

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	223
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1afs1500-fgg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Fusion Device Family Overview

Introduction	1-1
General Description	1-1
Unprecedented Integration	1-4
Related Documents	1-10

Device Architecture

Fusion Stack Architecture	
Core Architecture	2-2
Clocking Resources	
Real-Time Counter System	
Embedded Memories	
Analog Block	
Analog Configuration MUX	
User I/Os	
Pin Descriptions	
Security	

DC and Power Characteristics

General Specifications	3-1
Calculating Power Dissipation	
Power Consumption	3-32

Package Pin Assignments

QN108	 	 	 	 	 	 	 	 	 		 	 . 4-	1						
QN180	 	 	 	 	 	 	 	 	 		 	 . 4-	3						
PQ208	 	 	 	 	 	 	 	 	 		 	 . 4-	7						
FG256	 	 	 	 	 	 	 	 	 		 	 4-1	1						
FG484	 	 	 	 	 	 	 	 	 		 	 4-1	9						
FG676	 	 	 	 	 	 	 •••	 	 • • •	 	 	 • •	 • •	 	 	•••	 	 4-2	7

Datasheet Information

List of Changes	
Datasheet Categories	
Safety Critical, Life Support, and High-Reliability Applications Policy	/

VersaNet Global Networks and Spine Access

The Fusion architecture contains a total of 18 segmented global networks that can access the VersaTiles, SRAM, and I/O tiles on the Fusion device. There are 6 chip (main) global networks that access the entire device and 12 quadrant networks (3 in each quadrant). Each device has a total of 18 globals. These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets, including clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-skew local networks using spines for up to 180 internal/external clocks (in an AFS1500 device) or other high-fanout nets in Fusion devices. Optimal usage of these low-skew networks can result in significant improvement in design performance on Fusion devices.

The nine spines available in a vertical column reside in global networks with two separate regions of scope: the quadrant global network, which has three spines, and the chip (main) global network, which has six spines. Note that there are three quadrant spines in each quadrant of the device. There are four quadrant global network regions per device (Figure 2-12 on page 2-12).

The spines are the vertical branches of the global network tree, shown in Figure 2-11 on page 2-11. Each spine in a vertical column of a chip (main) global network is further divided into two equal-length spine segments: one in the top and one in the bottom half of the die.

Each spine and its associated ribs cover a certain area of the Fusion device (the "scope" of the spine; see Figure 2-11 on page 2-11). Each spine is accessed by the dedicated global network MUX tree architecture, which defines how a particular spine is driven—either by the signal on the global network from a CCC, for example, or another net defined by the user (Figure 2-13). Quadrant spines can be driven from user I/Os on the north and south sides of the die, via analog I/Os configured as direct digital inputs. The ability to drive spines in the quadrant global networks can have a significant effect on system performance for high-fanout inputs to a design.

Details of the chip (main) global network spine-selection MUX are presented in Figure 2-13. The spine drivers for each spine are located in the middle of the die.

Quadrant spines are driven from a north or south rib. Access to the top and bottom ribs is from the corner CCC or from the I/Os on the north and south sides of the device. For details on using spines in Fusion devices, see the application note *Using Global Resources in Actel Fusion Devices*.

Figure 2-13 • Spine-Selection MUX of Global Tree

Crystal Oscillator

The Crystal Oscillator (XTLOSC) is source that generates the clock from an external crystal. The output of XTLOSC CLKOUT signal can be selected as an input to the PLL. Refer to the "Clock Conditioning Circuits" section for more details. The XTLOSC can operate in normal operations and Standby mode (RTC is running and 1.5 V is not present).

In normal operation, the internal FPGA_EN signal is '1' as long as 1.5 V is present for VCC. As such, the internal enable signal, XTL_EN, for Crystal Oscillator is enabled since FPGA_EN is asserted. The XTL_MODE has the option of using MODE or RTC_MODE, depending on SELMODE.

During Standby, 1.5 V is not available, as such, and FPGA_EN is '0'. SELMODE must be asserted in order for XTL_EN to be enabled; hence XTL_MODE relies on RTC_MODE. SELMODE and RTC_MODE must be connected to RTCXTLSEL and RTCXTLMODE from the AB respectively for correct operation during Standby (refer to the "Real-Time Counter System" section on page 2-31 for a detailed description).

The Crystal Oscillator can be configured in one of four modes:

- RC network, 32 KHz to 4 MHz
- Low gain, 32 to 200 KHz
- Medium gain, 0.20 to 2.0 MHz
- High gain, 2.0 to 20.0 MHz

In RC network mode, the XTAL1 pin is connected to an RC circuit, as shown in Figure 2-16 on page 2-18. The XTAL2 pin should be left floating. The RC value can be chosen based on Figure 2-18 for any desired frequency between 32 KHz and 4 MHz. The RC network mode can also accommodate an external clock source on XTAL1 instead of an RC circuit.

In Low gain, Medium gain, and High gain, an external crystal component or ceramic resonator can be added onto XTAL1 and XTAL2, as shown in Figure 2-16 on page 2-18. In the case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the XTAL2 pin should be left floating.

Note: *Internal signal—does not exist in macro.

Figure 2-17 • XTLOSC Macro

CCC Physical Implementation

The CCC circuit is composed of the following (Figure 2-23):

- PLL core
- · 3 phase selectors
- 6 programmable delays and 1 fixed delay
- 5 programmable frequency dividers that provide frequency multiplication/division (not shown in Figure 2-23 because they are automatically configured based on the user's required frequencies)
- 1 dynamic shift register that provides CCC dynamic reconfiguration capability (not shown)

CCC Programming

The CCC block is fully configurable. It is configured via static flash configuration bits in the array, set by the user in the programming bitstream, or configured through an asynchronous dedicated shift register, dynamically accessible from inside the Fusion device. The dedicated shift register permits changes of parameters such as PLL divide ratios and delays during device operation. This latter mode allows the user to dynamically reconfigure the PLL without the need for core programming. The register file is accessed through a simple serial interface.

Note: Clock divider and multiplier blocks are not shown in this figure or in SmartGen. They are automatically configured based on the user's required frequencies.

Figure 2-23 • PLL Block

Erase Page Operation

The Erase Page operation is initiated when the ERASEPAGE pin is asserted. The Erase Page operation allows the user to erase (set user data to zero) any page within the FB.

The use of the OVERWRITEPAGE and PAGELOSSPROTECT pins is the same for erase as for a Program Page operation.

As with the Program Page operation, a STATUS of '01' indicates that the addressed page is not erased.

A waveform for an Erase Page operation is shown in Figure 2-37.

Erase errors include the following:

- 1. Attempting to erase a page that is Overwrite Protected (STATUS = '01')
- 2. Attempting to erase a page that is not in the Page Buffer when the Page Buffer has entered Page Loss Protection mode (STATUS = '01')
- 3. The Write Count of the erased page exceeding the Write Threshold defined in the part specification (STATUS = '11')
- 4. The ECC Logic determining that there is an uncorrectable error within the erased page (STATUS = '10')

Figure 2-37 • FB Erase Page Waveform

Read Operation

Read operations are designed to read data from the FB Array, Page Buffer, Block Buffer, or status registers. Read operations support a normal read and a read-ahead mode (done by asserting READNEXT). Also, the timing for Read operations is dependent on the setting of PIPE.

The following diagrams illustrate representative timing for Non-Pipe Mode (Figure 2-38) and Pipe Mode (Figure 2-39) reads of the flash memory block interface.

Figure 2-38 • Read Waveform (Non-Pipe Mode, 32-bit access)

Figure 2-39 • Read Waveform (Pipe Mode, 32-bit access)

Read Next Operation

The Read Next operation is a feature by which the next block relative to the block in the Block Buffer is read from the FB Array while performing reads from the Block Buffer. The goal is to minimize wait states during consecutive sequential Read operations.

The Read Next operation is performed in a predetermined manner because it does look-ahead reads. The general look-ahead function is as follows:

- Within a page, the next block fetched will be the next in linear address.
- When reading the last data block of a page, it will fetch the first block of the next page.
- When reading spare pages, it will read the first block of the next sector's spare page.
- Reads of the last sector will wrap around to sector 0.
- · Reads of Auxiliary blocks will read the next linear page's Auxiliary block.

When an address on the ADDR input does not agree with the predetermined look-ahead address, there is a time penalty for this access. The FB will be busy finishing the current look-ahead read before it can start the next read. The worst case is a total of nine BUSY cycles before data is delivered.

The Non-Pipe Mode and Pipe Mode waveforms for Read Next operations are illustrated in Figure 2-40 and Figure 2-41.

Figure 2-40 • Read Next Waveform (Non-Pipe Mode, 32-bit access)

Figure 2-41 • Read Next WaveForm (Pipe Mode, 32-bit access)

Table 2-32 • RAM512X18

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.09	0.10	0.12	ns
t _{ENH}	REN, WEN hold time	0.06	0.07	0.08	ns
t _{DS}	Input data (WD) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (WD) hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to new data valid on RD (output retained)	2.16	2.46	2.89	ns
t _{CKQ2}	Clock High to new data valid on RD (pipelined)	0.90	1.02	1.20	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.50	0.43	0.38	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address—Applicable to Opening Edge	0.59	0.50	0.44	ns
+ 1	RESET Low to data out Low on RD (flow-through)	0.92	1.05	1.23	ns
^I RSTBQ	RESET Low to data out Low on RD (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Typical scaling factors are given in Table 2-57 on page 2-130, and the gain error (which contributes to the minimum and maximum) is in Table 2-49 on page 2-117.

