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Fusion Family of Mixed Signal FPGAs
Embedded Memories

Flash Memory Blocks

The flash memory available in each Fusion device is composed of one to four flash blocks, each 2 Mbits
in density. Each block operates independently with a dedicated flash controller and interface. Fusion
flash memory blocks combine fast access times (60 ns random access and 10 ns access in Read-Ahead
mode) with a configurable 8-, 16-, or 32-bit datapath, enabling high-speed flash operation without wait
states. The memory block is organized in pages and sectors. Each page has 128 bytes, with 33 pages
comprising one sector and 64 sectors per block. The flash block can support multiple partitions. The only
constraint on size is that partition boundaries must coincide with page boundaries. The flexibility and
granularity enable many use models and allow added granularity in programming updates. 

Fusion devices support two methods of external access to the flash memory blocks. The first method is a
serial interface that features a built-in JTAG-compliant port, which allows in-system programmability
during user or monitor/test modes. This serial interface supports programming of an AES-encrypted
stream. Data protected with security measures can be passed through the JTAG interface, decrypted,
and then programmed in the flash block. The second method is a soft parallel interface. 

FPGA logic or an on-chip soft microprocessor can access flash memory through the parallel interface.
Since the flash parallel interface is implemented in the FPGA fabric, it can potentially be customized to
meet special user requirements. For more information, refer to the CoreCFI Handbook. The flash
memory parallel interface provides configurable byte-wide (×8), word-wide (×16), or dual-word-wide
(×32) data-port options. Through the programmable flash parallel interface, the on-chip and off-chip
memories can be cascaded for wider or deeper configurations. 

The flash memory has built-in security. The user can configure either the entire flash block or the small
blocks to protect against unintentional or intrusive attempts to change or destroy the storage contents.
Each on-chip flash memory block has a dedicated controller, enabling each block to operate
independently.

The flash block logic consists of the following sub-blocks:

• Flash block – Contains all stored data. The flash block contains 64 sectors and each sector
contains 33 pages of data.

• Page Buffer – Contains the contents of the current page being modified. A page contains 8 blocks
of data.

• Block Buffer – Contains the contents of the last block accessed. A block contains 128 data bits.

• ECC Logic – The flash memory stores error correction information with each block to perform
single-bit error correction and double-bit error detection on all data blocks.

User Nonvolatile FlashROM 
In addition to the flash blocks, Fusion devices have 1 Kbit of user-accessible, nonvolatile FlashROM 
on-chip. The FlashROM is organized as 8×128-bit pages. The FlashROM can be used in diverse system
applications: 

• Internet protocol addressing (wireless or fixed)

• System calibration settings

• Device serialization and/or inventory control

• Subscription-based business models (for example, set-top boxes)

• Secure key storage for communications algorithms protected by security

• Asset management/tracking

• Date stamping

• Version management

The FlashROM is written using the standard IEEE 1532 JTAG programming interface. Pages can be
individually programmed (erased and written). On-chip AES decryption can be used selectively over
public networks to load data such as security keys stored in the FlashROM for a user design. 

The FlashROM can be programmed (erased and written) via the JTAG programming interface, and its
contents can be read back either through the JTAG programming interface or via direct FPGA core
addressing.
Revision 6 1-6

http://www.microsemi.com/soc/ipdocs/CoreCFI_HB.pdf


2 – Device Architecture

Fusion Stack Architecture
To manage the unprecedented level of integration in Fusion devices, Microsemi developed the Fusion
technology stack (Figure 2-1). This layered model offers a flexible design environment, enabling design
at very high and very low levels of abstraction. Fusion peripherals include hard analog IP and hard and
soft digital IP. Peripherals communicate across the FPGA fabric via a layer of soft gates—the Fusion
backbone. Much more than a common bus interface, this Fusion backbone integrates a micro-sequencer
within the FPGA fabric and configures the individual peripherals and supports low-level processing of
peripheral data. Fusion applets are application building blocks that can control and respond to
peripherals and other system signals. Applets can be rapidly combined to create large applications. The
technology is scalable across devices, families, design types, and user expertise, and supports a 
well-defined interface for external IP and tool integration.

At the lowest level, Level 0, are Fusion peripherals. These are configurable functional blocks that can be
hardwired structures such as a PLL or analog input channel, or soft (FPGA gate) blocks such as a UART
or two-wire serial interface. The Fusion peripherals are configurable and support a standard interface to
facilitate communication and implementation.

Connecting and controlling access to the peripherals is the Fusion backbone, Level 1. The backbone is a
soft-gate structure, scalable to any number of peripherals. The backbone is a bus and much more; it
manages peripheral configuration to ensure proper operation. Leveraging the common peripheral
interface and a low-level state machine, the backbone efficiently offloads peripheral management from
the system design. The backbone can set and clear flags based upon peripheral behavior and can define
performance criteria. The flexibility of the stack enables a designer to configure the silicon, directly
bypassing the backbone if that level of control is desired.

