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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Fusion Family of Mixed Signal FPGAs
Temperature Grade Offerings

Speed Grade and Temperature Grade Matrix

Contact your local Microsemi SoC Products Group representative for device availability:

http://www.microsemi.com/index.php?option=com_content&id=137&lang=en&view=article.

Cortex-M1, Pigeon Point, and MicroBlade Fusion Device 
Information
This datasheet provides information for all Fusion (AFS), Cortex-M1 (M1), Pigeon Point (P1), and MicroBlade (U1)
devices. The remainder of the document will only list the Fusion (AFS) devices. Please apply relevant information to
M1, P1, and U1 devices when appropriate. Please note the following:

• Cortex-M1 devices are offered in the same speed grades and packages as basic Fusion devices.

• Pigeon Point devices are only offered in –2 speed grade and FG484 and FG256 packages.

• MicroBlade devices are only offered in standard speed grade and the FG256 package.

Fusion Devices AFS090 AFS250 AFS600 AFS1500

ARM Cortex-M1 Devices M1AFS250 M1AFS600 M1AFS1500

Pigeon Point Devices P1AFS600 3 P1AFS1500 3

MicroBlade Devices U1AFS250 4 U1AFS600 4 U1AFS1500 4

QN108 5 C, I – – –

QN180 5 C, I C, I – –

PQ208 – C, I C, I –

FG256 C, I C, I C, I C, I

FG484 – – C, I C, I

FG676 – – – C, I

Notes:
1. C = Commercial Temperature Range: 0°C to 85°C Junction
2. I = Industrial Temperature Range: –40°C to 100°C Junction
3. Pigeon Point devices are only offered in FG484 and FG256.
4. MicroBlade devices are only offered in FG256.
5. Package not available.

Std.1 –1 –22

C3   

I4   

Notes:
1. MicroBlade devices are only offered in standard speed grade.
2. Pigeon Point devices are only offered in –2 speed grade.
3. C = Commercial Temperature Range: 0°C to 85°C Junction
4. I = Industrial Temperature Range: –40°C to 100°C Junction
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Fusion Family of Mixed Signal FPGAs
Embedded Memories

Flash Memory Blocks

The flash memory available in each Fusion device is composed of one to four flash blocks, each 2 Mbits
in density. Each block operates independently with a dedicated flash controller and interface. Fusion
flash memory blocks combine fast access times (60 ns random access and 10 ns access in Read-Ahead
mode) with a configurable 8-, 16-, or 32-bit datapath, enabling high-speed flash operation without wait
states. The memory block is organized in pages and sectors. Each page has 128 bytes, with 33 pages
comprising one sector and 64 sectors per block. The flash block can support multiple partitions. The only
constraint on size is that partition boundaries must coincide with page boundaries. The flexibility and
granularity enable many use models and allow added granularity in programming updates. 

Fusion devices support two methods of external access to the flash memory blocks. The first method is a
serial interface that features a built-in JTAG-compliant port, which allows in-system programmability
during user or monitor/test modes. This serial interface supports programming of an AES-encrypted
stream. Data protected with security measures can be passed through the JTAG interface, decrypted,
and then programmed in the flash block. The second method is a soft parallel interface. 

FPGA logic or an on-chip soft microprocessor can access flash memory through the parallel interface.
Since the flash parallel interface is implemented in the FPGA fabric, it can potentially be customized to
meet special user requirements. For more information, refer to the CoreCFI Handbook. The flash
memory parallel interface provides configurable byte-wide (×8), word-wide (×16), or dual-word-wide
(×32) data-port options. Through the programmable flash parallel interface, the on-chip and off-chip
memories can be cascaded for wider or deeper configurations. 

The flash memory has built-in security. The user can configure either the entire flash block or the small
blocks to protect against unintentional or intrusive attempts to change or destroy the storage contents.
Each on-chip flash memory block has a dedicated controller, enabling each block to operate
independently.

The flash block logic consists of the following sub-blocks:

• Flash block – Contains all stored data. The flash block contains 64 sectors and each sector
contains 33 pages of data.

• Page Buffer – Contains the contents of the current page being modified. A page contains 8 blocks
of data.

• Block Buffer – Contains the contents of the last block accessed. A block contains 128 data bits.