Figure 2-67 • Analog Quad Prescaler Input Configuration

Terminology

BW – Bandwidth

BW is a range of frequencies that a Channel can handle.

Channel

A channel is define as an analog input configured as one of the Prescaler range shown in Table 2-57 on page 2-130. The channel includes the Prescaler circuit and the ADC.

Channel Gain

Channel Gain is a measured of the deviation of the actual slope from the ideal slope. The slope is measured from the 20% and 80% point.

Gain =
$$rac{ ext{Gain}_{ ext{actual}}}{ ext{Gain}_{ ext{ideal}}}$$

EQ 1

Channel Gain Error

Channel Gain Error is a deviation from the ideal slope of the transfer function. The Prescaler Gain Error is expressed as the percent difference between the actual and ideal, as shown in EQ 2.

$$\text{Error}_{\text{Gain}} = (1-\text{Gain}) \times 100\%$$

EQ 2

Device Architecture

Table 2-52 • Calibrated Analog Channel Accuracy 1,2,3Worst-Case Industrial Conditions, TJ = 85°C

		Condition	Total	Channel Error	(LSB)
Analog Pad	Prescaler Range (V)	Input Voltage ⁴ (V)	Negative Max.	Median	Positive Max.
P	ositive Range		A	DC in 10-Bit Mo	ode
AV, AC	16	0.300 to 12.0	-6	1	6
	8	0.250 to 8.00	-6	0	6
	4	0.200 to 4.00	-7	-1	7
	2	0.150 to 2.00	-7	0	7
	1	0.050 to 1.00	-6	-1	6
AT	16	0.300 to 16.0	-5	0	5
	4	0.100 to 4.00	-7	-1	7
Ne	gative Range		A	DC in 10-Bit Mo	ode
AV, AC	16	-0.400 to -10.5	-7	1	9
	8	-0.350 to -8.00	-7	-1	7
	4	-0.300 to -4.00	-7	-2	9
	2	-0.250 to -2.00	-7	-2	7
	1	-0.050 to -1.00	-16	-1	20

Notes:

1. Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For 8-bit mode, divide the LSB count by 4. Overall accuracy remains the same.

2. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

3. Calibrated with two-point calibration methodology, using 20% and 80% full-scale points.

4. The lower limit of the input voltage is determined by the prescaler input offset.

Table 2-88 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions

				VIL	VIH		VOL	VOH	IOL	ЮН
I/O Standard	Drive Strength	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	High	-0.3	0.8	2	3.6	0.4	2.4	8	8
2.5 V LVCMOS	8 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	8	8
1.8 V LVCMOS	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	4	4
1.5 V LVCMOS	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2

Applicable to Standard I/Os

Note: Currents are measured at 85°C junction temperature.

Table 2-89 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions

Applicable to All I/O Bank Types

	Comn	nercial ¹	Indu	strial ²
	IIL ³	IIH ⁴	IIL ³	IIH ⁴
DC I/O Standards	μA	μΑ	μΑ	μA
3.3 V LVTTL / 3.3 V LVCMOS	10	10	15	15
2.5 V LVCMOS	10	10	15	15
1.8 V LVCMOS	10	10	15	15
1.5 V LVCMOS	10	10	15	15
3.3 V PCI	10	10	15	15
3.3 V PCI-X	10	10	15	15
3.3 V GTL	10	10	15	15
2.5 V GTL	10	10	15	15
3.3 V GTL+	10	10	15	15
2.5 V GTL+	10	10	15	15
HSTL (I)	10	10	15	15
HSTL (II)	10	10	15	15
SSTL2 (I)	10	10	15	15
SSTL2 (II)	10	10	15	15
SSTL3 (I)	10	10	15	15
SSTL3 (II)	10	10	15	15

Notes:

1. Commercial range ($0^{\circ}C < T_J < 85^{\circ}C$)

2. Industrial range $(-40^{\circ}C < T_{J} < 100^{\circ}C)$

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

Table 2-96 • I/O Output Buffer Maximum Resistances ¹ (continued)

Standard	Drive Strength	R _{PULL-DOWN} (ohms) ²	R _{PULL-UP} (ohms) ³
HSTL (I)	8 mA	50	50
HSTL (II)	15 mA	25	25
SSTL2 (I)	17 mA	27	31
SSTL2 (II)	21 mA	13	15
SSTL3 (I)	16 mA	44	69
SSTL3 (II)	24 mA	18	32
Applicable to Advanced I/O Bar	nks		
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
	24 mA	11	22
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
	12 mA	20	22
	16 mA	20	22
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

 These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/soc/techdocs/models/ibis.html.

2. R_(PULL-DOWN-MAX) = VOLspec / I_{OLspec}

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

Device Architecture

Table 2-113 • 2.5 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Pro I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.60	8.82	0.04	1.51	1.66	0.43	8.13	8.82	2.72	2.29	10.37	11.05	ns
	-1	0.51	7.50	0.04	1.29	1.41	0.36	6.92	7.50	2.31	1.95	8.82	9.40	ns
	-2	0.45	6.58	0.03	1.13	1.24	0.32	6.07	6.58	2.03	1.71	7.74	8.25	ns
8 mA	Std.	0.60	5.27	0.04	1.51	1.66	0.43	5.27	5.27	3.10	3.03	7.50	7.51	ns
	–1	0.51	4.48	0.04	1.29	1.41	0.36	4.48	4.48	2.64	2.58	6.38	6.38	ns
	-2	0.45	3.94	0.03	1.13	1.24	0.32	3.93	3.94	2.32	2.26	5.60	5.61	ns
12 mA	Std.	0.66	3.74	0.04	1.51	1.66	0.43	3.81	3.49	3.37	3.49	6.05	5.73	ns
	-1	0.56	3.18	0.04	1.29	1.41	0.36	3.24	2.97	2.86	2.97	5.15	4.87	ns
	-2	0.49	2.80	0.03	1.13	1.24	0.32	2.85	2.61	2.51	2.61	4.52	4.28	ns
16 mA	Std.	0.66	3.53	0.04	1.51	1.66	0.43	3.59	3.12	3.42	3.62	5.83	5.35	ns
	–1	0.56	3.00	0.04	1.29	1.41	0.36	3.06	2.65	2.91	3.08	4.96	4.55	ns
	-2	0.49	2.63	0.03	1.13	1.24	0.32	2.68	2.33	2.56	2.71	4.35	4.00	ns
24 mA	Std.	0.66	3.26	0.04	1.51	1.66	0.43	3.32	2.48	3.49	4.11	5.56	4.72	ns
	-1	0.56	2.77	0.04	1.29	1.41	0.36	2.83	2.11	2.97	3.49	4.73	4.01	ns
	-2	0.49	2.44	0.03	1.13	1.24	0.32	2.48	1.85	2.61	3.07	4.15	3.52	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

SSTL2 Class I

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Fusion devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-156 • Minimum and Maximum DC Input and Output Levels

SSTL2 Class I	STL2 Class I VIL		VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
15 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI – 0.62	15	15	87	83	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-130 • AC Loading

Table 2-157	•	AC Waveforms	Measuring Poi	nts and Ca	nacitive I oads
	-	AC Waveloinis,	Measuring FOI	niis, anu Ca	pacitive Luaus