One step up from the backbone is the Fusion applet, Level 2. The applet is an application building block
that implements a specific function in FPGA gates. It can react to stimuli and board-level events coming
through the backbone or from other sources, and responds to these stimuli by accessing and
manipulating peripherals via the backbone or initiating some other action. An applet controls or responds
to the peripheral(s). Applets can be easily imported or exported from the design environment. The applet
structure is open and well-defined, enabling users to import applets from Microsemi, system developers,
third parties, and user groups.

Note: Levels 1, 2, and 3 are implemented in FPGA logic gates.

Figure 2-1 • Fusion Architecture Stack
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Fusion Family of Mixed Signal FPGAs
CCC and PLL Characteristics
Timing Characteristics

Table 2-12 • Fusion CCC/PLL Specification

Parameter Min. Typ. Max. Unit

Clock Conditioning Circuitry Input Frequency fIN_CCC 1.5 350 MHz

Clock Conditioning Circuitry Output Frequency fOUT_CCC 0.75 350 MHz

Delay Increments in Programmable Delay Blocks1, 2 1603 ps

Number of Programmable Values in Each Programmable
Delay Block

32

Input Period Jitter 1.5 ns

CCC Output Peak-to-Peak Period Jitter FCCC_OUT Max Peak-to-Peak Period Jitter

1 Global 
Network 

Used

3 Global 
Networks 

Used

0.75 MHz to 24 MHz 1.00% 1.00%

24 MHz to 100 MHz 1.50% 1.50%

100 MHz to 250 MHz 2.25% 2.25%

250 MHz to 350 MHz 3.50% 3.50%

Acquisition Time LockControl = 0 300 µs

LockControl = 1 6.0 ms

Tracking Jitter4 LockControl = 0 1.6 ns

LockControl = 1 0.8 ns

Output Duty Cycle 48.5 51.5 %

Delay Range in Block: Programmable Delay 1 1, 2 0.6 5.56 ns

Delay Range in Block: Programmable Delay 2 1, 2 0.025 5.56 ns

Delay Range in Block: Fixed Delay 1, 2 2.2 ns

Notes:

1. This delay is a function of voltage and temperature. See Table 3-7 on page 3-9 for deratings.
2. TJ = 25°C, VCC = 1.5 V

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay
increments are available. Refer to the Libero SoC Online Help associated with the core for more information.

4. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge.
Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.
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Fusion Family of Mixed Signal FPGAs
Data operations are performed in widths of 1 to 4 bytes. A write to a location in a page that is not already
in the Page Buffer will cause the page to be read from the FB Array and stored in the Page Buffer. The
block that was addressed during the write will be put into the Block Buffer, and the data written by WD will
overwrite the data in the Block Buffer. After the data is written to the Block Buffer, the Block Buffer is then
written to the Page Buffer to keep both buffers in sync. Subsequent writes to the same block will
overwrite the Block Buffer and the Page Buffer. A write to another block in the page will cause the
addressed block to be loaded from the Page Buffer, and the write will be performed as described
previously.

The data width can be selected dynamically via the DATAWIDTH input bus. The truth table for the data
width settings is detailed in Table 2-21. The minimum resolvable address is one 8-bit byte. For data
widths greater than 8 bits, the corresponding address bits are ignored—when DATAWIDTH = 0 (2 bytes),
ADDR[0] is ignored, and when DATAWIDTH = '10' or '11' (4 bytes), ADDR[1:0] are ignored. Data pins are
LSB-oriented and unused WD data pins must be grounded.

Flash Memory Block Protection
Page Loss Protection
When the PAGELOSSPROTECT pin is set to logic 1, it prevents writes to any page other than the
current page in the Page Buffer until the page is either discarded or programmed.

A write to another page while the current page is Page Loss Protected will return a STATUS of '11'.

Overwrite Protection
Any page that is Overwrite Protected will result in the STATUS being set to '01' when an attempt is made
to either write, program, or erase it. To set the Overwrite Protection state for a page, set the
OVERWRITEPROTECT pin when a Program operation is undertaken. To clear the Overwrite Protect
state for a given page, an Unprotect Page operation must be performed on the page, and then the page
must be programmed with the OVERWRITEPROTECT pin cleared to save the new page.

LOCKREQUEST
The LOCKREQUEST signal is used to give the user interface control over simultaneous access of the FB
from both the User and JTAG interfaces. When LOCKREQUEST is asserted, the JTAG interface will hold
off any access attempts until LOCKREQUEST is deasserted.

Flash Memory Block Operations
FB Operation Priority 
The FB provides for priority of operations when multiple actions are requested simultaneously.
Table 2-22 shows the priority order (priority 0 is the highest). 

