage" section (SAR 35188).	2-225
	Added a note to Table 3-2 • Recommended Operating Conditions1 (SAR 43429): The programming temperature range supported is T _{ambient} = 0°C to 85°C.	3-3
	Added the Package Thermal details for AFS600-PQ208 and AFS250-PQ208 to Table 3-6 • Package Thermal Resistance (SAR 37816). Deleted the Die Size column from the table (SAR 43503).	3-7
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 42495).	NA
	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	
Revision 3 (August 2012)	Microblade U1AFS250 and U1AFS1500 devices were added to the product tables.	I – IV
(August 2012)	A sentence pertaining to the analog I/Os was added to the "Specifying I/O States During Programming" section (SAR 34831).	1-9