• ECC Logic – The flash memory stores error correction information with each block to perform
single-bit error correction and double-bit error detection on all data blocks.

User Nonvolatile FlashROM 
In addition to the flash blocks, Fusion devices have 1 Kbit of user-accessible, nonvolatile FlashROM 
on-chip. The FlashROM is organized as 8×128-bit pages. The FlashROM can be used in diverse system
applications: 

• Internet protocol addressing (wireless or fixed)

• System calibration settings

• Device serialization and/or inventory control

• Subscription-based business models (for example, set-top boxes)

• Secure key storage for communications algorithms protected by security

• Asset management/tracking

• Date stamping

• Version management

The FlashROM is written using the standard IEEE 1532 JTAG programming interface. Pages can be
individually programmed (erased and written). On-chip AES decryption can be used selectively over
public networks to load data such as security keys stored in the FlashROM for a user design. 

The FlashROM can be programmed (erased and written) via the JTAG programming interface, and its
contents can be read back either through the JTAG programming interface or via direct FPGA core
addressing.
Revision 6 1-6
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Fusion Family of Mixed Signal FPGAs
The system application, Level 3, is the larger user application that utilizes one or more applets. Designing
at the highest level of abstraction supported by the Fusion technology stack, the application can be easily
created in FPGA gates by importing and configuring multiple applets.

In fact, in some cases an entire FPGA system design can be created without any HDL coding.

An optional MCU enables a combination of software and HDL-based design methodologies. The MCU
can be on-chip or off-chip as system requirements dictate. System portioning is very flexible, allowing the
MCU to reside above the applets or to absorb applets, or applets and backbone, if desired.

The Fusion technology stack enables a very flexible design environment. Users can engage in design
across a continuum of abstraction from very low to very high.

Core Architecture

VersaTile
Based upon successful ProASIC3/E logic architecture, Fusion devices provide granularity comparable to
gate arrays. The Fusion device core consists of a sea-of-VersaTiles architecture.

As illustrated in Figure 2-2, there are four inputs in a logic VersaTile cell, and each VersaTile can be
configured using the appropriate flash switch connections: 

• Any 3-input logic function 

• Latch with clear or set

• D-flip-flop with clear or set 

• Enable D-flip-flop with clear or set (on a 4th input)

VersaTiles can flexibly map the logic and sequential gates of a design. The inputs of the VersaTile can be
inverted (allowing bubble pushing), and the output of the tile can connect to high-speed, very-long-line
routing resources. VersaTiles and larger functions are connected with any of the four levels of routing
hierarchy.

When the VersaTile is used as an enable D-flip-flop, the SET/CLR signal is supported by a fourth input,
which can only be routed to the core cell over the VersaNet (global) network. 

The output of the VersaTile is F2 when the connection is to the ultra-fast local lines, or YL when the
connection is to the efficient long-line or very-long-line resources (Figure 2-2). 

Note: *This input can only be connected to the global clock distribution network.

Figure 2-2 • Fusion Core VersaTile
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Device Architecture
Figure 2-18 • Crystal Oscillator: RC Time Constant Values vs. Frequency (typical)
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Table 2-10 • XTLOSC Signals Descriptions

Signal Name Width Direction Function

XTL_EN* 1 Enables the crystal. Active high.

XTL_MODE* 2 Settings for the crystal clock for different frequency.

Value Modes Frequency Range

b'00 RC network 32 KHz to 4 MHz

b'01 Low gain 32 to 200 KHz

b'10 Medium gain 0.20 to 2.0 MHz

b'11 High gain 2.0 to 20.0 MHz

SELMODE 1 IN Selects the source of XTL_MODE and also enables the XTL_EN. Connect
from RTCXTLSEL from AB.

0 For normal operation or sleep mode, XTL_EN depends on
FPGA_EN, XTL_MODE depends on MODE

1 For Standby mode, XTL_EN is enabled, XTL_MODE depends on
RTC_MODE

RTC_MODE[1:0] 2 IN Settings for the crystal clock for different frequency ranges. XTL_MODE uses
RTC_MODE when SELMODE is '1'.

MODE[1:0] 2 IN Settings for the crystal clock for different frequency ranges. XTL_MODE uses
MODE when SELMODE is '0'. In Standby, MODE inputs will be 0's.