Table 2-21 • Data Width Settings

DATAWIDTH[1:0] Data Width

00 1 byte [7:0]

01 2 byte [15:0]

10, 11 4 bytes [31:0]

Table 2-22 • FB Operation Priority

Operation Priority

System Initialization 0

FB Reset 1

Read 2

Write 3

Erase Page 4

Program 5

Unprotect Page 6

Discard Page 7
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Device Architecture
SRAM and FIFO
All Fusion devices have SRAM blocks along the north side of the device. Additionally, AFS600 and
AFS1500 devices have an SRAM block on the south side of the device. To meet the needs of high-
performance designs, the memory blocks operate strictly in synchronous mode for both read and write
operations. The read and write clocks are completely independent, and each may operate at any desired
frequency less than or equal to 350 MHz. The following configurations are available:

• 4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—two read, two write or one read, one write)

• 512×9, 256×18 (two-port RAM—one read and one write)

• Sync write, sync pipelined/nonpipelined read

The Fusion SRAM memory block includes dedicated FIFO control logic to generate internal addresses
and external flag logic (FULL, EMPTY, AFULL, AEMPTY). 

During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In
FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by
internal MUXes. Refer to Figure 2-47 for more information about the implementation of the embedded
FIFO controller.

The Fusion architecture enables the read and write sizes of RAMs to be organized independently,
allowing for bus conversion. This is done with the WW (write width) and RW (read width) pins. The
different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1. For example, the write size can
be set to 256×18 and the read size to 512×9.

Both the write and read widths for the RAM blocks can be specified independently with the WW (write
width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and
4k×1.

Refer to the allowable RW and WW values supported for each of the RAM macro types in Table 2-27 on
page 2-58.

When a width of one, two, or four is selected, the ninth bit is unused. For example, when writing 9-bit
values and reading 4-bit values, only the first four bits and the second four bits of each 9-bit value are
addressable for read operations. The ninth bit is not accessible.
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Device Architecture
Table 2-32 • RAM512X18 
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tAS Address setup time 0.25 0.28 0.33 ns 

tAH Address hold time 0.00 0.00 0.00 ns 

tENS REN, WEN setup time 0.09 0.10 0.12 ns 

tENH REN, WEN hold time 0.06 0.07 0.08 ns 

tDS Input data (WD) setup time 0.18 0.21 0.25 ns 

tDH Input data (WD) hold time 0.00 0.00 0.00 ns 

tCKQ1 Clock High to new data valid on RD (output retained) 2.16 2.46 2.89 ns 

tCKQ2 Clock High to new data valid on RD (pipelined) 0.90 1.02 1.20 ns 

tC2CRWH
1 Address collision clk-to-clk delay for reliable read access after write on

same address—Applicable to Opening Edge
0.50 0.43 0.38 ns 

tC2CWRH
1 Address collision clk-to-clk delay for reliable write access after read on

same address—Applicable to Opening Edge
0.59 0.50 0.44 ns 

tRSTBQ
1 

RESET Low to data out Low on RD (flow-through) 0.92 1.05 1.23 ns 

RESET Low to data out Low on RD (pipelined) 0.92 1.05 1.23 ns 

tREMRSTB RESET removal 0.29 0.33 0.38 ns 

tRECRSTB RESET recovery 1.50 1.71 2.01 ns 

tMPWRSTB RESET minimum pulse width 0.21 0.24 0.29 ns 

tCYC Clock cycle time 3.23 3.68 4.32 ns 

FMAX Maximum frequency 310 272 231 MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-
Based cSoCs and FPGAs.

2. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.
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Fusion Family of Mixed Signal FPGAs
Channel Input Offset Error

Channel Offset error is measured as the input voltage that causes the transition from zero to a count of
one. An Ideal Prescaler will have offset equal to ½ of LSB voltage. Offset error is a positive or negative
when the first transition point is higher or lower than ideal. Offset error is expressed in LSB or input
voltage.

Total Channel Error

Total Channel Error is defined as the total error measured compared to the ideal value. Total Channel
Error is the sum of gain error and offset error combined. Figure 2-68 shows how Total Channel Error is
measured.

Total Channel Error is defined as the difference between the actual ADC output and ideal ADC output. In
the example shown in Figure 2-68, the Total Channel Error would be a negative number.

Figure 2-68 • Total Channel Error Example
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Fusion Family of Mixed Signal FPGAs
ADC Terminology
Conversion Time
Conversion time is the interval between the release of the hold state (imposed by the input circuitry of a
track-and-hold) and the instant at which the voltage on the sampling capacitor settles to within one LSB
of a new input value.

DNL – Differential Non-Linearity 
For an ideal ADC, the analog-input levels that trigger any two successive output codes should differ by
one LSB (DNL = 0). Any deviation from one LSB in defined as DNL (Figure 2-83).

ENOB – Effective Number of Bits
ENOB specifies the dynamic performance of an ADC at a specific input frequency and sampling rate. An
ideal ADC’s error consists only of quantization of noise. As the input frequency increases, the overall
noise (particularly in the distortion components) also increases, thereby reducing the ENOB and SINAD
(also see “Signal-to-Noise and Distortion Ratio (SINAD)”.) ENOB for a full-scale, sinusoidal input
waveform is computed using EQ 12.

EQ 12

FS Error – Full-Scale Error
Full-scale error is the difference between the actual value that triggers that transition to full-scale and the
ideal analog full-scale transition value. Full-scale error equals offset error plus gain error.