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Timing Characteristics

Table 2-158 • SSTL 2 Class I

```
Commercial Temperature Range Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.13	0.04	1.33	0.43	2.17	1.85			4.40	4.08	ns
-1	0.56	1.81	0.04	1.14	0.36	1.84	1.57			3.74	3.47	ns
-2	0.49	1.59	0.03	1.00	0.32	1.62	1.38			3.29	3.05	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

VCC Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is also required for powering the JTAG state machine, in addition to VJTAG. Even when a Fusion device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the Fusion device.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are either four (AFS090 and AFS250) or five (AFS600 and AFS1500) I/O banks on the Fusion devices plus a dedicated VJTAG bank.

Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND.

VCCPLA/B PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V, where A and B refer to the PLL. AFS090 and AFS250 each have a single PLL. The AFS600 and AFS1500 devices each have two PLLs. Microsemi recommends tying VCCPLX to VCC and using proper filtering circuits to decouple VCC noise from PLL.

If unused, VCCPLA/B should be tied to GND.

VCOMPLA/B Ground for West and East PLL

VCOMPLA is the ground of the west PLL (CCC location F) and VCOMPLB is the ground of the east PLL (CCC location C).

VJTAG JTAG Supply Voltage

Fusion devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned to be used, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a Fusion device is in a JTAG chain of interconnected boards and it is desired to power down the board containing the Fusion device, this may be done provided both VJTAG and VCC to the Fusion part remain powered; otherwise, JTAG signals will not be able to transition the Fusion device, even in bypass mode.

VPUMP Programming Supply Voltage

Fusion devices support single-voltage ISP programming of the configuration flash and FlashROM. For programming, VPUMP should be in the 3.3 V +/-5% range. During normal device operation, VPUMP can be left floating or can be tied to any voltage between 0 V and 3.6 V.

When the VPUMP pin is tied to ground, it shuts off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Theta-JA

Junction-to-ambient thermal resistance (θ_{JA}) is determined under standard conditions specified by JEDEC (JESD-51), but it has little relevance in actual performance of the product. It should be used with caution but is useful for comparing the thermal performance of one package to another.

A sample calculation showing the maximum power dissipation allowed for the AFS600-FG484 package under forced convection of 1.0 m/s and 75°C ambient temperature is as follows:

Maximum Power Allowed =
$$\frac{T_{J(MAX)} - T_{A(MAX)}}{\theta_{JA}}$$

EQ 4

where

 θ_{JA} = 19.00°C/W (taken from Table 3-6 on page 3-7).

 $T_A = 75.00^{\circ}C$

Maximum Power Allowed =
$$\frac{100.00^{\circ}C - 75.00^{\circ}C}{19.00^{\circ}C/W} = 1.3 W$$

EQ 5

The power consumption of a device can be calculated using the Microsemi power calculator. The device's power consumption must be lower than the calculated maximum power dissipation by the package. If the power consumption is higher than the device's maximum allowable power dissipation, a heat sink can be attached on top of the case, or the airflow inside the system must be increased.

Theta-JB

Junction-to-board thermal resistance (θ_{JB}) measures the ability of the package to dissipate heat from the surface of the chip to the PCB. As defined by the JEDEC (JESD-51) standard, the thermal resistance from junction to board uses an isothermal ring cold plate zone concept. The ring cold plate is simply a means to generate an isothermal boundary condition at the perimeter. The cold plate is mounted on a JEDEC standard board with a minimum distance of 5.0 mm away from the package edge.

Theta-JC

Junction-to-case thermal resistance (θ_{JC}) measures the ability of a device to dissipate heat from the surface of the chip to the top or bottom surface of the package. It is applicable for packages used with external heat sinks. Constant temperature is applied to the surface in consideration and acts as a boundary condition. This only applies to situations where all or nearly all of the heat is dissipated through the surface in consideration.

Calculation for Heat Sink

For example, in a design implemented in an AFS600-FG484 package with 2.5 m/s airflow, the power consumption value using the power calculator is 3.00 W. The user-dependent T_a and T_j are given as follows:

 $T_{J} = 100.00^{\circ}C$

 $T_A = 70.00^{\circ}C$

From the datasheet:

 $\theta_{JA} = 17.00^{\circ}C/W$ $\theta_{JC} = 8.28^{\circ}C/W$

$$P = \frac{T_J - T_A}{\theta_{JA}} = \frac{100^{\circ}C - 70^{\circ}C}{17.00 \text{ W}} = 1.76 \text{ W}$$

EQ 6

PLL/CCC Contribution—PPLL

PLL is not used in this application.

 $P_{PLL} = 0 W$