FPGA_EN* 1 IN 0 when 1.5 V is not present for VCC 1 when 1.5 V is present for VCC

XTL 1 IN Crystal Clock source

CLKOUT 1 OUT Crystal Clock output

Note: *Internal signal—does not exist in macro.
2-21 Revision 6



Device Architecture
Global Input Selections
Each global buffer, as well as the PLL reference clock, can be driven from one of the following (Figure 2-
22):

• 3 dedicated single-ended I/Os using a hardwired connection

• 2 dedicated differential I/Os using a hardwired connection

• The FPGA core

Figure 2-21 • Fusion CCC Options: Global Buffers with Programmable Delay
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Notes:

1. Represents the global input pins. Globals have direct access to the clock conditioning block and are not routed via the
FPGA fabric. Refer to the "User I/O Naming Convention" section on page 2-158 for more information. 

2. Instantiate the routed clock source input as follows:
a) Connect the output of a logic element to the clock input of the PLL, CLKDLY, or CLKINT macro.
b) Do not place a clock source I/O (INBUF or INBUF_LVPECL/LVDS) in a relevant global pin location. 

3. LVDS-based clock sources are available in the east and west banks on all Fusion devices. 

Figure 2-22 • Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT
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Fusion Family of Mixed Signal FPGAs
CCC Physical Implementation
The CCC circuit is composed of the following (Figure 2-23):

• PLL core

• 3 phase selectors

• 6 programmable delays and 1 fixed delay

• 5 programmable frequency dividers that provide frequency multiplication/division (not shown in
Figure 2-23 because they are automatically configured based on the user's required frequencies)

• 1 dynamic shift register that provides CCC dynamic reconfiguration capability (not shown)

CCC Programming
The CCC block is fully configurable. It is configured via static flash configuration bits in the array, set by
the user in the programming bitstream, or configured through an asynchronous dedicated shift register,
dynamically accessible from inside the Fusion device. The dedicated shift register permits changes of
parameters such as PLL divide ratios and delays during device operation. This latter mode allows the
user to dynamically reconfigure the PLL without the need for core programming. The register file is
accessed through a simple serial interface. 

Note: Clock divider and multiplier blocks are not shown in this figure or in SmartGen. They are automatically configured
based on the user's required frequencies.

Figure 2-23 • PLL Block
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Device Architecture
RAM4K9 Description

Figure 2-48 • RAM4K9
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Fusion Family of Mixed Signal FPGAs
Modes of Operation
There are two read modes and one write mode:

• Read Nonpipelined (synchronous—1 clock edge): In the standard read mode, new data is driven
onto the RD bus in the same clock cycle following RA and REN valid. The read address is
registered on the read port clock active edge, and data appears at RD after the RAM access time.
Setting PIPE to OFF enables this mode.

• Read Pipelined (synchronous—2 clock edges): The pipelined mode incurs an additional clock
delay from the address to the data but enables operation at a much higher frequency. The read
address is registered on the read port active clock edge, and the read data is registered and
appears at RD after the second read clock edge. Setting PIPE to ON enables this mode.

• Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into
the SRAM at the write address when WEN is High. The setup times of the write address, write
enables, and write data are minimal with respect to the write clock. Write and read transfers are
described with timing requirements in the "SRAM Characteristics" section on page 2-63 and the
"FIFO Characteristics" section on page 2-72.

RAM Initialization
Each SRAM block can be individually initialized on power-up by means of the JTAG port using the
UJTAG mechanism (refer to the "JTAG IEEE 1532" section on page 2-229 and the Fusion SRAM/FIFO
Blocks application note). The shift register for a target block can be selected and loaded with the proper
bit configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation. 
Revision 6 2-62
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Device Architecture
SRAM Characteristics
Timing Waveforms      

Figure 2-50 • RAM Read for Flow-Through Output. Applicable to both RAM4K9 and RAM512x18.

Figure 2-51 • RAM Read for Pipelined Output. Applicable to both RAM4K9 and RAM512x18.