Figure 2-83 • Differential Non-Linearity (DNL)
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Device Architecture
Table 2-73 • Maximum I/O Frequency for Single-Ended, Voltage-Referenced, and Differential I/Os;
All I/O Bank Types (maximum drive strength and high slew selected)

Specification Performance Up To

LVTTL/LVCMOS 3.3 V 200 MHz

LVCMOS 2.5 V 250 MHz

LVCMOS 1.8 V 200 MHz

LVCMOS 1.5 V 130 MHz

PCI 200 MHz

PCI-X 200 MHz

HSTL-I 300 MHz

HSTL-II 300 MHz

SSTL2-I 300 MHz

SSTL2-II 300 MHz

SSTL3-I 300 MHz

SSTL3-II 300 MHz

GTL+ 3.3 V 300 MHz

GTL+ 2.5 V 300 MHz

GTL 3.3 V 300 MHz

GTL 2.5 V 300 MHz

LVDS 350 MHz

LVPECL 300 MHz
2-137 Revision 6



Fusion Family of Mixed Signal FPGAs
User I/O Naming Convention
Due to the comprehensive and flexible nature of Fusion device user I/Os, a naming scheme is used to
show the details of the I/O (Figure 2-113 on page 2-158 and Figure 2-114 on page 2-159). The name
identifies to which I/O bank it belongs, as well as the pairing and pin polarity for differential I/Os.

I/O Nomenclature =  Gmn/IOuxwByVz

Gmn is only used for I/Os that also have CCC access—i.e., global pins. 

G = Global

m = Global pin location associated with each CCC on the device: A (northwest corner), B (northeast corner), C
(east middle), D (southeast corner), E (southwest corner), and F (west middle). 

n = Global input MUX and pin number of the associated Global location m, either A0, A1, A2, B0, B1, B2, C0, C1,
or C2. Figure 2-22 on page 2-25 shows the three input pins per clock source MUX at CCC location m.

u = I/O pair number in the bank, starting at 00 from the northwest I/O bank and proceeding in a clockwise
direction.

x = P (Positive) or N (Negative) for differential pairs, or R (Regular – single-ended) for the I/Os that support single-
ended and voltage-referenced I/O standards only. U (Positive-LVDS only) or V (Negative-LVDS only) restrict
the I/O differential pair from being selected as an LVPECL pair.

w = D (Differential Pair), P (Pair), or S (Single-Ended). D (Differential Pair) if both members of the pair are bonded
out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both members of the pair are
bonded out but do not meet the adjacency requirement; or S (Single-Ended) if the I/O pair is not bonded out.
For Differential (D) pairs, adjacency for ball grid packages means only vertical or horizontal. Diagonal
adjacency does not meet the requirements for a true differential pair.

B = Bank

y = Bank number (0–3). The Bank number starts at 0 from the northwest I/O bank and proceeds in a clockwise
direction.

V = Reference voltage

z = Minibank number

Figure 2-113 • Naming Conventions of Fusion Devices with Three Digital I/O Banks
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Device Architecture
2.5 V LVCMOS
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 2.5 V applications.   

Table 2-110 • Minimum and Maximum DC Input and Output Levels

2.5 V 
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

Applicable to Pro I/O Banks

4 mA –0.3 0.7 1.7 3.6 0.7 1.7 4 4 18 16 10 10

8 mA –0.3 0.7 1.7 3.6 0.7 1.7 8 8 37 32 10 10

12 mA –0.3 0.7 1.7 3.6 0.7 1.7 12 12 74 65 10 10

16 mA –0.3 0.7 1.7 3.6 0.7 1.7 16 16 87 83 10 10

24 mA –0.3 0.7 1.7 3.6 0.7 1.7 24 24 124 169 10 10

Applicable to Advanced I/O Banks

2 mA –0.3 0.7 1.7 2.7 0.7 1.7 2 2 18 16 10 10

4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 18 16 10 10

6 mA –0.3 0.7 1.7 2.7 0.7 1.7 6 6 37 32 10 10

8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 37 32 10 10

12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 74 65 10 10

16 mA –0.3 0.7 1.7 2.7 0.7 1.7 16 16 87 83 10 10

24 mA –0.3 0.7 1.7 2.7 0.7 1.7 24 24 124 169 10 10

Applicable to Standard I/O Banks

2 mA –0.3 0.7 1.7 3.6 0.7 1.7 2 2 18 16 10 10

4 mA –0.3 0.7 1.7 3.6 0.7 1.7 4 4 18 16 10 10

6 mA –0.3 0.7 1.7 3.6 0.7 1.7 6 6 37 32 10 10

8 mA –0.3 0.7 1.7 3.6 0.7 1.7 8 8 37 32 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-120 • AC Loading

Table 2-111 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 2.5 1.2 – 35

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point
Test Point

Enable PathData Path 35 pF

R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
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Device Architecture
Table 2-130 • 1.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.66 12.78 0.04 1.31 0.43 12.81 12.78 3.40 2.64 15.05 15.02  ns 

