

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

ĿХF

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	276480
Number of I/O	252
Number of Gates	1500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1afs1500-fgg676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Global Buffers with No Programmable Delays

The CLKBUF and CLKBUF_LVPECL/LVDS macros are composite macros that include an I/O macro driving a global buffer, hardwired together (Figure 2-20).

The CLKINT macro provides a global buffer function driven by the FPGA core.

The CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are pass-through clock sources and do not use the PLL or provide any programmable delay functionality.

Many specific CLKBUF macros support the wide variety of single-ended and differential I/O standards supported by Fusion devices. The available CLKBUF macros are described in the *IGLOO*, *ProASIC3*, *SmartFusion and Fusion Macro Library Guide*.

Clock Source		Clock Conditioning	Output
			GLA
CLKBUF_LVDS/LVPECL Macro CLKBUF Macro	CLKINT Macro		or
		None	GLB
			or
			GLC

Figure 2-20 • Global Buffers with No Programmable Delay

Global Buffers with Programmable Delay

The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to delay the clock input using a programmable delay (Figure 2-21 on page 2-25). The CLKDLY macro takes the selected clock input and adds a user-defined delay element. This macro generates an output clock phase shift from the input clock.

The CLKDLY macro can be driven by an INBUF macro to create a composite macro, where the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the I/O must be placed in one of the dedicated global I/O locations.

Many specific INBUF macros support the wide variety of single-ended and differential I/O standards supported by the Fusion family. The available INBUF macros are described in the *IGLOO*, *ProASIC3*, *SmartFusion and Fusion Macro Library Guide*.

The CLKDLY macro can be driven directly from the FPGA core.

The CLKDLY macro can also be driven from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate from the hardwired I/O connection described earlier.

The visual CLKDLY configuration in the SmartGen part of the Libero SoC and Designer tools allows the user to select the desired amount of delay and configures the delay elements appropriately. SmartGen also allows the user to select the input clock source. SmartGen will automatically instantiate the special macro, PLLINT, when needed.

Erase Page Operation

The Erase Page operation is initiated when the ERASEPAGE pin is asserted. The Erase Page operation allows the user to erase (set user data to zero) any page within the FB.

The use of the OVERWRITEPAGE and PAGELOSSPROTECT pins is the same for erase as for a Program Page operation.

As with the Program Page operation, a STATUS of '01' indicates that the addressed page is not erased.

A waveform for an Erase Page operation is shown in Figure 2-37.

Erase errors include the following:

- 1. Attempting to erase a page that is Overwrite Protected (STATUS = '01')
- 2. Attempting to erase a page that is not in the Page Buffer when the Page Buffer has entered Page Loss Protection mode (STATUS = '01')
- 3. The Write Count of the erased page exceeding the Write Threshold defined in the part specification (STATUS = '11')
- 4. The ECC Logic determining that there is an uncorrectable error within the erased page (STATUS = '10')

Figure 2-37 • FB Erase Page Waveform

Read Next Operation

The Read Next operation is a feature by which the next block relative to the block in the Block Buffer is read from the FB Array while performing reads from the Block Buffer. The goal is to minimize wait states during consecutive sequential Read operations.

The Read Next operation is performed in a predetermined manner because it does look-ahead reads. The general look-ahead function is as follows:

- Within a page, the next block fetched will be the next in linear address.
- When reading the last data block of a page, it will fetch the first block of the next page.
- When reading spare pages, it will read the first block of the next sector's spare page.
- Reads of the last sector will wrap around to sector 0.
- · Reads of Auxiliary blocks will read the next linear page's Auxiliary block.

When an address on the ADDR input does not agree with the predetermined look-ahead address, there is a time penalty for this access. The FB will be busy finishing the current look-ahead read before it can start the next read. The worst case is a total of nine BUSY cycles before data is delivered.

The Non-Pipe Mode and Pipe Mode waveforms for Read Next operations are illustrated in Figure 2-40 and Figure 2-41.

Figure 2-40 • Read Next Waveform (Non-Pipe Mode, 32-bit access)

Figure 2-41 • Read Next WaveForm (Pipe Mode, 32-bit access)

		Byte Number in Bank				4 LSB of ADDR (READ)											
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ba 3 N	7																
<u>N</u>	6																
0 of	5																
AD	4																
	3																
(R	2																
	1																
<u> </u>	0																

Figure 2-45 • FlashROM Architecture

FlashROM Characteristics

Figure 2-46 • FlashROM Timing Diagram

Table 2-26 • FlashROM Access Time

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{SU}	Address Setup Time	0.53	0.61	0.71	ns
t _{HOLD}	Address Hold Time	0.00	0.00	0.00	ns
t _{CK2Q}	Clock to Out	21.42	24.40	28.68	ns
F _{MAX}	Maximum Clock frequency	15.00	15.00	15.00	MHz

The AEMPTY flag is asserted when the difference between the write address and the read address is less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY flag will be asserted when a read causes the difference between the write address and the read address to drop to 200. It will stay asserted until that difference rises above 200. Note that the FIFO can be configured with different read and write widths; in this case, the AFVAL setting is based on the number of write data entries and the AEVAL setting is based on the number of software and 256×18, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL. The number of words must be multiplied by 8 and 16, instead of 9 and 18. The SmartGen tool automatically uses the proper values. To avoid halfwords being written or read, which could happen if different read and write aspect ratios are specified, the FIFO will assert FULL or EMPTY as soon as at least a minimum of one word cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read, the FIFO will remain in the empty state when the first word is written. This occurs even if the FIFO is not completely empty, because in this case, a complete word cannot be read. The same is applicable in the full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The FULL flag will remain asserted because a complete word cannot be written at this point.

Fusion Family of Mixed Signal FPGAs

To initiate a current measurement, the appropriate Current Monitor Strobe (CMSTB) signal on the AB macro must be asserted low for at least t_{CMSLO} in order to discharge the previous measurement. Then CMSTB must be asserted high for at least t_{CMSET} prior to asserting the ADCSTART signal. The CMSTB must remain high until after the SAMPLE signal is de-asserted by the AB macro. Note that the minimum sample time cannot be less than t_{CMSHI} . Figure 2-71 shows the timing diagram of CMSTB in relationship with the ADC control signals.