CLK

[R|W]ADDR

BLK

WEN

DOUT|RD

A0 A1 A2

D0 D1 D2

tCYC

tCKH tCKL

tAS tAH

tBKS

tENS tENH

tDOH1

tBKH

Dn

tCKQ1

CLK

[R|W]ADDR

BLK

WEN

DOUT|RD

A0 A1 A2

D0 D1

tCYC

tCKH tCKL

tAS tAH

tBKS

tENS tENH

tDOH2

tCKQ2

tBKH

Dn
2-63 Revision 6



Device Architecture
The following signals are used to configure the FIFO4K18 memory element.

WW and RW
These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 2-33).

WBLK and RBLK
These signals are active low and will enable the respective ports when Low. When the RBLK signal is
High, the corresponding port’s outputs hold the previous value.

WEN and REN
Read and write enables. WEN is active low and REN is active high by default. These signals can be
configured as active high or low.

WCLK and RCLK
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver.

RPIPE
This signal is used to specify pipelined read on the output. A Low on RPIPE indicates a nonpipelined
read, and the data appears on the output in the same clock cycle. A High indicates a pipelined read, and
data appears on the output in the next clock cycle.

RESET
This active low signal resets the output to zero when asserted. It resets the FIFO counters. It also sets all
the RD pins Low, the FULL and AFULL pins Low, and the EMPTY and AEMPTY pins High (Table 2-34). 

WD
This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data
width less than 18 is specified, unused higher-order signals must be grounded (Table 2-34). 

RD
This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD
bus, high-order bits become unusable if the data width is less than 18. The output data on unused pins is
undefined (Table 2-34).

Table 2-33 • Aspect Ratio Settings for WW[2:0]

WW2, WW1, WW0 RW2, RW1, RW0 D×W

000 000 4k×1

001 001 2k×2

010 010 1k×4 

011 011 512×9

100 100 256×18

101, 110, 111 101, 110, 111 Reserved

Table 2-34 • Input Data Signal Usage for Different Aspect Ratios

D×W WD/RD Unused

4k×1 WD[17:1], RD[17:1]

2k×2 WD[17:2], RD[17:2]

1k×4 WD[17:4], RD[17:4]

512×9 WD[17:9], RD[17:9]

256×18 –
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Fusion Family of Mixed Signal FPGAs
ADC Terminology
Conversion Time
Conversion time is the interval between the release of the hold state (imposed by the input circuitry of a
track-and-hold) and the instant at which the voltage on the sampling capacitor settles to within one LSB
of a new input value.

DNL – Differential Non-Linearity 
For an ideal ADC, the analog-input levels that trigger any two successive output codes should differ by
one LSB (DNL = 0). Any deviation from one LSB in defined as DNL (Figure 2-83).

ENOB – Effective Number of Bits
ENOB specifies the dynamic performance of an ADC at a specific input frequency and sampling rate. An
ideal ADC’s error consists only of quantization of noise. As the input frequency increases, the overall
noise (particularly in the distortion components) also increases, thereby reducing the ENOB and SINAD
(also see “Signal-to-Noise and Distortion Ratio (SINAD)”.) ENOB for a full-scale, sinusoidal input
waveform is computed using EQ 12.

EQ 12

FS Error – Full-Scale Error
Full-scale error is the difference between the actual value that triggers that transition to full-scale and the
ideal analog full-scale transition value. Full-scale error equals offset error plus gain error.

Figure 2-83 • Differential Non-Linearity (DNL)
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Fusion Family of Mixed Signal FPGAs
Standard Conversion

Figure 2-90 • Input Setup Time
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Notes:

1. Refer to EQ 20 on page 2-109 for the calculation on the sample time, tSAMPLE.
2. See EQ 23 on page 2-109 for calculation of the conversion time, tCONV.