 –1 0.56 10.87 0.04 1.11 0.36 10.90 10.87 2.89 2.25 12.80 12.78  ns 

 –2 0.49 9.55 0.03 0.98 0.32 9.57 9.55 2.54 1.97 11.24 11.22  ns 

4 mA  Std. 0.66 10.01 0.04 1.31 0.43 10.19 9.55 3.75 3.27 12.43 11.78  ns 

 –1 0.56 8.51 0.04 1.11 0.36 8.67 8.12 3.19 2.78 10.57 10.02  ns 

 –2 0.49 7.47 0.03 0.98 0.32 7.61 7.13 2.80 2.44 9.28 8.80  ns 

8 mA  Std. 0.66 9.33 0.04 1.31 0.43 9.51 8.89 3.83 3.43 11.74 11.13  ns 

 –1 0.56 7.94 0.04 1.11 0.36 8.09 7.56 3.26 2.92 9.99 9.47  ns 

 –2 0.49 6.97 0.03 0.98 0.32 7.10 6.64 2.86 2.56 8.77 8.31  ns 

12 mA  Std. 0.66 8.91 0.04 1.31 0.43 9.07 8.89 3.95 4.05 11.31 11.13  ns 

 –1 0.56 7.58 0.04 1.11 0.36 7.72 7.57 3.36 3.44 9.62 9.47  ns 

 –2 0.49 6.65 0.03 0.98 0.32 6.78 6.64 2.95 3.02 8.45 8.31  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Table 2-131 • 1.5 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.4 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.66 8.36 0.04 1.44 0.43 6.82 8.36 3.39 2.77 9.06 10.60  ns 

 –1 0.56 7.11 0.04 1.22 0.36 5.80 7.11 2.88 2.35 7.71 9.02  ns 

 –2 0.49 6.24 0.03 1.07 0.32 5.10 6.24 2.53 2.06 6.76 7.91  ns 

4 mA  Std. 0.66 5.31 0.04 1.44 0.43 4.85 5.31 3.74 3.40 7.09 7.55  ns 

 –1 0.56 4.52 0.04 1.22 0.36 4.13 4.52 3.18 2.89 6.03 6.42  ns 

 –2 0.49 3.97 0.03 1.07 0.32 3.62 3.97 2.79 2.54 5.29 5.64  ns 

8 mA  Std. 0.66 4.67 0.04 1.44 0.43 4.55 4.67 3.82 3.56 6.78 6.90  ns 

 –1 0.56 3.97 0.04 1.22 0.36 3.87 3.97 3.25 3.03 5.77 5.87  ns 

 –2 0.49 3.49 0.03 1.07 0.32 3.40 3.49 2.85 2.66 5.07 5.16  ns 

12 mA  Std. 0.66 4.08 0.04 1.44 0.43 4.15 3.58 3.94 4.20 6.39 5.81  ns 

 –1 0.56 3.47 0.04 1.22 0.36 3.53 3.04 3.36 3.58 5.44 4.95  ns 

 –2 0.49 3.05 0.03 1.07 0.32 3.10 2.67 2.95 3.14 4.77 4.34  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
DDR Module Specifications
Input DDR Module

Figure 2-142 • Input DDR Timing Model

Table 2-179 • Parameter Definitions

Parameter Name Parameter Definition Measuring Nodes (from, to)

tDDRICLKQ1 Clock-to-Out Out_QR B, D

tDDRICLKQ2 Clock-to-Out Out_QF B, E

tDDRISUD Data Setup Time of DDR Input A, B

tDDRIHD Data Hold Time of DDR Input A, B

tDDRICLR2Q1 Clear-to-Out Out_QR C, D

tDDRICLR2Q2 Clear-to-Out Out_QF C, E

tDDRIREMCLR Clear Removal C, B

tDDRIRECCLR Clear Recovery C, B

Input DDR

Data

CLK

CLKBUF

INBUF

Out_QF
(to core)

FF2

FF1

INBUF

CLR

DDR_IN

E

A

B

C

D

Out_QR
(to core)
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Device Architecture
Pin Descriptions

Supply Pins

GND Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is
decoupled from the simultaneous switching noise originated from the output buffer ground domain. This
minimizes the noise transfer within the package and improves input signal integrity. GNDQ needs to
always be connected on the board to GND. Note: In FG256, FG484, and FG676 packages, GNDQ and
GND pins are connected within the package and are labeled as GND pins in the respective package pin
assignment tables.

ADCGNDREF Analog Reference Ground

Analog ground reference used by the ADC. This pad should be connected to a quiet analog ground.

GNDA Ground (analog)

Quiet ground supply voltage to the Analog Block of Fusion devices. The use of a separate analog ground
helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V
maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.

GNDAQ Ground (analog quiet)

Quiet ground supply voltage to the analog I/O of Fusion devices. The use of a separate analog ground
helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V
maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.
Note: In FG256, FG484, and FG676 packages, GNDAQ and GNDA pins are connected within the
package and are labeled as GNDA pins in the respective package pin assignment tables. 

GNDNVM Flash Memory Ground

Ground supply used by the Fusion device's flash memory block module(s).