Nonvolatile Memory—P_{NVM}

Nonvolatile memory is not used in this application.

 $P_{NVM} = 0 W$

Crystal Oscillator—P_{XTL-OSC}

The application utilizes standby mode. The crystal oscillator is assumed to be active.

Operating Mode

P_{XTL-OSC} = PAC18

 $P_{XTL-OSC} = 0.63 \text{ mW}$

Standby Mode

P_{XTL-OSC} = PAC18

P_{XTL-OSC} = 0.63 mW

Sleep Mode

 $P_{XTL-OSC} = 0 W$

RC Oscillator—P_{RC-OSC}

Operating Mode

P_{RC-OSC} = PAC19

 $P_{RC-OSC} = 3.30 \text{ mW}$

Standby Mode and Sleep Mode

 $P_{RC-OSC} = 0 W$

Analog System—P_{AB}

Number of Quads used: N_{QUADS} = 4

Operating Mode

P_{AB} = PAC20

 P_{AB} = 3.00 mW

Standby Mode and Sleep Mode

 $P_{AB} = 0 W$

Total Dynamic Power Consumption—P_{DYN}

Operating Mode

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL} + P_{NVM}+ P_{XTL-OSC} + P_{RC-OSC} + P_{AB} P_{DYN} = 41.28 mW + 21.1 mW + 4.35 mW + 19.25 mW + 1.30 mW + 47.47 mW + 1.38 mW + 0 + 0 + 0 + 0.63 mW + 3.30 mW + 3.00 mW

P_{DYN} = 143.06 mW

Standby Mode

 $P_{DYN} = P_{XTL-OSC}$ $P_{DYN} = 0.63 \text{ mW}$

Sleep Mode

 $P_{DYN} = 0 W$

FG256								
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function				
E13	VCCIB1	VCCIB1	VCCIB2	VCCIB2				
E14	GCC2/IO33NDB1V0	IO42NDB1V0	IO32NDB2V0	IO46NDB2V0				
E15	GCB2/IO33PDB1V0	GBC2/IO42PDB1V0	GBC2/IO32PDB2V0	GBC2/IO46PDB2V0				
E16	GND	GND	GND	GND				
F1	NC	NC	IO79NDB4V0	IO111NDB4V0				
F2	NC	NC	IO79PDB4V0	IO111PDB4V0				
F3	GFB1/IO48PPB3V0	IO72NDB3V0	IO76NDB4V0	IO112NDB4V0				
F4	GFC0/IO49NDB3V0	IO72PDB3V0	IO76PDB4V0	IO112PDB4V0				
F5	NC	NC	IO82PSB4V0	IO120PSB4V0				
F6	GFC1/IO49PDB3V0	GAC2/IO74PPB3V0	GAC2/IO83PPB4V0	GAC2/IO123PPB4V0				
F7	NC	IO09RSB0V0	IO04PPB0V0	IO05PPB0V1				
F8	NC	IO19RSB0V0	IO08NDB0V1	IO11NDB0V1				
F9	NC	NC	IO20PDB1V0	IO27PDB1V1				
F10	NC	IO29RSB0V0	IO23NDB1V1	IO37NDB1V2				
F11	NC	IO43NDB1V0	IO36NDB2V0	IO50NDB2V0				
F12	NC	IO43PDB1V0	IO36PDB2V0	IO50PDB2V0				
F13	NC	IO44NDB1V0	IO39NDB2V0	IO59NDB2V0				
F14	NC	GCA2/IO44PDB1V0	GCA2/IO39PDB2V0	GCA2/IO59PDB2V0				
F15	GCC1/IO34PDB1V0	GCB2/IO45PDB1V0	GCB2/IO40PDB2V0	GCB2/IO60PDB2V0				
F16	GCC0/IO34NDB1V0	IO45NDB1V0	IO40NDB2V0	IO60NDB2V0				
G1	GEC0/IO46NPB3V0	IO70NPB3V0	IO74NPB4V0	IO109NPB4V0				
G2	VCCIB3	VCCIB3	VCCIB4	VCCIB4				
G3	GEC1/IO46PPB3V0	GFB2/IO70PPB3V0	GFB2/IO74PPB4V0	GFB2/IO109PPB4V0				
G4	GFA1/IO47PDB3V0	GFA2/IO71PDB3V0	GFA2/IO75PDB4V0	GFA2/IO110PDB4V0				
G5	GND	GND	GND	GND				
G6	GFA0/IO47NDB3V0	IO71NDB3V0	IO75NDB4V0	IO110NDB4V0				
G7	GND	GND	GND	GND				
G8	VCC	VCC	VCC	VCC				
G9	GND	GND	GND	GND				
G10	VCC	VCC	VCC	VCC				
G11	GDA1/IO37NDB1V0	GCC0/IO47NDB1V0	GCC0/IO43NDB2V0	GCC0/IO62NDB2V0				
G12	GND	GND	GND	GND				
G13	IO37PDB1V0	GCC1/IO47PDB1V0	GCC1/IO43PDB2V0	GCC1/IO62PDB2V0				
G14	GCB0/IO35NPB1V0	IO46NPB1V0	IO41NPB2V0	IO61NPB2V0				
G15	VCCIB1	VCCIB1	VCCIB2	VCCIB2				
G16	GCB1/IO35PPB1V0	GCC2/IO46PPB1V0	GCC2/IO41PPB2V0	GCC2/IO61PPB2V0				
H1	GEB1/IO45PDB3V0	GFC2/IO69PDB3V0	GFC2/IO73PDB4V0	GFC2/IO108PDB4V0				
H2	GEB0/IO45NDB3V0	IO69NDB3V0	IO73NDB4V0	IO108NDB4V0				

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function H3 XTAL2 XTAL2 XTAL2 XTAL2 XTAL2 H4 XTAL1 XTAL1 XTAL1 XTAL1 XTAL1 H4 CRDOSC GNDOSC GNDOSC GNDOSC GNDOSC H6 VCCOSC VCCOSC VCCOSC VCCOSC VCCO H7 VCC VCC VCC VCC VCC H8 GND GND GND GND GND GND H9 VCC VCC VCC VCC VCC VCC H10 GDC1/I038NDB1V0 IO51PDB1V0 IO47NDB2V0 IO69NDB2V0 IO69NDB2V0 H13 GDB1/I039PDB1V0 GCA1/IO49DB1V0 GCA1/IO49DB2V0 GCA1/IO49DB2V0 IO68NDB2V0 H14 GDB0/IO38NDB1V0 GCB0/IO48NDB2V0 GCB0/IO48NDB2V0 GCB0/IO68NDB2V0 GCB0/IO68NDB2V0 H15 GCA0/IO48NDB3V0 GFA0/IO70NDB4V0 GCB0/IO68NDB2V0 GCB0/IO68NDB2V0 GCB0/	FG256								
H3 XTAL2 XTAL2 XTAL2 XTAL2 XTAL2 H4 XTAL1 XTAL1 XTAL1 XTAL1 XTAL1 H5 GNDOSC GNDOSC GNDOSC GNDOSC GNDOSC H6 VCCOSC VCCOSC VCCOSC VCCOSC VCCOSC H7 VCC VCC VCC VCC VCC H8 GND GND GND GND GND H10 GND GND GND GND GND H11 GDC0/038NDB1V0 IO51NDB1V0 IO47NDB2V0 IO68NDB2V0 H13 GDB1/039DB1V0 GCA/IO49PDB2V0 GCA/IO48PDB2V0 GCA/IO48PDB2V0 H14 GDB0/039NDB1V0 GCA/IO49PDB2V0 GCA/IO48PDB2V0 GCA/IO68NDB2V0 H15 GCA/IO44NDB3V0 GCA/IO49DB3V0 GCA/IO48NDB2V0 GCA/IO68NDB2V0 J1 GEA/I/O44PDB3V0 GFA/IO66PDB3V0 GCA/IO105NDE4V0 GCB/IO63NDB2V0 J2 GEA/I/O48PDB3V0 GFA/I/O106PDB4V0 GFA/I/O106PDB4V0 GFA/I/O106PDB4V0	Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function				
H4 XTAL1 XTAL1 XTAL1 XTAL1 XTAL1 H5 GNDOSC GNDOSC GNDOSC GNDOSC GNDOSC H6 VCCOSC VCCOSC VCCOSC VCCOSC H7 VCC VCC VCC VCC H8 GND GND GND GND H9 VCC VCC VCC VCC H10 GND GND GND GND GND H11 GDC0/038NDB1V0 IO51NDB1V0 IO47NDB2V0 IO69PDB2V0 H13 GDE1/038PDB1V0 GCA/1049PDB1V0 GCA/1045PDB2V0 GCA/1064PDB2V0 H14 GDB0/039NDB1V0 GCA/1049PDB1V0 GCA/1045PDB2V0 GCA/1064PDB2V0 H15 GCA/01038PDB1V0 GCB0/044NDB2V0 GCB0/063NDB2V0 GFA/1070PDB4V0 J2 GEA/1044PDB3V0 GFB0/067NDB3V0 GFB0/071NDB4V0 GFB0/10106NDB4V0 J3 IO43NDB3V0 GFB0/07NDB3V0 GFB1/0107PDB4V0 GFB0/10107NDB4V0 J4 GEC2/1043PDB3V0 GFB1/1067PDB3	H3	XTAL2	XTAL2	XTAL2	XTAL2				