3. Minimum time to issue an ADCSTART after DATAVALID is 1 SYSCLK period

Figure 2-91 • Standard Conversion Status Signal Timing Diagram
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Device Architecture
Table 2-83 • Fusion Pro I/O Supported Standards and Corresponding VREF and VTT Voltages

I/O Standard
Input/Output Supply 
Voltage (VCCI_TYP)

Input Reference Voltage 
(VREF_TYP)

Board Termination Voltage 
(VTT_TYP)

LVTTL/LVCMOS 3.3 V 3.30 V – –

LVCMOS 2.5 V 2.50 V – –

LVCMOS 2.5 V / 5.0 V
Input

2.50 V – –

LVCMOS 1.8 V 1.80 V – –

LVCMOS 1.5 V 1.50 V – –

PCI 3.3 V 3.30 V – –

PCI-X 3.3 V 3.30 V – –

GTL+ 3.3 V 3.30 V 1.00 V 1.50 V

GTL+ 2.5 V 2.50 V 1.00 V 1.50 V

GTL 3.3 V 3.30 V 0.80 V 1.20 V

GTL 2.5 V 2.50 V 0.80 V 1.20 V

HSTL Class I 1.50 V 0.75 V 0.75 V

HSTL Class II 1.50 V 0.75 V 0.75 V

SSTL3 Class I 3.30 V 1.50 V 1.50 V

SSTL3 Class II 3.30 V 1.50 V 1.50 V

SSTL2 Class I 2.50 V 1.25 V 1.25 V

SSTL2 Class II 2.50 V 1.25 V 1.25 V

LVDS, BLVDS, M-LVDS 2.50 V – –

LVPECL 3.30 V – –
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Fusion Family of Mixed Signal FPGAs
Table 2-109 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V
Applicable to Standard I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  Units 

2 mA  Std. 0.66 7.07 0.04 1.00 0.43 7.20 6.23 2.07 2.15  ns 

 –1 0.56 6.01 0.04 0.85 0.36 6.12 5.30 1.76 1.83  ns 

 –2 2 0.49 5.28 0.03 0.75 0.32 5.37 4.65 1.55 1.60  ns 

4 mA  Std. 0.66 7.07 0.04 1.00 0.43 7.20 6.23 2.07 2.15  ns 

 –1 0.56 6.01 0.04 0.85 0.36 6.12 5.30 1.76 1.83  ns 

 –2 0.49 5.28 0.03 0.75 0.32 5.37 4.65 1.55 1.60  ns 

6 mA  Std. 0.66 4.41 0.04 1.00 0.43 4.49 3.75 2.39 2.69  ns 

 –1 0.56 3.75 0.04 0.85 0.36 3.82 3.19 2.04 2.29  ns 

 –2 0.49 3.29 0.03 0.75 0.32 3.36 2.80 1.79 2.01  ns 

8 mA  Std. 0.66 4.41 0.04 1.00 0.43 4.49 3.75 2.39 2.69  ns 

 –1 0.56 3.75 0.04 0.85 0.36 3.82 3.19 2.04 2.29  ns 

 –2 0.49 3.29 0.03 0.75 0.32 3.36 2.80 1.79 2.01  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics      

Table 2-120 • 1.8 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.7 V
Applicable to Pro I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS

 
Units

2 mA  Std. 0.66 15.84 0.04 1.45 1.91 0.43 15.65 15.84 2.78 1.58 17.89 18.07  ns 

 –1 0.56 13.47 0.04 1.23 1.62 0.36 13.31 13.47 2.37 1.35 15.22 15.37  ns 

 –2 0.49 11.83 0.03 1.08 1.42 0.32 11.69 11.83 2.08 1.18 13.36 13.50  ns 

4 mA  Std. 0.66 11.39 0.04 1.45 1.91 0.43 11.60 10.76 3.26 2.77 13.84 12.99  ns 

 –1 0.56 9.69 0.04 1.23 1.62 0.36 9.87 9.15 2.77 2.36 11.77 11.05  ns 

 –2 0.49 8.51 0.03 1.08 1.42 0.32 8.66 8.03 2.43 2.07 10.33 9.70  ns 

8 mA  Std. 0.66 8.97 0.04 1.45 1.91 0.43 9.14 8.10 3.57 3.36 11.37 10.33  ns 

 –1 0.56 7.63 0.04 1.23 1.62 0.36 7.77 6.89 3.04 2.86 9.67 8.79  ns 

 –2 0.49 6.70 0.03 1.08 1.42 0.32 6.82 6.05 2.66 2.51 8.49 7.72  ns 

12 mA  Std. 0.66 8.35 0.04 1.45 1.91 0.43 8.50 7.59 3.64 3.52 10.74 9.82  ns 

 –1 0.56 7.10 0.04 1.23 1.62 0.36 7.23 6.45 3.10 3.00 9.14 8.35  ns 

 –2 0.49 6.24 0.03 1.08 1.42 0.32 6.35 5.66 2.72 2.63 8.02 7.33  ns 

16 mA  Std. 0.66 7.94 0.04 1.45 1.91 0.43 8.09 7.56 3.74 4.11 10.32 9.80  ns 

 –1 0.56 6.75 0.04 1.23 1.62 0.36 6.88 6.43 3.18 3.49 8.78 8.33  ns 

 –2 0.49 5.93 0.03 1.08 1.42 0.32 6.04 5.65 2.79 3.07 7.71 7.32  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics 

BLVDS/M-LVDS
Bus LVDS (BLVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to
high-performance multipoint bus applications. Multidrop and multipoint bus configurations can contain
any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive
current required by BLVDS and M-LVDS to accommodate the loading. The driver requires series
terminations for better signal quality and to control voltage swing. Termination is also required at both
ends of the bus, since the driver can be located anywhere on the bus. These configurations can be
implemented using TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations.
Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20
loads. A sample application is given in Figure 2-135. The input and output buffer delays are available in
the LVDS section in Table 2-171.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required
differential voltage, in worst-case industrial operating conditions at the farthest receiver: RS = 60  and
RT = 70 , given Z0 = 50  (2") and Zstub = 50  (~1.5").

Table 2-169 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V)

1.075 1.325 Cross point –

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Table 2-170 • LVDS
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 2.3 V
Applicable to Pro I/Os

Speed Grade tDOUT tDP tDIN tPY Units

 Std. 0.66 2.10 0.04 1.82 ns

 –1 0.56 1.79 0.04 1.55 ns

 –2 0.49 1.57 0.03 1.36 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Figure 2-135 • BLVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
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Device Architecture
ISP
Fusion devices support IEEE 1532 ISP via JTAG and require a single VPUMP voltage of 3.3 V during
programming. In addition, programming via a microcontroller in a target system can be achieved. Refer to
the standard or the "In-System Programming (ISP) of Microsemi's Low Power Flash Devices Using
FlashPro4/3/3X" chapter of the Fusion FPGA Fabric User’s Guide for more details.

JTAG IEEE 1532
Programming with IEEE 1532
Fusion devices support the JTAG-based IEEE1532 standard for ISP. As part of this support, when a
Fusion device is in an unprogrammed state, all user I/O pins are disabled. This is achieved by keeping
the global IO_EN signal deactivated, which also has the effect of disabling the input buffers.
Consequently, the SAMPLE instruction will have no effect while the Fusion device is in this
unprogrammed state—different behavior from that of the ProASICPLUS® device family. This is done
because SAMPLE is defined in the IEEE1532 specification as a noninvasive instruction. If the input
buffers were to be enabled by SAMPLE temporarily turning on the I/Os, then it would not truly be a
noninvasive instruction. Refer to the standard or the "In-System Programming (ISP) of Microsemi's Low
Power Flash Devices Using FlashPro4/3/3X" chapter of the Fusion FPGA Fabric User’s Guide for more
details.

Boundary Scan
Fusion devices are compatible with IEEE Standard 1149.1, which defines a hardware architecture and
the set of mechanisms for boundary scan testing. The basic Fusion boundary scan logic circuit is
composed of the test access port (TAP) controller, test data registers, and instruction register (Figure 2-
146 on page 2-230). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST,
SAMPLE/PRELOAD, and BYPASS) and the optional IDCODE instruction (Table 2-185 on page 2-230).

Each test section is accessed through the TAP, which has five associated pins: TCK (test clock input),
TDI, TDO (test data input and output), TMS (test mode selector), and TRST (test reset input). TMS, TDI,
and TRST are equipped with pull-up resistors to ensure proper operation when no input data is supplied
to them. These pins are dedicated for boundary scan test usage. Refer to the "JTAG Pins" section on
page 2-226 for pull-up/-down recommendations for TDO and TCK pins. The TAP controller is a 4-bit state
machine (16 states) that operates as shown in Figure 2-146 on page 2-230. The 1s and 0s represent the
values that must be present on TMS at a rising edge of TCK for the given state transition to occur. IR and
DR indicate that the instruction register or the data register is operating in that state.