GNDOSC Oscillator Ground

Ground supply for both integrated RC oscillator and crystal oscillator circuit.

VCC15A Analog Power Supply (1.5 V)

1.5 V clean analog power supply input for use by the 1.5 V portion of the analog circuitry.

VCC33A Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the 3.3 V portion of the analog circuitry.

VCC33N Negative 3.3 V Output

This is the –3.3 V output from the voltage converter. A 2.2 µF capacitor must be connected from this pin
to ground.

VCC33PMP Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the analog charge pump. To avoid high current draw,
VCC33PMP should be powered up simultaneously with or after VCC33A.

VCCNVM Flash Memory Block Power Supply (1.5 V)

1.5 V power supply input used by the Fusion device's flash memory block module(s). To avoid high
current draw, VCC should be powered up before or simultaneously with VCCNVM.

VCCOSC Oscillator Power Supply (3.3 V)

Power supply for both integrated RC oscillator and crystal oscillator circuit. The internal 100 MHz
oscillator, powered by the VCCOSC pin, is needed for device programming, operation of the VDDN33
pump, and eNVM operation. VCCOSC is off only when VCCA is off. VCCOSC must be powered
whenever the Fusion device needs to function.
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Fusion Family of Mixed Signal FPGAs
Theta-JA
Junction-to-ambient thermal resistance (JA) is determined under standard conditions specified by
JEDEC (JESD-51), but it has little relevance in actual performance of the product. It should be used with
caution but is useful for comparing the thermal performance of one package to another.

A sample calculation showing the maximum power dissipation allowed for the AFS600-FG484 package
under forced convection of 1.0 m/s and 75°C ambient temperature is as follows:

EQ 4

where  

EQ 5

The power consumption of a device can be calculated using the Microsemi power calculator. The
device's power consumption must be lower than the calculated maximum power dissipation by the
package. If the power consumption is higher than the device's maximum allowable power dissipation, a
heat sink can be attached on top of the case, or the airflow inside the system must be increased.

Theta-JB
Junction-to-board thermal resistance (JB) measures the ability of the package to dissipate heat from the
surface of the chip to the PCB. As defined by the JEDEC (JESD-51) standard, the thermal resistance
from junction to board uses an isothermal ring cold plate zone concept. The ring cold plate is simply a
means to generate an isothermal boundary condition at the perimeter. The cold plate is mounted on a
JEDEC standard board with a minimum distance of 5.0 mm away from the package edge.

Theta-JC
Junction-to-case thermal resistance (JC) measures the ability of a device to dissipate heat from the
surface of the chip to the top or bottom surface of the package. It is applicable for packages used with
external heat sinks. Constant temperature is applied to the surface in consideration and acts as a
boundary condition. This only applies to situations where all or nearly all of the heat is dissipated through
the surface in consideration. 

Calculation for Heat Sink 
For example, in a design implemented in an AFS600-FG484 package with 2.5 m/s airflow, the power
consumption value using the power calculator is 3.00 W. The user-dependent Ta and Tj are given as
follows:

From the datasheet:  

EQ 6

JA = 19.00°C/W (taken from Table 3-6 on page 3-7). 

TA = 75.00°C 

TJ = 100.00°C

TA = 70.00°C

JA = 17.00°C/W

JC = 8.28°C/W

Maximum Power Allowed
TJ(MAX) TA(MAX)–

JA
---------------------------------------------=

Maximum Power Allowed
100.00°C 75.00°C–

19.00°C/W
---------------------------------------------------- 1.3 W= =

P
TJ TA–

JA
------------------- 100°C 70°C–

17.00 W
------------------------------------ 1.76 W= = =
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DC and Power Characteristics
Differential 

LVDS – 2.5 7.74 88.92

LVPECL – 3.3 19.54 166.52

Applicable to Standard I/O Banks

Single-Ended 

3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 431.08

2.5 V LVCMOS 35 2.5 – 247.36

1.8 V LVCMOS 35 1.8 – 128.46

1.5 V LVCMOS (JESD8-11) 35 1.5 – 89.46

Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings1  (continued)

CLOAD (pF) VCCI (V) 
Static Power
PDC8 (mW)2 

Dynamic Power
PAC10 (µW/MHz)3

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.
2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.
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Methodology
Total Power Consumption—PTOTAL

Operating Mode, Standby Mode, and Sleep Mode

PTOTAL = PSTAT + PDYN

PSTAT is the total static power consumption.

PDYN is the total dynamic power consumption.

Total Static Power Consumption—PSTAT

Operating Mode

PSTAT = PDC1 + (NNVM-BLOCKS * PDC4) + PDC5+ (NQUADS * PDC6) + (NINPUTS * PDC7) + 
(NOUTPUTS * PDC8) + (NPLLS * PDC9)

NNVM-BLOCKS is the number of NVM blocks available in the device.

NQUADS is the number of Analog Quads used in the design.

NINPUTS is the number of I/O input buffers used in the design.

NOUTPUTS is the number of I/O output buffers used in the design.

NPLLS is the number of PLLs available in the device.