H5 GNDOSC GNDOSC GNDOSC GNDOSC GNDOSC H6 VCCOSC VCCOSC VCCOSC VCCOSC VCCOSC H7 VCC VCC VCC VCC VCC H8 GND GND GND GND GND H9 VCC VCC VCC VCC VCC H10 GDC///O38NDB1V0 IOS1PDB1V0 IO47NDB2V0 IO69NDB2V0 H11 GDC///O38NDB1V0 GCA1//O49PDB1V0 IC4A1//045PDB2V0 GCA1//046PDB2V0 H13 GDB1//O39NDB1V0 GCA0//O49NDB1V0 GCA0//O49NDB2V0 GCA0//O68NDB2V0 H14 GDC0//038NDB1V0 GCA0//049NDB1V0 GCA0//049NDB2V0 GCE0//068NDB2V0 H15 GCA0//036NDB1V0 GCB1//049PDB1V0 GCA1//049PDB2V0 GCE0//068NDB4V0 J2 GEA1//044PDB3V0 GFA0//068NDB3V0 GFB0//071NDB4V0 GFB0//0108NDB4V0 J3 IO43NDB3V0 GFB1//067PDB3V0 GFB0//071NDB4V0 GFD1//0108PDB4V0 J4 GEC2//043PDB3V0 GFB1//067PDB3V0 GF	H4	XTAL1	XTAL1	XTAL1	XTAL1				
H6 VCCOSC VCCOSC VCCOSC VCCOSC H7 VCC VCC VCC VCC VCC H8 GND GND GND GND GND H9 VCC VCC VCC VCC VCC H10 GND GND GND GND GND H11 GDC//O38NDB1V0 IO51NDB1V0 IO47NDB2V0 IO69NDB2V0 H12 GDC///O38PDB1V0 IO51PDB1V0 IO47PDB2V0 IO69NDB2V0 H13 GDB///O39PDB1V0 GCA///O49NDB1V0 GCA///O4SPDB2V0 GCA///O6ND82V0 H14 GDB0//O39NDB1V0 GCB0//O48NDB1V0 GCB1//O44NDB2V0 GCB0//O63NDB2V0 H16 GCA///O44NDB3V0 GFA0//O66NDB3V0 GFA0//O105NDB4V0 GFA0//O105NDB4V0 J2 GEA///O44PDB3V0 GFB1//067PDB3V0 GFB1//O17NDB4V0 GFB1///O107DB4V0 J3 IO43NDB3V0 GFB0//O7NDB3V0 GFB1//O107DDB4V0 GFC0//O107NDB4V0 J4 GEC2//O43PDB3V0 GFB1//O67PDB3V0 GFC0//O72NDB4V0 GFC0//O107NDB4V0	H5	GNDOSC	GNDOSC	GNDOSC	GNDOSC				
H7 VCC VCC VCC VCC VCC H8 GND GND GND GND GND H9 VCC VCC VCC VCC VCC H10 GND GND GND GND GND H11 GDC0//038NDB1V0 IO51NDB1V0 IO47NDB2V0 IO69PDB2V0 H12 GDC1//038PDB1V0 GCA1//049PDB1V0 GCA1//045PDB2V0 GCA1//064PDB2V0 H14 GDB0//039NDB1V0 GCA0//048NDB1V0 GCA0//04NDB2V0 GCA0//06ANDB2V0 H15 GCA0//038NDB1V0 GCA1//048PDB1V0 GCB1//04NDB2V0 GCB1//063PDB2V0 J1 GEA///04NDB3V0 GFA1//066PDB3V0 GFA0//070NDB4V0 GFA0//0106NDB4V0 J2 GEA///04NDB3V0 GFB1//067PDB3V0 GFB1//071NDB4V0 GFB1//0106PDB4V0 J4 GEC2//043PDB3V0 GFB1//067PDB3V0 GFC1//072PDB4V0 GFB1//0106PDB4V0 J5 NC GFC1//068PDB3V0 GFC1//072PDB4V0 GFC1//0107PDB4V0 J6 NC GFC1//068PDB3V0 GFC1//072PDB4V0	H6	VCCOSC	VCCOSC	VCCOSC	VCCOSC				
H8 GND GND GND GND GND H9 VCC VCC VCC VCC VCC H10 GND GND GND GND GND H11 GDC0/G38NDB1V0 IO51NDB1V0 IO47NDB2V0 IO69PDB2V0 H12 GDC1/G38PDB1V0 GCA1/IO49PDB1V0 IO47PDB2V0 IO69PDB2V0 H13 GBB/IO39PDB1V0 GCA1/IO49PDB1V0 GCA/IO44PDB2V0 GCA/I/IO45PDB2V0 H14 GD80/IO39NDB1V0 GCA0/IO49NDB1V0 GCA0/IO44NDB2V0 GCA0/IO63NDB2V0 H16 GCA/I/O36PDB1V0 GCB1/IO48PDB3V0 GFA0/IO105NDB4V0 GCB1/IO105NDB4V0 J2 GEA/I/O44PDB3V0 GFA1/IO46PDB3V0 GFA0/IO105NDB4V0 GFA0/IO105NDB4V0 J3 IO43NDB3V0 GFB1/IO67PDB3V0 GFC1/IO107DB4V0 GFC0/IO107NDB4V0 GFC0/IO10NDB4V0 J4 GEC2/IO43PDB3V0 GFC1/IO68PDB3V0 GFC1/IO17PDB4V0 GFC1/IO107PDB4V0 J3 IO43NDB3V0 GFC1/IO68PDB3V0 GFC1/IO107PDB4V0 GFC1/IO107PDB4V0 J4 GCC2/IO41NPB1V0	H7	VCC	VCC	VCC	VCC				
H9 VCC VCC VCC VCC VCC H10 GND GND GND GND GND GND H11 GDC0/038NDB1V0 IO51NDB1V0 IO47NDB2V0 IO69NDB2V0 H12 GDC1/I038PDB1V0 GCA1/IO49DB1V0 GCA1/IO45PDB2V0 GCA1/IO45PDB2V0 GCA1/IO45PDB2V0 H13 GDB1/IO39PDB1V0 GCA0/IO48NDB1V0 GCA0/IO48NDB2V0 GCA0/IO6ANDB2V0 GCA0/IO6ANDB2V0 H14 GDB0/IO39NDB1V0 GCA0/IO48NDB1V0 GCB0/IO48NDB2V0 GCA0/IO6ANDB2V0 GCA0/IO6ANDB2V0 H16 GCA1/IO44PDB3V0 GCB1/IO48PDB3V0 GCB1/IO47DDB4V0 GCA0/IO6ANDB2V0 J1 GEA0/IO44NDB3V0 GFA1/IO66PDB3V0 GFA1/IO70PDB4V0 GFA1/IO108PDB4V0 J3 IO43NDB3V0 GFB1/IO67PDB3V0 GFB1/IO171PDB4V0 GFB1/IO10108NDB4V0 J4 GEC2/IO43PDB3V0 GFC1/IO68PDB3V0 GFC1/IO72PDB4V0 GFC1/IO17NDB4V0 J4 GEC2/IO43PDB3V0 GFC1/IO68PDB3V0 GFC1/IO172PDB4V0 GFD2/IO107NDB4V0 J5 NC GFC0/IO68PDB3V0 GFC1/IO172PD	H8	GND	GND	GND	GND				
H10 GND GND GND GND GND H11 GDC0/IQ38NDB1V0 IO51NDB1V0 IO47NDB2V0 IO69PDB2V0 H12 GDC1/IQ38PDB1V0 GCA1/IO49PDB1V0 GCA1/IO45PDB2V0 IO69PDB2V0 H13 GDB1/IQ39PDB1V0 GCA1/IO49PDB1V0 GCA1/IO45PDB2V0 GCA1/IO64PDB2V0 H14 GDB0/IQ39NDB1V0 GCA0/IO49NDB1V0 GCA0/IO45NDB2V0 GCCB/IO63NDB2V0 H15 GCA0/IQ6NDB1V0 GCB1/IO48PDB1V0 GCB1/IO44PDB2V0 GCB1/IO63PDB2V0 J1 GEA0/IO44NDB3V0 GFA1/IO66PDB3V0 GFA1/IO105PDB4V0 GFA1/IO105PDB4V0 J2 GEA1/IO44PDB3V0 GFA1/IO66PDB3V0 GFA1/IO17DPD4V0 GFA1/IO105PDB4V0 J3 IO43NDB3V0 GFB1/IO67PDB3V0 GFB1/IO17DPD4V0 GFC0/IO107NDB4V0 J4 GEC2/IO43PDB3V0 GFB1/IO67PDB3V0 GFC1/IO17DPD4V0 GFC0/IO107NDB4V0 J5 NC GFC0/IO68NDB3V0 GFC1/IO17DPD4V0 GFC1/IO107PDB4V0 J4 GDC2/IO41NPB1V0 GND GND GND J4 GCC VCC <td< td=""><td>H9</td><td>VCC</td><td>VCC</td><td>VCC</td><td>VCC</td></td<>	H9	VCC	VCC	VCC	VCC				
H11 GDC0//038NDB1V0 IO51NDB1V0 IO47NDB2V0 IO69NDB2V0 H12 GDC1//038PDB1V0 IO51PDB1V0 IO47PDB2V0 IO69PDB2V0 H13 GDB1/I039PDB1V0 GCA1/I049PDB1V0 GCA1/I045PDB2V0 GCA1/I064PDB2V0 H14 GDB0/I039NDB1V0 GCA0/I049NDB1V0 GCA0/I04NDB2V0 GCA0/I064NDB2V0 H15 GCA0/I036NDB1V0 GCB0/I048NDB1V0 GCB0/I044NDB2V0 GCB0/I063NDB2V0 H16 GCA1/I036PDB1V0 GCB1/I048PDB1V0 GCB1/I044PDB2V0 GCB1/I063PDB4V0 J1 GEA0/I044NDB3V0 GFA0/I066NDB3V0 GFA0/I070PDB4V0 GFA0/I0105NDB4V0 J2 GEA1/I044PDB3V0 GFA1/I066PDB3V0 GFA1/I0105PDB4V0 GFA1/I0105PDB4V0 J3 IO43NDB3V0 GFB0/I067NDB3V0 GFB0/I071NDB4V0 GFB0/I0107NDB4V0 J4 GEC2/I043PDB3V0 GFB1/I067PDB3V0 GFC1/I072PDB4V0 GFC1/I0107PDB4V0 J5 NC GFC1/I068PDB3V0 GFC1/I072PDB4V0 GFC1/I0107PDB4V0 J4 GEC2/I043PDB3V0 GFC1/I068PDB3V0 GFC1/I072PDB4V0 GFC1/I0107PDB4V0 J6	H10	GND	GND	GND	GND				