Figure 2-71 • Timing Diagram for Current Monitor Strobe

Figure 2-72 illustrates positive current monitor operation. The differential voltage between AV and AC goes into the 10× amplifier and is then converted by the ADC. For example, a current of 1.5 A is drawn from a 10 V supply and is measured by the voltage drop across a 0.050 Ω sense resistor, The voltage drop is amplified by ten times by the amplifier and then measured by the ADC. The 1.5 A current creates a differential voltage across the sense resistor of 75 mV. This becomes 750 mV after amplification. Thus, the ADC measures a current of 1.5 A as 750 mV. Using an ADC with 8-bit resolution and VAREF of 2.56 V, the ADC result is decimal 75. EQ 3 shows how to compute the current from the ADC result.

$$||| = (ADC \times V_{AREF}) / (10 \times 2^{N} \times R_{sense})$$

EQ 3

where

I is the current flowing through the sense resistor

ADC is the result from the ADC

VAREF is the Reference voltage

N is the number of bits

Rsense is the resistance of the sense resistor

Figure 2-72 • Positive Current Monitor

Care must be taken when choosing the right resistor for current measurement application. Note that because of the 10× amplification, the maximum measurable difference between the AV and AC pads is V_{AREF} / 10. A larger AV-to-AC voltage drop will result in ADC saturation; that is, the digital code put out by the ADC will stay fixed at the full scale value. Therefore, the user must select the external sense resistor appropriately. Table 2-38 shows recommended resistor values for different current measurement ranges. When choosing resistor values for a system, there is a trade-off between measurement accuracy and power consumption. Choosing a large resistor will increase the voltage drop and hence increase accuracy of the measurement; however the larger voltage drop dissipates more power (P = I² × R).

The Current Monitor is a unipolar system, meaning that the differential voltage swing must be from 0 V to $V_{AREF}/10$. Therefore, the Current Monitor only supports differential voltage where $|V_{AV}-V_{AC}|$ is greater than 0 V. This results in the requirement that the potential of the AV pad must be larger than the potential of the AC pad. This is straightforward for positive voltage systems. For a negative voltage system, it means that the AV pad must be "more negative" than the AC pad. This is shown in Figure 2-73.

In this case, both the AV pad and the AC pad are configured for negative operations and the output of the differential amplifier still falls between 0 V and V_{AREF} as required.

Current Range	Recommended Minimum Resistor Value (Ohms)
> 5 mA – 10 mA	10 – 20
> 10 mA – 20 mA	5 – 10
> 20 mA – 50 mA	2.5 – 5
> 50 mA – 100 mA	1 – 2
> 100 mA – 200 mA	0.5 – 1
> 200 mA – 500 mA	0.3 – 0.5
> 500 mA – 1 A	0.1 – 0.2
> 1 A – 2 A	0.05 – 0.1
> 2 A – 4 A	0.025 – 0.05
> 4 A – 8 A	0.0125 – 0.025
> 8 A – 12 A	0.00625 – 0.02

Table 2-37 • Recommended Resistor for Different Current Range Measurement

Analog MUX Channel	Signal	Analog Quad Number
16	AV5	
17	AC5	Analog Quad 5
18	AT5	
19	AV6	
20	AC6	Analog Quad 6
21	AT6	
22	AV7	
23	AC7	Analog Quad 7
24	AT7	
25	AV8	
26	AC8	Analog Quad 8
27	AT8	
28	AV9	
29	AC9	Analog Quad 9
30	AT9	
31	Internal temperature monitor	

Table 2-40 • Analog MUX Channels (continued)

The ADC can be powered down independently of the FPGA core, as an additional control or for powersaving considerations, via the PWRDWN pin of the Analog Block. The PWRDWN pin controls only the comparators in the ADC.

ADC Modes

The Fusion ADC can be configured to operate in 8-, 10-, or 12-bit modes, power-down after conversion, and dynamic calibration. This is controlled by MODE[3:0], as defined in Table 2-41 on page 2-106.

The output of the ADC is the RESULT[11:0] signal. In 8-bit mode, the Most Significant 8 Bits RESULT[11:4] are used as the ADC value and the Least Significant 4 Bits RESULT[3:0] are logical '0's. In 10-bit mode, RESULT[11:2] are used the ADC value and RESULT[1:0] are logical 0s.

Name	Bits	Function
MODE	3	 0 – Internal calibration after every conversion; two ADCCLK cycles are used after the conversion. 1 – No calibration after every conversion
MODE	2	0 – Power-down after conversion 1 – No Power-down after conversion
MODE	1:0	00 – 10-bit 01 – 12-bit 10 – 8-bit 11 – Unused

Table 2-50 • ADC Characteristics in Direct Input ModeCommercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise),Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Direct Input	using Analog Pad AV, AC, A	Г				
VINADC	Input Voltage (Direct Input)	Refer to Table 3-2 on page 3-3				
CINADC	Input Capacitance	Channel not selected		7		pF
		Channel selected but not sampling		8		pF
		Channel selected and sampling		18		pF
ZINADC	Input Impedance	8-bit mode		2		kΩ
		10-bit mode		2		kΩ
		12-bit mode		2		kΩ
Analog Refe	erence Voltage VAREF					
VAREF	Accuracy	T _J = 25°C	2.537	2.56	2.583	V
	Temperature Drift of Internal Reference			65		ppm / °C
	External Reference		2.527		VCC33A + 0.05	V
ADC Accura	acy (using external reference) 1,2				
DC Accurac	y					
TUE	Total Unadjusted Error	8-bit mode		LSB		
		10-bit mode		0.7	72	LSB
		12-bit mode		1.	8	LSB
INL	Integral Non-Linearity	8-bit mode		0.20	0.25	LSB
		10-bit mode		0.32	0.43	LSB
		12-bit mode		1.71	1.80	LSB
DNL	Differential Non-Linearity (no missing code)	8-bit mode		0.20	0.24	LSB
		10-bit mode		0.60	0.65	LSB
		12-bit mode		2.40	2.48	LSB
	Offset Error	8-bit mode		0.01	0.17	LSB
		10-bit mode		0.05	0.20	LSB
		12-bit mode		0.20	0.40	LSB
	Gain Error	8-bit mode		0.0004	0.003	LSB
		10-bit mode		0.002	0.011	LSB
		12-bit mode		0.007	0.044	LSB
	Gain Error (with internal reference)	All modes		2		% FSR