Standby Mode

PSTAT = PDC2

Sleep Mode

PSTAT = PDC3

Total Dynamic Power Consumption—PDYN

Operating Mode

PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL + PNVM+ 
PXTL-OSC + PRC-OSC + PAB

Standby Mode

PDYN = PXTL-OSC

Sleep Mode

PDYN = 0 W

Global Clock Dynamic Contribution—PCLOCK

Operating Mode

PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK

NSPINE is the number of global spines used in the user design—guidelines are provided in the
"Spine Architecture" section of the Global Resources chapter in the Fusion and Extended
Temperature Fusion FPGA Fabric User's Guide.

NROW is the number of VersaTile rows used in the design—guidelines are provided in the "Spine
Architecture" section of the Global Resources chapter in the Fusion and Extended Temperature
Fusion FPGA Fabric User's Guide.

FCLK is the global clock signal frequency.

NS-CELL is the number of VersaTiles used as sequential modules in the design.

Standby Mode and Sleep Mode

PCLOCK = 0 W

Sequential Cells Dynamic Contribution—PS-CELL

Operating Mode
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Fusion Family of Mixed Signal FPGAs
B9 XTAL2 XTAL2

B10 GEA0/IO44NDB3V0 GFA0/IO66NDB3V0

B11 GEB2/IO42PDB3V0 IO60NDB3V0

B12 VCC VCC

B13 VCCNVM VCCNVM

B14 VCC15A VCC15A

B15 NCAP NCAP

B16 VCC33N VCC33N

B17 GNDAQ GNDAQ

B18 AC0 AC0

B19 AT0 AT0

B20 AT1 AT1

B21 AV1 AV1

B22 AC2 AC2

B23 ATRTN1 ATRTN1

B24 AG3 AG3

B25 AV3 AV3

B26 AG4 AG4

B27 ATRTN2 ATRTN2

B28 NC AC5

B29 VCC33A VCC33A

B30 VAREF VAREF

B31 PUB PUB

B32 PTEM PTEM

B33 GNDNVM GNDNVM

B34 VCC VCC

B35 TCK TCK

B36 TMS TMS

B37 TRST TRST

B38 GDB2/IO41PSB1V0 GDA2/IO55PSB1V0

B39 GDC0/IO38NDB1V0 GDB0/IO53NDB1V0

B40 VCCIB1 VCCIB1

B41 GCA1/IO36PDB1V0 GCA1/IO49PDB1V0

B42 GCC0/IO34NDB1V0 GCC0/IO47NDB1V0

B43 GCB2/IO33PSB1V0 GBC2/IO42PSB1V0

B44 VCC VCC

QN180

Pin Number AFS090 Function AFS250 Function

B45 GBA2/IO31PDB1V0 GBA2/IO40PDB1V0

B46 GNDQ GNDQ

B47 GBA1/IO30RSB0V0 GBA0/IO38RSB0V0

B48 GBB1/IO28RSB0V0 GBC1/IO35RSB0V0

B49 VCC VCC

B50 GBC0/IO25RSB0V0 IO31RSB0V0

B51 IO23RSB0V0 IO28RSB0V0

B52 IO20RSB0V0 IO25RSB0V0

B53 VCC VCC

B54 IO11RSB0V0 IO14RSB0V0

B55 IO08RSB0V0 IO11RSB0V0

B56 GAC1/IO05RSB0V0 IO08RSB0V0

B57 VCCIB0 VCCIB0

B58 GAB0/IO02RSB0V0 GAC0/IO04RSB0V0

B59 GAA0/IO00RSB0V0 GAA1/IO01RSB0V0

B60 VCCPLA VCCPLA

C1 NC NC

C2 NC VCCIB3

C3 GND GND

C4 NC GFC2/IO69PPB3V0

C5 GFC1/IO49PDB3V0 GFC1/IO68PDB3V0

C6 GFA0/IO47NPB3V0 GFB0/IO67NPB3V0

C7 VCCIB3 NC

C8 GND GND

C9 GEA1/IO44PDB3V0 GFA1/IO66PDB3V0

C10 GEA2/IO42NDB3V0 GEC2/IO60PDB3V0

C11 NC GEA2/IO58PSB3V0

C12 NC NC

C13 GND GND

C14 NC NC

C15 NC NC

C16 GNDA GNDA

C17 NC NC

C18 NC NC

C19 NC NC

C20 NC NC

QN180

Pin Number AFS090 Function AFS250 Function
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Package Pin Assignments
FG484