H12 GDC1//038PDB1V0 IO51PDB1V0 IO47PDB2V0 IO69PDB2V0 H13 GDB1//039PDB1V0 GCA1//049PDB1V0 GCA1//049PDB2V0 GCA1//064PDB2V0 H14 GDB0//039NDB1V0 GCA0//049NDB1V0 GCA0//048NDB2V0 GCA0//064NDB2V0 H15 GCA0//036NDB1V0 GCB0//048NDB1V0 GCB0//048NDB2V0 GCB0//063NDB2V0 H16 GCA1//036PDB1V0 GCB1//048PDB1V0 GCB1//044PDB2V0 GCB1//063PDB2V0 J1 GEA0//044NDB3V0 GFA0//066NDB3V0 GFA0//070NDB4V0 GFA1//0105PDB4V0 J2 GEA1//044PDB3V0 GFB0//067NDB3V0 GFB0//071NDB4V0 GFA1//0105PDB4V0 J3 IO43NDB3V0 GFB1//067PDB3V0 GFB1//071PDB4V0 GFB0//0108NDB4V0 J4 GEC2//043PDB3V0 GFC1//068PDB3V0 GFC1//072PDB4V0 GFC1//0107PDB4V0 J5 NC GFC1//068PDB3V0 GFC1//072PDB4V0 GFC1//0107PDB4V0 J4 GDC2//041NPB1V0 GND GND GND J10 VCC VCC VCC VCC J3 GND GDND GND	H11	GDC0/IO38NDB1V0	IO51NDB1V0	IO47NDB2V0	IO69NDB2V0				
H13 GDB1/IO39PDB1V0 GCA1/IO49PDB1V0 GCA1/IO45PDB2V0 GCA1/IO64PDB2V0 H14 GDB0/IO39NDB1V0 GCA0/IO49NDB1V0 GCA0/IO45NDB2V0 GCA0/IO64NDB2V0 H15 GCA0/IO36NDB1V0 GCB0/IO48NDB1V0 GCB0/IO44NDB2V0 GCB0/IO63NDB2V0 H16 GCA1/IO36PDB1V0 GCB1/IO48PDB1V0 GCB1/IO44PDB2V0 GCB1/IO63PDB2V0 J1 GEA0/IO44NDB3V0 GFA0/IO66NDB3V0 GFA0/IO70NDB4V0 GFA0/IO105NDB4V0 J2 GEA1/IO44PDB3V0 GFA0/IO66NDB3V0 GFA0/IO70NDB4V0 GFA0/IO105NDB4V0 J3 IO43NDB3V0 GFB0/IO67NDB3V0 GFB0/IO71NDB4V0 GFB0/IO106NDB4V0 J4 GEC2/IO43PDB3V0 GFB1/IO67PDB3V0 GFB1/IO71PDB4V0 GF0/IO10NDB4V0 J5 NC GFC/IO68NDB3V0 GFC/IO72NDB4V0 GF0/IO107NDB4V0 J7 GND GND GND GND GND J8 VCC VCC VCC VCC VCC J10 VCC VCC VCC VCC VCC J11 GDC2/IO41NPB1V0 IO56NPB1V0<	H12	GDC1/IO38PDB1V0	IO51PDB1V0	IO47PDB2V0	IO69PDB2V0				
H14 GDB0/IO39NDB1V0 GCA0/IO49NDB1V0 GCA0/IO45NDB2V0 GCA0/IO64NDB2V0 H15 GCA0/IO36NDB1V0 GCB0/IO48NDB1V0 GCB0/IO44NDB2V0 GCB0/IO63NDB2V0 H16 GCA1/IO36PDB1V0 GCB1/IO48PDB1V0 GCB1/IO44PDB2V0 GCB1/IO63PDB2V0 J1 GEA0/IO44NDB3V0 GFA0/IO66NDB3V0 GFA0/IO70NDB4V0 GFA0/IO105NDB4V0 J2 GEA1/IO44PDB3V0 GFA0/IO67NDB3V0 GFA0/IO71NDB4V0 GFA1/IO105PDB4V0 J3 IO43NDB3V0 GFB0/IO67NDB3V0 GFB0/IO71NDB4V0 GFA0/IO106NDB4V0 J4 GEC2/IO43PDB3V0 GFB1/IO67PDB3V0 GFB1/IO71PDB4V0 GFC1/IO107NDB4V0 J5 NC GFC0/IO68NDB3V0 GFC1/IO72NDB4V0 GFC1/IO107NDB4V0 J6 NC GFC/IO68NDB3V0 GFC1/IO72NDB4V0 GFC1/IO107NDB4V0 J7 GND GND GND GND GND J3 VCC VCC VCC VCC VCC J16 GDC2/IO41NPB1V0 IO56NPB1V0 IO56NPB2V0 GD80/IO80NPB2V0 J11 GDC2/IO41NPB1V0 GDC	H13	GDB1/IO39PDB1V0	GCA1/IO49PDB1V0	GCA1/IO45PDB2V0	GCA1/IO64PDB2V0				
H15 GCA0/IO36NDB1V0 GCB0/IO48NDB1V0 GCB0/IO44NDB2V0 GCB0/IO63NDB2V0 H16 GCA1/IO36PDB1V0 GCB1/IO48PDB1V0 GCB1/IO44PDB2V0 GCB1/IO63PDB2V0 J1 GEA0/IO44NDB3V0 GFA0/IO66NDB3V0 GFA0/IO70NDB4V0 GFA0/IO105NDB4V0 J2 GEA1/IO44PDB3V0 GFA1/IO66PDB3V0 GFA1/IO105PDB4V0 GFA0/IO106NDB4V0 J3 IO43NDB3V0 GFB0/IO67NDB3V0 GFB0/IO71NDB4V0 GFB0/IO106NDB4V0 J4 GEC2/IO43PDB3V0 GFB1/IO67PDB3V0 GFB1/IO71PDB4V0 GFE0/IO106NDB4V0 J5 NC GFC0/IO68NDB3V0 GFC0/IO72NDB4V0 GFC0/IO17NDB4V0 J6 NC GFC1/IO68PDB3V0 GFC1/IO72PDB4V0 GFC1/IO17PDB4V0 J7 GND GND GND GND J8 VCC VCC VCC VCC J9 GND GND GND GND J11 GDC2/IO41NPB1V0 IO56NPB1V0 GDA0/IO53NPB2V0 GDA0/IO83NPB2V0 J13 NC GDA1/IO54PDB1V0 GDA1/IO54PDB2V0 GDA1/IO7NPB2V0 GDA1	H14	GDB0/IO39NDB1V0	GCA0/IO49NDB1V0	GCA0/IO45NDB2V0	GCA0/IO64NDB2V0				
H16 GCA1/I036PDB1V0 GCB1/I048PDB1V0 GCB1/I044PDB2V0 GCB1/I063PDB2V0 J1 GEA0/I044NDB3V0 GFA0/I066NDB3V0 GFA0/I070NDB4V0 GFA0/I015NDB4V0 J2 GEA1/I044PDB3V0 GFA1/I066PDB3V0 GFA1/I070PDB4V0 GFA1/I0105PDB4V0 J3 I043NDB3V0 GFB0/I067NDB3V0 GFB0/I071NDB4V0 GFB0/I016NDB4V0 J4 GEC2/I043PDB3V0 GFB1/I067PDB3V0 GFB1/I071PDB4V0 GFB1/I0106PDB4V0 J5 NC GFC0/I068NDB3V0 GFC1/I072PDB4V0 GFC0/I0107NDB4V0 J6 NC GFC1/I068PDB3V0 GFC1/I072PDB4V0 GFC1/I0107PDB4V0 J7 GND GND GND GND GND J8 VCC VCC VCC VCC VCC J9 GND GND GND GND GND J11 GDC2/I041NPB1V0 I056NPB1V0 I056NPB2V0 I083NPB2V0 J13 NC GDA1/I054PDB1V0 GDA1/I054PDB2V0 GDA1/I054PDB2V0 J14 GDA0/I040PDB1V0 GDC1/I052PPB1V0 GDC1/I052PPB2V0 </td <td>H15</td> <td>GCA0/IO36NDB1V0</td> <td>GCB0/IO48NDB1V0</td> <td>GCB0/IO44NDB2V0</td> <td>GCB0/IO63NDB2V0</td>	H15	GCA0/IO36NDB1V0	GCB0/IO48NDB1V0	GCB0/IO44NDB2V0	GCB0/IO63NDB2V0				
J1 GEA0/IO44NDB3V0 GFA0/IO66NDB3V0 GFA0/IO70NDB4V0 GFA0/IO105NDB4V0 J2 GEA1/IO44PDB3V0 GFA1/IO66PDB3V0 GFA1/IO70PDB4V0 GFA1/IO105PDB4V0 J3 IO43NDB3V0 GFB0/IO67NDB3V0 GFB0/IO11NDB4V0 GFB0/IO106NDB4V0 J4 GEC2/IO43PDB3V0 GFB1/IO67PDB3V0 GFB1/IO71PDB4V0 GFB1/IO106PDB4V0 J5 NC GFC0/IO68NDB3V0 GFC0/IO72NDB4V0 GFC0/IO107NDB4V0 J6 NC GFC1/IO68PDB3V0 GFC1/IO72PDB4V0 GFC1/IO107PDB4V0 J7 GND GND GND GND GND J8 VCC VCC VCC VCC VCC J9 GND GND GND GND GND J11 GDC2/IO41NPB1V0 IO56NPB1V0 IO56NPB2V0 IO83NPB2V0 J13 NC GDA1/IO54PDB1V0 GDC1/IO52PPB2V0 GDC1/IO7PPB2V0 J14 GDA0/IO40PDB1V0 GDC1/IO52PPB1V0 GDC1/IO52PPB2V0 GDC1/IO7PNB2V0 J16 GDA2/IO40NDB1V0 GDC0/IO52NPB1V0 GDC0/IO52NPB2V0 </td <td>H16</td> <td>GCA1/IO36PDB1V0</td> <td>GCB1/IO48PDB1V0</td> <td>GCB1/IO44PDB2V0</td> <td>GCB1/IO63PDB2V0</td>	H16	GCA1/IO36PDB1V0	GCB1/IO48PDB1V0	GCB1/IO44PDB2V0	GCB1/IO63PDB2V0				