Notes:

1. Accuracy of the external reference is 2.56 V \pm 4.6 mV.

2. Data is based on characterization.

3. The sample rate is time-shared among active analog inputs.

Table 2-50 • ADC Characteristics in Direct Input Mode (continued)

Commercial Temperature Range Conditions, $T_J = 85^{\circ}C$ (unless noted otherwise), Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Dynamic Pe	erformance					
SNR	Signal-to-Noise Ratio	8-bit mode	48.0	49.5		dB
		10-bit mode	58.0	60.0		dB
		12-bit mode	62.9	64.5		dB
SINAD	Signal-to-Noise Distortion	8-bit mode	47.6	49.5		dB
		10-bit mode	57.4	59.8		dB
		12-bit mode	62.0	64.2		dB
THD	Total Harmonic Distortion	8-bit mode		-74.4	-63.0	dBc
		10-bit mode		-78.3	-63.0	dBc
		12-bit mode		-77.9	-64.4	dBc
ENOB	Effective Number of Bits	8-bit mode	7.6	7.9		bits
		10-bit mode	9.5	9.6		bits
		12-bit mode	10.0	10.4		bits
Conversion	Rate					
	Conversion Time	8-bit mode	1.7			μs
		10-bit mode	1.8			μs
		12-bit mode	2			μs
	Sample Rate	8-bit mode			600	Ksps
		10-bit mode			550	Ksps
		12-bit mode			500	Ksps

Notes:

1. Accuracy of the external reference is 2.56 V \pm 4.6 mV.

2. Data is based on characterization.

3. The sample rate is time-shared among active analog inputs.

Table 2-96 • I/O Output Buffer Maximum Resistances ¹ (continued)

Standard	Drive Strength	R _{PULL-DOWN} (ohms) ²	R _{PULL-UP} (ohms) ³
HSTL (I)	8 mA	50	50
HSTL (II)	15 mA	25	25
SSTL2 (I)	17 mA	27	31
SSTL2 (II)	21 mA	13	15
SSTL3 (I)	16 mA	44	69
SSTL3 (II)	24 mA	18	32
Applicable to Advanced I/O Ba	nks		•
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
	24 mA	11	22
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
	12 mA	20	22
	16 mA	20	22
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

 These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/soc/techdocs/models/ibis.html.

2. R_(PULL-DOWN-MAX) = VOLspec / I_{OLspec}

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

Table 2-175 • Parameter Definitions and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
t _{OSUD}	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
t _{OSUE}	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
t _{OESUE}	Enable Setup Time for the Output Enable Register	КК, НН
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
tIRECCLR	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Note: *See Figure 2-138 on page 2-214 for more information.

Output DDR

Figure 2-144 • Output DDR Timing Model

Table 2-181 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (From, To)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	A, B
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	А, В
t _{DDROHD2}	Data Hold Data_R	D, B

The 1.76 W power is less than the required 3.00 W. The design therefore requires a heat sink, or the airflow where the device is mounted should be increased. The design's total junction-to-air thermal resistance requirement can be estimated by EQ 7:

$$\theta_{ja(total)} = \frac{T_J - T_A}{P} = \frac{100^{\circ}C - 70^{\circ}C}{3.00 W} = 10.00^{\circ}C/W$$

Determining the heat sink's thermal performance proceeds as follows:

$$\theta_{\text{JA(TOTAL)}} = \theta_{\text{JC}} + \theta_{\text{CS}} + \theta_{\text{SA}}$$

EQ 8

EQ 7

where

- $\theta_{JA} = 0.37^{\circ}C/W$
 - Thermal resistance of the interface material between the case and the heat sink, usually provided by the thermal interface manufacturer

 θ_{SA} = Thermal resistance of the heat sink in °C/W

$$\theta_{SA} = \theta_{JA(TOTAL)} - \theta_{JC} - \theta_{CS}$$

EQ 9

$$\theta_{SA} = 13.33^{\circ}C/W - 8.28^{\circ}C/W - 0.37^{\circ}C/W = 5.01^{\circ}C/W$$

A heat sink with a thermal resistance of 5.01°C/W or better should be used. Thermal resistance of heat sinks is a function of airflow. The heat sink performance can be significantly improved with increased airflow.

Carefully estimating thermal resistance is important in the long-term reliability of an Microsemi FPGA. Design engineers should always correlate the power consumption of the device with the maximum allowable power dissipation of the package selected for that device.

Note: The junction-to-air and junction-to-board thermal resistances are based on JEDEC standard (JESD-51) and assumptions made in building the model. It may not be realized in actual application and therefore should be used with a degree of caution. Junction-to-case thermal resistance assumes that all power is dissipated through the case.

Temperature and Voltage Derating Factors

Table 3-7 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V)

Array Voltage	Junction Temperature (°C)					
VCC (V)	–40°C	0°C	25°C	70°C	85°C	100°C
1.425	0.88	0.93	0.95	1.00	1.02	1.05
1.500	0.83	0.88	0.90	0.95	0.96	0.99
1.575	0.80	0.85	0.87	0.91	0.93	0.96

Methodology

Total Power Consumption—PTOTAL

Operating Mode, Standby Mode, and Sleep Mode

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

Operating Mode

 $\label{eq:pstat} \begin{array}{l} \mathsf{P}_{\mathsf{STAT}} = \mathsf{PDC1} + (\mathsf{N}_{\mathsf{NVM-BLOCKS}} * \mathsf{PDC4}) + \mathsf{PDC5} + (\mathsf{N}_{\mathsf{QUADS}} * \mathsf{PDC6}) + (\mathsf{N}_{\mathsf{INPUTS}} * \mathsf{PDC7}) + (\mathsf{N}_{\mathsf{OUTPUTS}} * \mathsf{PDC8}) + (\mathsf{N}_{\mathsf{PLLS}} * \mathsf{PDC9}) \end{array}$

 $N_{\ensuremath{\mathsf{NVM}}\xspace-BLOCKS}$ is the number of NVM blocks available in the device.