Pin 
Number AFS600 Function AFS1500 Function

A1 GND GND

A2 VCC NC

A3 GAA1/IO01PDB0V0 GAA1/IO01PDB0V0

A4 GAB0/IO02NDB0V0 GAB0/IO02NDB0V0

A5 GAB1/IO02PDB0V0 GAB1/IO02PDB0V0

A6 IO07NDB0V1 IO07NDB0V1

A7 IO07PDB0V1 IO07PDB0V1

A8 IO10PDB0V1 IO09PDB0V1

A9 IO14NDB0V1 IO13NDB0V2

A10 IO14PDB0V1 IO13PDB0V2

A11 IO17PDB1V0 IO24PDB1V0

A12 IO18PDB1V0 IO26PDB1V0

A13 IO19NDB1V0 IO27NDB1V1

A14 IO19PDB1V0 IO27PDB1V1

A15 IO24NDB1V1 IO35NDB1V2

A16 IO24PDB1V1 IO35PDB1V2

A17 GBC0/IO26NDB1V1 GBC0/IO40NDB1V2

A18 GBA0/IO28NDB1V1 GBA0/IO42NDB1V2

A19 IO29NDB1V1 IO43NDB1V2

A20 IO29PDB1V1 IO43PDB1V2

A21 VCC NC

A22 GND GND

AA1 VCC NC

AA2 GND GND

AA3 VCCIB4 VCCIB4

AA4 VCCIB4 VCCIB4

AA5 PCAP PCAP

AA6 AG0 AG0

AA7 GNDA GNDA

AA8 AG1 AG1

AA9 AG2 AG2

AA10 GNDA GNDA

AA11 AG3 AG3

AA12 AG6 AG6

AA13 GNDA GNDA

AA14 AG7 AG7

AA15 AG8 AG8

AA16 GNDA GNDA

AA17 AG9 AG9

AA18 VAREF VAREF

AA19 VCCIB2 VCCIB2

AA20 PTEM PTEM

AA21 GND GND

AA22 VCC NC

AB1 GND GND

AB2 VCC NC

AB3 NC IO94NSB4V0

AB4 GND GND

AB5 VCC33N VCC33N

AB6 AT0 AT0

AB7 ATRTN0 ATRTN0

AB8 AT1 AT1

AB9 AT2 AT2

AB10 ATRTN1 ATRTN1

AB11 AT3 AT3

AB12 AT6 AT6

AB13 ATRTN3 ATRTN3

AB14 AT7 AT7

AB15 AT8 AT8

AB16 ATRTN4 ATRTN4

AB17 AT9 AT9

AB18 VCC33A VCC33A

AB19 GND GND

AB20 NC IO76NPB2V0

AB21 VCC NC

AB22 GND GND

B1 VCC NC

B2 GND GND

B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0

B4 GND GND

FG484

Pin 
Number AFS600 Function AFS1500 Function
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Revision 2
(continued)

The prescalar range for the 'Analog Input (direct input to ADC)" configurations was
removed as inapplicable for direct inputs. The input resistance for direct inputs is
covered in Table 2-50 • ADC Characteristics in Direct Input Mode (SAR 31201).

2-120

The "Examples" for calibrating accuracy for ADC channels were revised and
corrected to make them consistent with terminology in the associated tables (SARs
36791, 36773).

2-124

A note was added to Table 2-56 • Analog Quad ACM Byte Assignment and the
introductory text for Table 2-66 • Internal Temperature Monitor Control Truth Table,
stating that for the internal temperature monitor to function, Bit 0 of Byte 2 for all 10
Quads must be set (SAR 34418).

2-129, 
2-131

tDOUT was corrected to tDIN in Figure 2-116 • Input Buffer Timing Model and Delays
(example) (SAR 37115).

2-161

The formulas in the table notes for Table 2-97 • I/O Weak Pull-Up/Pull-Down
Resistances were corrected (SAR 34751).

2-171

The AC Loading figures in the "Single-Ended I/O Characteristics" section were
updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O
Software Settings" section (SAR 34877).

2-175

The following notes were removed from Table 2-168 • Minimum and Maximum DC
Input and Output Levels (SAR 34808):

±5% 

Differential input voltage = ±350 mV

2-209

An incomplete, duplicate sentence was removed from the end of the "GNDAQ
Ground (analog quiet)" pin description (SAR 30185).

2-223

Information about configuration of unused I/Os was added to the "User Pins" section
(SAR 32642).

2-225

The following information was added to the pin description for "XTAL1 Crystal
Oscillator Circuit Input" and "XTAL2 Crystal Oscillator Circuit Input" (SAR 24119).

2-227

The input resistance to ground value in Table 3-3 • Input Resistance of Analog Pads
for Analog Input (direct input to ADC), was corrected from 1 M (typical) to 2 k
(typical) (SAR 34371). 

3-4

The Storage Temperature column in Table 3-5 • FPGA Programming, Storage, and
Operating Limits stated Min. TJ twice for commercial and industrial product grades
and has been corrected to Min. TJ and Max. TJ (SAR 29416).

3-5

The reference to guidelines for global spines and VersaTile rows, given in the
"Global Clock Dynamic Contribution—PCLOCK" section, was corrected to the
"Spine Architecture" section of the Global Resources chapter in the Fusion
FPGA Fabric User's Guide (SAR 34741).

3-24

Package names used in the "Package Pin Assignments" section were revised to
match standards given in Package Mechanical Drawings (SAR 36612).

4-1

July 2010 The versioning system for datasheets has been changed. Datasheets are assigned
a revision number that increments each time the datasheet is revised. The "Fusion
Device Status" table indicates the status for each device in the device family. 

N/A
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