J2 GEA1/IO44PDB3V0 GFA1/IO66PDB3V0 GFA1/IO70PDB4V0 GFA1/IO105PDB4V0 J3 IO43NDB3V0 GFB0/IO67NDB3V0 GFB0/IO71NDB4V0 GFB0/IO106NDB4V0 J4 GEC2/IO43PDB3V0 GFB1/IO67PDB3V0 GFB1/IO71PDB4V0 GFB1/IO106PDB4V0 J5 NC GFC0/IO68NDB3V0 GFC0/IO72NDB4V0 GFC0/IO107NDB4V0 J6 NC GFC1/IO68PDB3V0 GFC1/IO72PDB4V0 GFC1/IO107PDB4V0 J7 GND GND GND GND GND J8 VCC VCC VCC VCC VCC J9 GND GND GND GND GND J10 VCC VCC VCC VCC VCC J11 GD2/IO41NPB1V0 IO56NPB1V0 IO56NPB2V0 IO83NPB2V0 J13 NC GD21/IO52PPB1V0 GD21/IO52PPB2V0 GD21/IO79PPB2V0 J14 GDA0/IO40PDB1V0 GDC1/IO52PPB1V0 GDC0/IO52NPB2V0 GDC0/IO79NPB2V0 J16 GDA2/IO40NDB1V0 GDC0/IO52NPB1V0 IO67NPB4V0 IO92NPB4V0	J1	GEA0/IO44NDB3V0	GFA0/IO66NDB3V0	GFA0/IO70NDB4V0	GFA0/IO105NDB4V0				
J3 IO43NDB3V0 GFB0/IO67NDB3V0 GFB0/IO71NDB4V0 GFB0/IO106NDB4V0 J4 GEC2/IO43PDB3V0 GFB1/IO67PDB3V0 GFB1/IO71PDB4V0 GFB1/IO106PDB4V0 J5 NC GFC0/IO68NDB3V0 GFC0/IO72NDB4V0 GFC0/IO17NDB4V0 J6 NC GFC1/IO68PDB3V0 GFC1/IO72PDB4V0 GFC1/IO17PDB4V0 J7 GND GND GND GND GND J8 VCC VCC VCC VCC VCC J9 GND GND GND GND GND J10 VCC VCC VCC VCC VCC J11 GDC2/IO41NPB1V0 IO56NPB1V0 IO56NPB2V0 IO83NPB2V0 J12 NC GDB0/IO53NPB1V0 GDA1/IO54PDB2V0 GDB0/IO83NPB2V0 J13 NC GDC1/IO52PPB1V0 GDC1/IO52PPB2V0 GDC1/IO79PB2V0 J14 GDA0/IO40PDB1V0 GDC0/IO52NPB1V0 GDC0/IO52NPB2V0 GDC0/IO79NPB2V0 J16 GDA2/IO40NDB1V0 GDC0/IO52NPB2V0 GDC0/IO79NPB2V0 IO92NPB4V0	J2	GEA1/IO44PDB3V0	GFA1/IO66PDB3V0	GFA1/IO70PDB4V0	GFA1/IO105PDB4V0				
J4 GEC2/IO43PDB3V0 GFB1/IO67PDB3V0 GFB1/IO71PDB4V0 GFB1/IO106PDB4V0 J5 NC GFC0/IO68NDB3V0 GFC0/IO72NDB4V0 GFC0/IO107NDB4V0 J6 NC GFC1/IO68PDB3V0 GFC1/IO72PDB4V0 GFC1/IO107PDB4V0 J7 GND GND GND GND GND J8 VCC VCC VCC VCC J9 GND GND GND GND J10 VCC VCC VCC VCC J11 GDC2/IO41NPB1V0 IO56NPB1V0 IO56NPB2V0 IO83NPB2V0 J12 NC GDB0/IO53NPB1V0 GDB0/IO53NPB2V0 GDA1/I081PDB2V0 J13 NC GDC1/IO52PPB1V0 GDC1/IO52PPB2V0 GDC1/IO79PB2V0 J14 GDA0/IO40PDB1V0 GDC0/IO52NPB1V0 GDC0/IO52NPB2V0 IO77NSB2V0 J16 GDA2/IO40NDB1V0 GDC0/IO52NPB1V0 GDC0/IO52NPB2V0 IO92NPB4V0 K2 VCCIB3 VCCIB3 VCCIB4 VCCIB4 K3 NC IO65NPB3V0 IO67PPB4	J3	IO43NDB3V0	GFB0/IO67NDB3V0	GFB0/IO71NDB4V0	GFB0/IO106NDB4V0				
J5 NC GFC0/IO68NDB3V0 GFC0/IO72NDB4V0 GFC0/IO107NDB4V0 J6 NC GFC1/IO68PDB3V0 GFC1/IO72PDB4V0 GFC1/IO107PDB4V0 J7 GND GND GND GND GND J8 VCC VCC VCC VCC VCC J9 GND GND GND GND GND J10 VCC VCC VCC VCC VCC J11 GDC2/IO41NPB1V0 IO56NPB1V0 IO56NPB2V0 IO83NPB2V0 J12 NC GDB0/IO53NPB1V0 GDB0/IO53NPB2V0 GDB0/IO80NPB2V0 J13 NC GDA1/IO54PDB1V0 GDA1/IO54PDB2V0 GDC1/IO79PPB2V0 J14 GDA0/IO40PDB1V0 GDC1/IO52PPB1V0 GDC0/IO52NPB2V0 GDC0/IO79NPB2V0 J16 GDA2/IO40NDB1V0 GDC0/IO52NPB3V0 IO67NPB4V0 IO92NPB4V0 K2 VCCIB3 VCCIB3 VCCIB4 VCCIB4 K3 NC IO65NPB3V0 IO67PPB4V0 IO92PPB4V0 K4 NC I	J4	GEC2/IO43PDB3V0	GFB1/IO67PDB3V0	GFB1/IO71PDB4V0	GFB1/IO106PDB4V0				
J6 NC GFC1/IO68PDB3V0 GFC1/IO72PDB4V0 GFC1/IO107PDB4V0 J7 GND GND GND GND GND J8 VCC VCC VCC VCC VCC J9 GND GND GND GND GND J10 VCC VCC VCC VCC VCC J11 GDC2/IO41NPB1V0 IO56NPB1V0 IO56NPB2V0 IO83NPB2V0 J12 NC GDB0/IO53NPB1V0 GDB0/IO53NPB2V0 GDB0/IO80NPB2V0 J13 NC GDA1/IO54PDB1V0 GDA1/IO54PDB2V0 GDA1/IO81PDB2V0 J14 GDA0/IO40PDB1V0 GDC1/IO52PPB1V0 GDC1/IO52PPB2V0 GDC1/IO79NPB2V0 J15 NC IO50NPB1V0 IO67NPB4V0 IO92NPB4V0 K1 NC IO65NPB3V0 IO67NPB4V0 IO92NPB4V0 K2 VCCIB3 VCCIB3 VCCIB4 VCCIB4 K3 NC IO65PPB3V0 IO67PPB4V0 IO92PPB4V0 K4 NC IO64PDB3V0 IO65PDB	J5	NC	GFC0/IO68NDB3V0	GFC0/IO72NDB4V0	GFC0/IO107NDB4V0				
J7 GND GND GND GND GND J8 VCC VCC VCC VCC VCC J9 GND GND GND GND GND J10 VCC VCC VCC VCC VCC J11 GDC2/IO41NPB1V0 IO56NPB1V0 IO56NPB2V0 IO83NPB2V0 J12 NC GDB0/IO53NPB1V0 GDB0/IO53NPB2V0 GDB0/IO80NPB2V0 J13 NC GDA1/IO54PDB1V0 GDC1/IO52PPB2V0 GDC1/IO79PPB2V0 J14 GDA0/IO40PDB1V0 GDC1/IO52PPB1V0 GDC1/IO52PPB2V0 GDC1/IO79NPB2V0 J15 NC IO50NPB1V0 IO51NSB2V0 IO77NSB2V0 J16 GDA2/IO40NDB1V0 GDC0/IO52NPB1V0 GDC0/IO52NPB2V0 GDC0/IO79NPB2V0 K1 NC IO65NPB3V0 IO67NPB4V0 IO92NPB4V0 K2 VCCIB3 VCCIB3 VCCIB4 VCCIB4 K3 NC IO65PPB3V0 IO67PPB4V0 IO92PPB4V0 K4 NC IO64PDB3V0	J6	NC	GFC1/IO68PDB3V0	GFC1/IO72PDB4V0	GFC1/IO107PDB4V0				
J8 VCC VCC VCC VCC VCC J9 GND GND GND GND GND J10 VCC VCC VCC VCC VCC J11 GDC2/IO41NPB1V0 IO56NPB1V0 IO56NPB2V0 IO83NPB2V0 J12 NC GDB0/IO53NPB1V0 GDB0/IO53NPB2V0 GDB0/IO80NPB2V0 J13 NC GDA1/IO54PDB1V0 GDA1/IO54PDB2V0 GDA1/IO81PDB2V0 J14 GDA0/IO40PDB1V0 GDC1/IO52PPB1V0 GDC1/IO52PPB2V0 GDC1/IO79PPB2V0 J15 NC IO50NPB1V0 IO51NSB2V0 IO77NSB2V0 J16 GDA2/IO40NDB1V0 GDC0/IO52NPB1V0 GDC0/IO52NPB2V0 GDC0/IO79NPB2V0 K1 NC IO65NPB3V0 IO67NPB4V0 IO92NPB4V0 K2 VCCIB3 VCCIB3 VCCIB4 VCCIB4 K3 NC IO64PDB3V0 IO65PDB4V0 IO96PDB4V0 K4 NC IO64PDB3V0 IO65NDB4V0 IO96NDB4V0 K5 GND GND G	J7	GND	GND	GND	GND				
J9 GND GND GND GND GND J10 VCC VC J13 NC GDA1/IO54PDB1V0 GDA1/IO54PDB2V0 GDA1/IO40PDB1V0 GDC1/IO52PPB2V0 GDC1/IO79NPB2V0 J15 NC IO50NPB1V0 IO51NSB2V0 IO77NSB2V0 J077NSB2V0 GDC0/IO79NPB2V0 GDC0/IO79NPB2V0 GDC0/IO79NPB2V0 GDC0/IO79NPB2V0 GDC0/IO79NPB2V0 K1 NC IO65NPB3V0 IO67NPB4V0 IO92NPB4V0 IO92NPB4V0 K2	J8	VCC	VCC	VCC	VCC				