 N_{QUADS} is the number of Analog Quads used in the design.

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

N_{PLLS} is the number of PLLs available in the device.

Standby Mode

P_{STAT} = PDC2

Sleep Mode

P_{STAT} = PDC3

Total Dynamic Power Consumption—P_{DYN}

Operating Mode

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL} + P_{NVM}+ P_{XTL-OSC} + P_{RC-OSC} + P_{AB}

Standby Mode

 $P_{DYN} = P_{XTL-OSC}$

Sleep Mode

 $P_{DYN} = 0 W$

Global Clock Dynamic Contribution—P_{CLOCK}

Operating Mode

 $P_{CLOCK} = (PAC1 + N_{SPINE} * PAC2 + N_{ROW} * PAC3 + N_{S-CELL} * PAC4) * F_{CLK}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *Fusion and Extended Temperature Fusion FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *Fusion and Extended Temperature Fusion FPGA Fabric User's Guide*.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

Standby Mode and Sleep Mode

 $P_{CLOCK} = 0 W$

Sequential Cells Dynamic Contribution—P_{S-CELL}

Operating Mode

Example of Power Calculation

This example considers a shift register with 5,000 storage tiles, including a counter and memory that stores analog information. The shift register is clocked at 50 MHz and stores and reads information from a RAM.

The device used is a commercial AFS600 device operating in typical conditions.

The calculation below uses the power calculation methodology previously presented and shows how to determine the dynamic and static power consumption of resources used in the application.

Also included in the example is the calculation of power consumption in operating, standby, and sleep modes to illustrate the benefit of power-saving modes.

Global Clock Contribution—P_{CLOCK}

 F_{CLK} = 50 MHz Number of sequential VersaTiles: N_{S-CELL} = 5,000 Estimated number of Spines: N_{SPINES} = 5 Estimated number of Rows: N_{ROW} = 313

Operating Mode

$$\begin{split} & \mathsf{P}_{\mathsf{CLOCK}} = (\mathsf{PAC1} + \mathsf{N}_{\mathsf{SPINE}} * \mathsf{PAC2} + \mathsf{N}_{\mathsf{ROW}} * \mathsf{PAC3} + \mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} * \mathsf{PAC4}) * \mathsf{F}_{\mathsf{CLK}} \\ & \mathsf{P}_{\mathsf{CLOCK}} = (0.0128 + 5 * 0.0019 + 313 * 0.00081 + 5,000 * 0.00011) * 50 \\ & \mathsf{P}_{\mathsf{CLOCK}} = 41.28 \ \mathsf{mW} \end{split}$$

Standby Mode and Sleep Mode

 $P_{CLOCK} = 0 W$

Logic—Sequential Cells, Combinational Cells, and Routing Net Contributions— P_{S-CELL} , P_{C-CELL} , and P_{NET}

 $\label{eq:F_CLK} \ensuremath{\mathsf{F_{CLK}}}\xspace = 50 \ensuremath{\,\mathsf{MHz}}\xspace \\ \ensuremath{\mathsf{Number}}\xspace of sequential VersaTiles: \ensuremath{\mathsf{N}_{S-CELL}}\xspace = 5,000 \\ \ensuremath{\mathsf{Number}}\xspace of versaTiles: \ensuremath{\mathsf{N}_{C-CELL}}\xspace = 6,000 \\ \ensuremath{\mathsf{Estimated}}\xspace toggle rate of VersaTile outputs: \ensuremath{\alpha_1}\xspace = 0.1 \ensuremath{\,(10\%)}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{}\xspace \ensuremath{\mathsf{R}}\xspace \ensuremath{}\xspace \ensuremath{$

Operating Mode

$$\begin{split} \mathsf{P}_{S\text{-}CELL} &= \mathsf{N}_{S\text{-}CELL} * (\mathsf{P}_{\mathsf{AC5}}\text{+} (\alpha_1 \, / \, 2) * \mathsf{PAC6}) * \mathsf{F}_{\mathsf{CLK}} \\ \mathsf{P}_{S\text{-}CELL} &= 5,000 * (0.00007 + (0.1 \, / \, 2) * 0.00029) * 50 \\ \mathsf{P}_{S\text{-}CELL} &= 21.13 \text{ mW} \end{split}$$

 $P_{C-CELL} = N_{C-CELL}^* (\alpha_1 / 2) * PAC7 * F_{CLK}$ $P_{C-CELL} = 6,000 * (0.1 / 2) * 0.00029 * 50$ $P_{C-CELL} = 4.35 \text{ mW}$

$$\begin{split} \mathsf{P}_{\mathsf{NET}} &= (\mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} + \mathsf{N}_{\mathsf{C}\text{-}\mathsf{CELL}}) * (\alpha_1 \,/\, 2) * \mathsf{PAC8} * \mathsf{F}_{\mathsf{CLK}} \\ \mathsf{P}_{\mathsf{NET}} &= (5,000 + 6,000) * (0.1 \,/\, 2) * 0.0007 * 50 \\ \mathsf{P}_{\mathsf{NET}} &= 19.25 \text{ mW} \end{split}$$

 $P_{LOGIC} = P_{S-CELL} + P_{C-CELL} + P_{NET}$ $P_{LOGIC} = 21.13 \text{ mW} + 4.35 \text{ mW} + 19.25 \text{ mW}$ $P_{LOGIC} = 44.73 \text{ mW}$

Standby Mode and Sleep Mode

	FG256				
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function	
E13	VCCIB1	VCCIB1	VCCIB2	VCCIB2	
E14	GCC2/IO33NDB1V0	IO42NDB1V0	IO32NDB2V0	IO46NDB2V0	
E15	GCB2/IO33PDB1V0	GBC2/IO42PDB1V0	GBC2/IO32PDB2V0	GBC2/IO46PDB2V0	
E16	GND	GND	GND	GND	
F1	NC	NC	IO79NDB4V0	IO111NDB4V0	
F2	NC	NC	IO79PDB4V0	IO111PDB4V0	
F3	GFB1/IO48PPB3V0	IO72NDB3V0	IO76NDB4V0	IO112NDB4V0	
F4	GFC0/IO49NDB3V0	IO72PDB3V0	IO76PDB4V0	IO112PDB4V0	
F5	NC	NC	IO82PSB4V0	IO120PSB4V0	
F6	GFC1/IO49PDB3V0	GAC2/IO74PPB3V0	GAC2/IO83PPB4V0	GAC2/IO123PPB4V0	
F7	NC	IO09RSB0V0	IO04PPB0V0	IO05PPB0V1	
F8	NC	IO19RSB0V0	IO08NDB0V1	IO11NDB0V1	
F9	NC	NC	IO20PDB1V0	IO27PDB1V1	
F10	NC	IO29RSB0V0	IO23NDB1V1	IO37NDB1V2	
F11	NC	IO43NDB1V0	IO36NDB2V0	IO50NDB2V0	
F12	NC	IO43PDB1V0	IO36PDB2V0	IO50PDB2V0	
F13	NC	IO44NDB1V0	IO39NDB2V0	IO59NDB2V0	
F14	NC	GCA2/IO44PDB1V0	GCA2/IO39PDB2V0	GCA2/IO59PDB2V0	
F15	GCC1/IO34PDB1V0	GCB2/IO45PDB1V0	GCB2/IO40PDB2V0	GCB2/IO60PDB2V0	
F16	GCC0/IO34NDB1V0	IO45NDB1V0	IO40NDB2V0	IO60NDB2V0	
G1	GEC0/IO46NPB3V0	IO70NPB3V0	IO74NPB4V0	IO109NPB4V0	
G2	VCCIB3	VCCIB3	VCCIB4	VCCIB4	
G3	GEC1/IO46PPB3V0	GFB2/IO70PPB3V0	GFB2/IO74PPB4V0	GFB2/IO109PPB4V0	
G4	GFA1/IO47PDB3V0	GFA2/IO71PDB3V0	GFA2/IO75PDB4V0	GFA2/IO110PDB4V0	
G5	GND	GND	GND	GND	
G6	GFA0/IO47NDB3V0	IO71NDB3V0	IO75NDB4V0	IO110NDB4V0	
G7	GND	GND	GND	GND	
G8	VCC	VCC	VCC	VCC	
G9	GND	GND	GND	GND	
G10	VCC	VCC	VCC	VCC	
G11	GDA1/IO37NDB1V0	GCC0/IO47NDB1V0	GCC0/IO43NDB2V0	GCC0/IO62NDB2V0	
G12	GND	GND	GND	GND	
G13	IO37PDB1V0	GCC1/IO47PDB1V0	GCC1/IO43PDB2V0	GCC1/IO62PDB2V0	
G14	GCB0/IO35NPB1V0	IO46NPB1V0	IO41NPB2V0	IO61NPB2V0	
G15	VCCIB1	VCCIB1	VCCIB2	VCCIB2	
G16	GCB1/IO35PPB1V0	GCC2/IO46PPB1V0	GCC2/IO41PPB2V0	GCC2/IO61PPB2V0	
H1	GEB1/IO45PDB3V0	GFC2/IO69PDB3V0	GFC2/IO73PDB4V0	GFC2/IO108PDB4V0	
H2	GEB0/IO45NDB3V0	IO69NDB3V0	IO73NDB4V0	IO108NDB4V0	