J10 VCC VCC VCC VCC J11 GDC2/IO41NPB1V0 IO56NPB1V0 IO56NPB2V0 IO83NPB2V0 J12 NC GDB0/IO53NPB1V0 GDB0/IO53NPB2V0 GDB0/IO80NPB2V0 J13 NC GDA1/IO54PDB1V0 GDA1/IO54PDB2V0 GDA1/IO81PDB2V0 J14 GDA0/IO40PDB1V0 GDC1/IO52PPB1V0 GDC1/IO52PPB2V0 GDC1/IO79PPB2V0 J15 NC IO50NPB1V0 IO51NSB2V0 IO77NSB2V0 J16 GDA2/IO40NDB1V0 GDC0/IO52NPB1V0 GDC0/IO52NPB2V0 GDC0/IO79NPB2V0 K1 NC IO65NPB3V0 IO67NPB4V0 IO92NPB4V0 K2 VCCIB3 VCCIB3 VCCIB4 VCCIB4 K3 NC IO65PPB3V0 IO65PDB4V0 IO92PPB4V0 K4 NC IO64PDB3V0 IO65NDB4V0 IO96PDB4V0 K5 GND GND GND GND K6 NC IO64NDB3V0 IO65NDB4V0 IO96NDB4V0 K6 NC IO64NDB3V0 IO65NDB4V0 IO96NDB4V0	J9	GND	GND	GND	GND				
J11 GDC2/IO41NPB1V0 IO56NPB1V0 IO56NPB2V0 IO83NPB2V0 J12 NC GDB0/IO53NPB1V0 GDB0/IO53NPB2V0 GDB0/IO80NPB2V0 J13 NC GDA1/IO54PDB1V0 GDA1/IO54PDB2V0 GDA1/IO81PDB2V0 J14 GDA0/IO40PDB1V0 GDC1/IO52PPB1V0 GDC1/IO52PPB2V0 GDC1/IO79PPB2V0 J15 NC IO50NPB1V0 GDC0/IO52NPB1V0 GDC0/IO52NPB2V0 GDC0/IO79NPB2V0 J16 GDA2/IO40NDB1V0 GDC0/IO52NPB1V0 GDC0/IO52NPB2V0 GDC0/IO79NPB2V0 K1 NC IO65NPB3V0 IO67NPB4V0 IO92NPB4V0 K2 VCCIB3 VCCIB3 VCCIB4 VCCIB4 K3 NC IO64PDB3V0 IO65PDB4V0 IO92PPB4V0 K4 NC IO64PDB3V0 IO65PDB4V0 IO96PDB4V0 K5 GND GND GND GND IO96NDB4V0 K6 NC IO64NDB3V0 IO65NDB4V0 IO96NDB4V0 IO96NDB4V0 K7 VCC VCC VCC VCC VCC VCC <td>J10</td> <td>VCC</td> <td>VCC</td> <td>VCC</td> <td>VCC</td>	J10	VCC	VCC	VCC	VCC				
J12 NC GDB0/IO53NPB1V0 GDB0/IO53NPB2V0 GDB0/IO80NPB2V0 GDB0/IO80NPB2V0 GDB0/IO80NPB2V0 GDB0/IO80NPB2V0 GDA1/IO81PDB2V0 GDA1/IO81PDB2V0 GDA1/IO81PDB2V0 GDA1/IO81PDB2V0 GDA1/IO79PPB2V0 GDC1/IO79PPB2V0 GDC1/IO79PPB2V0 GDC1/IO79PPB2V0 GDC1/IO79PPB2V0 GDC1/IO79PPB2V0 GDC1/IO79PPB2V0 GDC1/IO79PPB2V0 GDC1/IO79PPB2V0 GDC0/IO79NPB2V0 IO77NSB2V0 IO77NSB2V0 IO77NSB2V0 GDC0/IO79NPB2V0 GDC0/IO79NPB2V0 GDC0/IO79NPB2V0 GDC0/IO79NPB2V0 GDC0/IO79NPB2V0 GDC0/IO79NPB2V0 GDC0/IO79NPB2V0 IO92NPB4V0 IO94NPB4V0 IO94NPB4V0 <th< td=""><td>J11</td><td>GDC2/IO41NPB1V0</td><td>IO56NPB1V0</td><td>IO56NPB2V0</td><td>IO83NPB2V0</td></th<>	J11	GDC2/IO41NPB1V0	IO56NPB1V0	IO56NPB2V0	IO83NPB2V0				
J13 NC GDA1/IO54PDB1V0 GDA1/IO54PDB2V0 GDA1/IO81PDB2V0 J14 GDA0/IO40PDB1V0 GDC1/IO52PPB1V0 GDC1/IO52PPB2V0 GDC1/IO79PPB2V0 J15 NC IO50NPB1V0 IO51NSB2V0 IO77NSB2V0 J16 GDA2/IO40NDB1V0 GDC0/IO52NPB1V0 GDC0/IO52NPB2V0 GDC0/IO79NPB2V0 K1 NC IO65NPB3V0 IO67NPB4V0 IO92NPB4V0 K2 VCCIB3 VCCIB3 VCCIB4 VCCIB4 K3 NC IO64PDB3V0 IO67PPB4V0 IO92PPB4V0 K4 NC IO64PDB3V0 IO65PDB4V0 IO96PDB4V0 K5 GND GND GND GND K6 NC IO64NDB3V0 IO65NDB4V0 IO96NDB4V0 K6 NC IO64NDB3V0 IO65NDB4V0 IO96NDB4V0 K7 VCC VCC VCC VCC K8 GND GND GND GND	J12	NC	GDB0/IO53NPB1V0	GDB0/IO53NPB2V0	GDB0/IO80NPB2V0				
J14 GDA0/IO40PDB1V0 GDC1/IO52PPB1V0 GDC1/IO52PPB2V0 GDC1/IO79PPB2V0 J15 NC IO50NPB1V0 IO51NSB2V0 IO77NSB2V0 J16 GDA2/IO40NDB1V0 GDC0/IO52NPB1V0 GDC0/IO52NPB2V0 GDC0/IO79NPB2V0 K1 NC IO65NPB3V0 IO67NPB4V0 IO92NPB4V0 K2 VCCIB3 VCCIB3 VCCIB4 VCCIB4 K3 NC IO65PPB3V0 IO67PPB4V0 IO92PPB4V0 K4 NC IO65PPB3V0 IO67PPB4V0 IO92PPB4V0 K5 GND GND GND GND K6 NC IO64PDB3V0 IO65PDB4V0 IO96PDB4V0 K6 NC IO64NDB3V0 IO65NDB4V0 IO96NDB4V0 K6 NC IO64NDB3V0 IO65NDB4V0 IO96NDB4V0 K7 VCC VCC VCC VCC K8 GND GND GND GND	J13	NC	GDA1/IO54PDB1V0	GDA1/IO54PDB2V0	GDA1/IO81PDB2V0				
J15NCIO50NPB1V0IO51NSB2V0IO77NSB2V0J16GDA2/IO40NDB1V0GDC0/IO52NPB1V0GDC0/IO52NPB2V0GDC0/IO79NPB2V0K1NCIO65NPB3V0IO67NPB4V0IO92NPB4V0K2VCCIB3VCCIB3VCCIB4VCCIB4K3NCIO65PPB3V0IO67PPB4V0IO92PPB4V0K4NCIO64PDB3V0IO65PDB4V0IO92PPB4V0K5GNDGNDGNDGNDK6NCIO64NDB3V0IO65NDB4V0IO96NDB4V0K7VCCVCCVCCVCCK8GNDGNDGNDGND	J14	GDA0/IO40PDB1V0	GDC1/IO52PPB1V0	GDC1/IO52PPB2V0	GDC1/IO79PPB2V0				
J16GDA2/IO40NDB1V0GDC0/IO52NPB1V0GDC0/IO52NPB2V0GDC0/IO79NPB2V0K1NCIO65NPB3V0IO67NPB4V0IO92NPB4V0K2VCCIB3VCCIB3VCCIB4VCCIB4K3NCIO65PPB3V0IO67PPB4V0IO92PPB4V0K4NCIO64PDB3V0IO65PDB4V0IO96PDB4V0K5GNDGNDGNDGNDK6NCIO64NDB3V0IO65NDB4V0IO96NDB4V0K7VCCVCCVCCVCCK8GNDGNDGNDGND	J15	NC	IO50NPB1V0	IO51NSB2V0	IO77NSB2V0				
K1NCIO65NPB3V0IO67NPB4V0IO92NPB4V0K2VCCIB3VCCIB3VCCIB4VCCIB4K3NCIO65PPB3V0IO67PPB4V0IO92PPB4V0K4NCIO64PDB3V0IO65PDB4V0IO96PDB4V0K5GNDGNDGNDGNDK6NCIO64NDB3V0IO65NDB4V0IO96NDB4V0K7VCCVCCVCCVCCK8GNDGNDGNDGND	J16	GDA2/IO40NDB1V0	GDC0/IO52NPB1V0	GDC0/IO52NPB2V0	GDC0/IO79NPB2V0				
K2VCCIB3VCCIB3VCCIB4VCCIB4K3NCIO65PPB3V0IO67PPB4V0IO92PPB4V0K4NCIO64PDB3V0IO65PDB4V0IO96PDB4V0K5GNDGNDGNDGNDK6NCIO64NDB3V0IO65NDB4V0IO96NDB4V0K7VCCVCCVCCVCCK8GNDGNDGNDGND	K1	NC	IO65NPB3V0	IO67NPB4V0	IO92NPB4V0				
K3NCIO65PPB3V0IO67PPB4V0IO92PPB4V0K4NCIO64PDB3V0IO65PDB4V0IO96PDB4V0K5GNDGNDGNDGNDK6NCIO64NDB3V0IO65NDB4V0IO96NDB4V0K7VCCVCCVCCVCCK8GNDGNDGNDGND	K2	VCCIB3	VCCIB3	VCCIB4	VCCIB4				
K4NCIO64PDB3V0IO65PDB4V0IO96PDB4V0K5GNDGNDGNDGNDK6NCIO64NDB3V0IO65NDB4V0IO96NDB4V0K7VCCVCCVCCVCCK8GNDGNDGNDGND	K3	NC	IO65PPB3V0	IO67PPB4V0	IO92PPB4V0				
K5GNDGNDGNDGNDK6NCIO64NDB3V0IO65NDB4V0IO96NDB4V0K7VCCVCCVCCVCCK8GNDGNDGNDGND	K4	NC	IO64PDB3V0	IO65PDB4V0	IO96PDB4V0				
K6 NC IO64NDB3V0 IO65NDB4V0 IO96NDB4V0 K7 VCC VCC VCC VCC K8 GND GND GND GND	K5	GND	GND	GND	GND				
K7 VCC VCC VCC VCC K8 GND GND GND GND	K6	NC	IO64NDB3V0	IO65NDB4V0	IO96NDB4V0				
K8 GND GND GND GND	K7	VCC	VCC	VCC	VCC				
	K8	GND	GND	GND	GND				