Pin Number AF\$090 Function AF\$250 Function AF\$600 Function AF\$1500 Function M15 TRST TRST TRST TRST TRST M16 GND GND GND GND GND N11 GEB2/IO42PDB3V0 GEB2/IO59PDB4V0 GEB2/IO59PDB4V0 GEB2/IO59PDB4V0 GEB2/IO59PDB4V0 N2 GEA2/IO42PDB3V0 IO59NDB4V0 IO68NDB4V0 IO68NDB4V0 N3 NC GEA2/IO59PDB3V0 GEA2/IO59PDB4V0 GEA2/IO39PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC15A VCC15A N6 NC NC AG3 AG3 AG3 AG3 N8 AG3 AG3 AG4 AG4 AG6 AG6 N10 AG4 AG4 AG6 AG6 AG6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA N14 VCCNVM VCCNVM VCCNVM VCCNVM N14 </th <th colspan="5">FG256</th>	FG256				
M15 TRST TRST TRST TRST M16 GND GND GND GND GND N1 GEB2/IO42PDB3V0 GEB2/IO59PDB3V0 GEB2/IO59PDB4V0 GEB2/IO42PDB3V0 IO58NDB4V0 IO58NDB4V0 IO58NDB4V0 N2 GEA2/IO42PDB3V0 GEA2/IO42PDB3V0 GEA2/IO45PPB4V0 GEA2/IO45NDB4V0 IO58NDB4V0 IOC33PMP VCC33PMP VCC33PMP VCC38PMP VCC38PMP	Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function
M16 GND GND GND GND N1 GEB2/O42PDB3V0 GEB2/O59PDB3V0 GEB2/O59PDB4V0 GEB2/O68PDB4V0 N2 GEA2/O42DDB3V0 IO59NDB3V0 GED2/O58PDB4V0 GEA2/O68PPB4V0 N3 NC GEA2/O58PPB3V0 GEA2/O58PPB4V0 GEA2/O58PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG0 AG0 N7 AC1 AC1 AC3 AC3 N8 AG3 AG3 AG5 AS5 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA N14 VCCNVM VCCNVM VCCNVM VCCNVM N14 VCCNVM VCCNVM VCCNVM VCCNVM N14 VCCNVM VCCNVM VCCNVM VCCNVM	M15	TRST	TRST	TRST	TRST
N1 GEB2/I042PDB3V0 GEB2/I059PDB3V0 GEB2/I059PDB4V0 GEB2/I068PDB4V0 N2 GEA2/I042NDB3V0 I059NDB3V0 GE9NDB4V0 GEA2/I068PDB4V0 N3 NC GEA2/I058PPB3V0 GEA2/I058PPB4V0 GEA2/I068PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG0 AG3 N8 AG3 AG3 AG5 AG3 N8 AG3 AG3 AV5 AV5 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA N13 VCC33A VCC33A VCC33A VCC33A N14 VCCNVM VCCNVM VCCNVM VCCNVM N15 TCK TCK TCK TCK N16 TDI TDI TDI TDI	M16	GND	GND	GND	GND
N2 GEA2/IO42NDB3V0 IO59NDB3V0 IO59NDB4V0 IO66NDB4V0 N3 NC GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG0 AG3 N8 AG3 AG3 AG5 AG3 N8 AG3 AG3 AV5 AV5 N10 AG4 AG4 AG6 AG8 N11 NC NC AC8 AC8 N11 AG4 AG4 AG6 AG8 N11 NC NC AC8 AC8 N11 NC NC AC8 AC8 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA N13 VCC33A VCC33A VCC33A VCC33A N14 VCCNVM VCCNVM	N1	GEB2/IO42PDB3V0	GEB2/IO59PDB3V0	GEB2/IO59PDB4V0	GEB2/IO86PDB4V0
N3 NC GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG0 AG0 N7 AC1 AC1 AC3 AC3 N8 AG3 AG3 AG5 AG5 N9 AV3 AV3 AV5 AV5 N10 AG4 AG4 AG6 AC6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA N13 VCC33A VCC33A VCC33A VCC33A N14 VCCNVM VCCNVM VCCNVM VCCNVM N15 TCK TCK TCK TCK N16 TDI TDI TDI TDI P1 VCCNVM VCCNVM VCCNVM P2 GNDNVM GNDNVM GNDNVM	N2	GEA2/IO42NDB3V0	IO59NDB3V0	IO59NDB4V0	IO86NDB4V0
N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG0 AG0 N7 AC1 AC1 AC3 AC3 N8 AG3 AG3 AG5 AG5 N9 AV3 AV3 AV5 AV5 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA GNDA N13 VCC33A VCC33A VCC33A VCC33A N14 VCCNVM VCCNVM VCCNVM N15 TCK TCK TCK N16 TDI TDI TDI TDI P1 VCCNVM VCCNVM VCCNVM P2 GNDNVM GNDA GNDA GNDA P4 NC NC AC0 AC0 P5 NC<	N3	NC	GEA2/IO58PPB3V0	GEA2/IO58PPB4V0	GEA2/IO85PPB4V0
N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG0 AG0 N7 AC1 AC1 AC3 AC3 N8 AG3 AG3 AG5 AG5 N9 AV3 AV3 AV5 AV5 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N11 NC NC AC8 AC8 N11 NC NC AC8 AC8 N11 NC NC AC6 AC8 N11 NC NC AC8 AC8 N13 VCC33A VCC33A VCC33A VCC33A N14 VCCNVM VCCNVM VCCNVM VCCNVM N15 TCK TCK TCK TCK N16 TDI TDI TDI TDI P1 VCCNVM VCCNVM VCCNVM P2 GNDA	N4	VCC33PMP	VCC33PMP	VCC33PMP	VCC33PMP
N6NCNCAG0AG0N7AC1AC1AC3AC3N8AG3AG3AG5AG5N9AV3AV3AV5AV5N10AG4AG4AG6AG6N11NCNCAC8AC8N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TD1TD1TD1TD1P1VCCNVMVCCNVMVCCNVMP2GNDAGNDAGNDAP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAC0P6NCNCAG1AG0AG2AG2P7AG0AG0AG2P8AG2AG2P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAG8P12NCNCAG8P13NCNCAV9P14ADCGNDREFADCGNDREFADCGNDREFADCGNDREFADCGNDREFP16GNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4VCCIB3VCCIB3R4NCNCAT0R4NCNCAT0	N5	VCC15A	VCC15A	VCC15A	VCC15A
N7AC1AC1AC3AC3N8AG3AG3AG5AG5N9AV3AV3AV5AV5N10AG4AG4AG6AG6N11NCNCAC8AC8N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMN15TCKTCKTCKN16TD1TD1TD1P1VCCNVMVCCNVMVCCNVMP2GNDAGNDAGNDAGNDAGNDAGNDAGNDAP4NCNCAC0P5NCNCAC1P6NCNCAG1P7AG0AG2AG2P8AG2AG2AG4P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAC8P12NCNCAG8P13NCNCAV9P14ADCGNDREFADCGNDREFADCGNDREFADCGNDREFADCGNDREFP16GNDNVMGNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R2PCAPPCAPPCAPPCAPPCAPPCAPPCAPPCAPPCAPPCAPPCAPPCAPR4NCNCAT0AT0 <td>N6</td> <td>NC</td> <td>NC</td> <td>AG0</td> <td>AG0</td>	N6	NC	NC	AG0	AG0
N8AG3AG3AG5AG5N9AV3AV3AV5AV5N10AG4AG4AG6AG6N11NCNCAC8AC8N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDAGNDAGNDAGNDAGNDAGNDAGNDAP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAC1P6NCNCAG2P7AG0AG0AG2P8AG2AG2AG4P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAV8P12NCNCAV8P14ADCGNDREFADCGNDREFP15PTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4VCCIB4VCCIB4R4NCNCAT0	N7	AC1	AC1	AC3	AC3
N9AV3AV3AV5AV5N10AG4AG4AG6AG6N11NCNCAC8AG6N11NCNCAC8AC8N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAC1AG1P6NCNCAG2AG2P7AG0AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAC8AV8P12NCNCAV9AV9P14ADCGNDREFADCGNDREFADCGNDREFP15PTBASEPTBASEPTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4R2PCAPPCAPPCAPR3NCNCAT0AT0	N8	AG3	AG3	AG5	AG5
N10AG4AG4AG6AG6N11NCNCAC8AC8N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDNVMGNDAGNDAP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAC1P6NCNCAC2P7AG0AG2AG2P8AG2AG2AG4P9GNDAGNDAGNDAP11NCNCAC7P7AG0AG2AG2P8AG2AG2AG2P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAV8P12NCNCAV8P14ADCGNDREFADCGNDREFP15PTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4VCCIB4R4NCNCAT0AT0AT0	N9	AV3	AV3	AV5	AV5
N11NCNCAC8AC8N12GNDAGNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAC1P6NCNCAC2P8AG2AG2AG2P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAG8P44NCNCAC9P55NCNCAC1AG0AG0AG2P6NCNCAC4P7AG0AG0AG2AG2AG2AG2AG2AG4AG2AG2AG3NCNCAV8AV8P13NCNCP14ADCGNDREFADCGNDREFADCGNDREFADCGNDREFP15PTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB4VCCIB4VCCIB4VCCIB4R2PCAPPCAPR3NCNCAT0R4NCNCAT0AT0<	N10	AG4	AG4	AG6	AG6
N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDAGNDAGNDAGNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAC1AG1P6NCNCAC2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP11NCNCAC7AC7P11NCNCAG8AG8P13NCNCAC6AV8P14ADCGNDREFADCGNDREFADCGNDREFP15PTBASEPTBASEPTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB4VCCIB4R4NCNCAT0AT0	N11	NC	NC	AC8	AC8
N13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAG1P6NCNCAG2P7AG0AG2AG2P8AG2AG2AG4P9GNDAGNDAGNDAP11NCNCAC7P7AG0AG2AG2P8AG2AG2AG4P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAV8P12NCNCAV9P14ADCGNDREFADCGNDREFP15PTBASEPTBASEP16GNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R2PCAPPCAPPCAPPCAPR3NCNCNCAT1AT1R4NC	N12	GNDA	GNDA	GNDA	GNDA
N14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKTCKN16TDITDITDITDITDIP1VCCNVMVCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAV1AV1P7AG0AG2AG2AG2P8AG2AG2AG4GNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAV9AV9P14ADCGNDREFADCGNDREFADCGNDREFADCGNDREFP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R4NCNCAT0AT0	N13	VCC33A	VCC33A	VCC33A	VCC33A
N15TCKTCKTCKTCKN16TDITDITDITDITDIP1VCCNVMVCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAC8AG8P12NCNCAG8AG8P13NCNCAC9AV9P14ADCGNDREFADCGNDREFADCGNDREFP15PTBASEPTBASEPTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R4NCNCAT0AT0	N14	VCCNVM	VCCNVM	VCCNVM	VCCNVM
N16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAV1AV1P7AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAG8AG8P13NCNCAC9AV9P14ADCGNDREFADCGNDREFADCGNDREFADCGNDREFP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R2PCAPPCAPPCAPPCAPR3NCNCAT0AT0	N15	TCK	TCK	TCK	TCK
P1VCCNVMVCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAV1AV1P7AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAV9AV9P14ADCGNDREFADCGNDREFADCGNDREFADCGNDREFP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R4NCNCAT0AT0	N16	TDI	TDI	TDI	TDI
P2GNDNVMGNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAV1AV1P7AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAC8AV8P12NCNCAG8AG8P13NCNCAV9AV9P16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R2PCAPPCAPPCAPPCAPR3NCNCAT0AT0	P1	VCCNVM	VCCNVM	VCCNVM	VCCNVM
P3GNDAGNDAGNDAGNDAP4NCNCNCAC0P5NCNCNCAG1P6NCNCAV1AV1P7AG0AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAC8AG8P12NCNCAV9AV9P14ADCGNDREFADCGNDREFADCGNDREFP15PTBASEPTBASEPTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R4NCNCAT0AT0	P2	GNDNVM	GNDNVM	GNDNVM	GNDNVM
P4NCNCAC0AC0P5NCNCNCAG1AG1P6NCNCAV1AV1P7AG0AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAG8AG8P12NCNCAG8AG8P13NCNCADCGNDREFADCGNDREFP15PTBASEPTBASEPTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R2PCAPPCAPPCAPPCAPR3NCNCAT0AT0	P3	GNDA	GNDA	GNDA	GNDA
P5NCNCAG1AG1P6NCNCNCAV1AV1P7AG0AG0AG2AG2P8AG2AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAG8AG8P13NCNCAV9AV9P14ADCGNDREFADCGNDREFADCGNDREFADCGNDREFP15PTBASEPTBASEPTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R2PCAPPCAPPCAPPCAPR3NCNCAT1AT1R4NCNCAT0AT0	P4	NC	NC	AC0	AC0
P6NCNCAV1AV1P7AG0AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAG8AG8P13NCNCAV9AV9P14ADCGNDREFADCGNDREFADCGNDREFADCGNDREFP15PTBASEPTBASEPTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R3NCNCAT1AT1R4NCNCAT0AT0	P5	NC	NC	AG1	AG1
P7AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAC8AV8P12NCNCAG8AG8P13NCNCAV9AV9P14ADCGNDREFADCGNDREFADCGNDREFADCGNDREFP15PTBASEPTBASEPTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R2PCAPPCAPPCAPPCAPR3NCNCAT1AT1R4NCNCAT0AT0	P6	NC	NC	AV1	AV1
P8AG2AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAG8AG8P13NCNCAV9AV9P14ADCGNDREFADCGNDREFADCGNDREFADCGNDREFP15PTBASEPTBASEPTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R2PCAPPCAPPCAPPCAPR3NCNCAT0AT0	P7	AG0	AG0	AG2	AG2
P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAG8AG8P13NCNCAV9AV9P14ADCGNDREFADCGNDREFADCGNDREFADCGNDREFP15PTBASEPTBASEPTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R2PCAPPCAPPCAPPCAPR3NCNCAT1AT1R4NCNCAT0AT0	P8	AG2	AG2	AG4	AG4
P10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAG8AG8P13NCNCAV9AV9P14ADCGNDREFADCGNDREFADCGNDREFADCGNDREFP15PTBASEPTBASEPTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R2PCAPPCAPPCAPPCAPR3NCNCAT1AT1R4NCNCAT0AT0	P9	GNDA	GNDA	GNDA	GNDA
P11NCNCAV8AV8P12NCNCAG8AG8P13NCNCAV9AV9P14ADCGNDREFADCGNDREFADCGNDREFADCGNDREFP15PTBASEPTBASEPTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R2PCAPPCAPPCAPPCAPR3NCNCAT0AT0	P10	NC	AC5	AC7	AC7
P12NCNCAG8AG8P13NCNCAV9AV9P14ADCGNDREFADCGNDREFADCGNDREFADCGNDREFP15PTBASEPTBASEPTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R2PCAPPCAPPCAPPCAPR3NCNCAT1AT1R4NCNCAT0AT0	P11	NC	NC	AV8	AV8
P13NCNCAV9P14ADCGNDREFADCGNDREFADCGNDREFADCGNDREFP15PTBASEPTBASEPTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R2PCAPPCAPPCAPPCAPR3NCNCAT1AT1R4NCNCAT0AT0	P12	NC	NC	AG8	AG8
P14ADCGNDREFADCGNDREFADCGNDREFADCGNDREFP15PTBASEPTBASEPTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R2PCAPPCAPPCAPPCAPR3NCNCAT1AT1R4NCNCAT0AT0	P13	NC	NC	AV9	AV9
P15PTBASEPTBASEPTBASEPTBASEP16GNDNVMGNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4VCCIB4R2PCAPPCAPPCAPPCAPR3NCNCAT1AT1R4NCNCAT0AT0	P14	ADCGNDREF	ADCGNDREF	ADCGNDREF	ADCGNDREF
P16GNDNVMGNDNVMGNDNVMR1VCCIB3VCCIB3VCCIB4R2PCAPPCAPPCAPR3NCNCAT1AT1R4NCNCAT0AT0	P15	PTBASE	PTBASE	PTBASE	PTBASE
R1VCCIB3VCCIB3VCCIB4VCCIB4R2PCAPPCAPPCAPPCAPR3NCNCAT1AT1R4NCNCAT0AT0	P16	GNDNVM	GNDNVM	GNDNVM	GNDNVM
R2PCAPPCAPPCAPR3NCNCAT1AT1R4NCNCAT0AT0	R1	VCCIB3	VCCIB3	VCCIB4	VCCIB4
R3 NC NC AT1 AT1 R4 NC NC AT0 AT0	R2	PCAP	PCAP	PCAP	PCAP
R4 NC NC ATO ATO	R3	NC	NC	AT1	AT1
	R4	NC	NC	AT0	AT0

Datasheet Information

Revision	Changes	Page
Advance v1.0 (January 2008)	All Timing Characteristics tables were updated. For the Differential I/O Standards, the Standard I/O support tables are new.	
	Table 2-3 • Array Coordinates was updated to change the max x and y values	2-9
	Table 2-12 • Fusion CCC/PLL Specification was updated.	2-31
	A note was added to Table 2-16 · RTC ACM Memory Map.	2-37
	A reference to the Peripheral's User's Guide was added to the "Voltage Regulator Power Supply Monitor (VRPSM)" section.	2-42
	In Table 2-25 • Flash Memory Block Timing, the commercial conditions were updated.	2-55
	In Table 2-26 • FlashROM Access Time, the commercial conditions were missing and have been added below the title of the table.	2-58
	In Table 2-36 • Analog Block Pin Description, the function description was updated for the ADCRESET.	2-82
	In the "Voltage Monitor" section, the following sentence originally had \pm 10% and it was changed to +10%.	2-86
	The Analog Quad inputs are tolerant up to 12 V + 10%.	
	In addition, this statement was deleted from the datasheet:	
	Each I/O will draw power when connected to power (3 mA at 3 V).	0.00
	The "Terminology" section is new.	2-88
	The "Current Monitor" section was significantly updated. Figure 2-72 • Timing Diagram for Current Monitor Strobe to Figure 2-74 • Negative Current Monitor and Table 2-37 • Recommended Resistor for Different Current Range Measurement are new.	2-90
	The "ADC Description" section was updated to add the "Terminology" section.	2-93
	In the "Gate Driver" section, 25 mA was changed to 20 mA and 1.5 MHz was changed to 1.3 MHz. In addition, the following sentence was deleted: The maximum AG pad switching frequency is 1.25 MHz.	2-94
	The "Temperature Monitor" section was updated to rewrite most of the text and add Figure 2-78, Figure 2-79, and Table 2-38 • Temperature Data Format.	2-96
	In Table 2-38 • Temperature Data Format, the temperature K column was changed for 85°C from 538 to 358.	2-98
	In Table 2-45 • ADC Interface Timing, "Typical-Case" was changed to "Worst-Case."	2-110
	The "ADC Interface Timing" section is new.	2-110
	Table 2-46 • Analog Channel Specifications was updated.	2-118
	The "V _{CC15A} Analog Power Supply (1.5 V)" section was updated.	2-224
	The "V _{CCPLA/B} PLL Supply Voltage" section is new.	2-225
	In "V $_{\rm CCNVM}$ Flash Memory Block Power Supply (1.5 V)" section, supply was changed to supply input.	2-224
	The "V_{CCPLAVB} PLL Supply Voltage" pin description was updated to include the following statement:	2-225
	Actel recommends tying VCCPLX to VCC and using proper filtering circuits to decouple V_{CC} noise from PLL.	
	The "V _{COMPLA/B} Ground for West and East PLL" section was updated.	2-225