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain High for
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-
Logic-Reset state.

Fusion devices support three types of test data registers: bypass, device identification, and boundary
scan. The bypass register is selected when no other register needs to be accessed in a device. This
speeds up test data transfer to other devices in a test data path. The 32-bit device identification register
is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan register
observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register cells,
each with a serial-in, serial-out, parallel-in, and parallel-out pin.

The serial pins are used to serially connect all the boundary scan register cells in a device into a
boundary scan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are

Table 2-184 • TRST and TCK Pull-Down Recommendations

VJTAG Tie-Off Resistance*

VJTAG at 3.3 V 200  to 1 k 

VJTAG at 2.5 V 200  to 1 k

VJTAG at 1.8 V 500  to 1 k

VJTAG at 1.5 V 500  to 1 k

Note: *Equivalent parallel resistance if more than one device is on JTAG chain.
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Fusion Family of Mixed Signal FPGAs
Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings1 

CLOAD (pF) VCCI (V) 
Static Power
PDC8 (mW)2 

Dynamic Power
PAC10 (µW/MHz)3

Applicable to Pro I/O Banks

Single-Ended 

3.3 V LVTTL/LVCMOS 35 3.3 – 474.70 

2.5 V LVCMOS 35 2.5 – 270.73 

1.8 V LVCMOS 35 1.8 – 151.78 

1.5 V LVCMOS (JESD8-11) 35 1.5 – 104.55 

3.3 V PCI 10 3.3 – 204.61 

3.3 V PCI-X 10 3.3 – 204.61 

Voltage-Referenced 

3.3 V GTL 10 3.3 – 24.08

2.5 V GTL 10 2.5 – 13.52

3.3 V GTL+ 10 3.3 – 24.10

2.5 V GTL+ 10 2.5 – 13.54

HSTL (I) 20 1.5 7.08 26.22

HSTL (II) 20 1.5 13.88 27.22

SSTL2 (I) 30 2.5 16.69 105.56

SSTL2 (II) 30 2.5 25.91 116.60

SSTL3 (I) 30 3.3 26.02 114.87

SSTL3 (II) 30 3.3 42.21 131.76

Differential 

LVDS – 2.5 7.70 89.62

LVPECL – 3.3 19.42 168.02

Applicable to Advanced I/O Banks

Single-Ended 

3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 468.67

2.5 V LVCMOS 35 2.5 – 267.48

1.8 V LVCMOS 35 1.8 – 149.46

1.5 V LVCMOS (JESD8-11) 35 1.5 – 103.12

3.3 V PCI 10 3.3 – 201.02

3.3 V PCI-X 10 3.3 – 201.02

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.
2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.
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Package Pin Assignments
C7 IO09RSB0V0 IO12RSB0V0 IO06NDB0V0 IO09NDB0V1

C8 IO14RSB0V0 IO22RSB0V0 IO16PDB1V0 IO23PDB1V0

C9 IO15RSB0V0 IO23RSB0V0 IO16NDB1V0 IO23NDB1V0

C10 IO22RSB0V0 IO30RSB0V0 IO25NDB1V1 IO31NDB1V1

C11 IO20RSB0V0 IO31RSB0V0 IO25PDB1V1 IO31PDB1V1

C12 VCCIB0 VCCIB0 VCCIB1 VCCIB1

C13 GBB1/IO28RSB0V0 GBC1/IO35RSB0V0 GBC1/IO26PPB1V1 GBC1/IO40PPB1V2

C14 VCCIB1 VCCIB1 VCCIB2 VCCIB2

C15 GND GND GND GND

C16 VCCIB1 VCCIB1 VCCIB2 VCCIB2

D1 GFC2/IO50NPB3V0 IO75NDB3V0 IO84NDB4V0 IO124NDB4V0

D2 GFA2/IO51NDB3V0 GAB2/IO75PDB3V0 GAB2/IO84PDB4V0 GAB2/IO124PDB4V0

D3 GAC2/IO51PDB3V0 IO76NDB3V0 IO85NDB4V0 IO125NDB4V0

D4 GAA2/IO52PDB3V0 GAA2/IO76PDB3V0 GAA2/IO85PDB4V0 GAA2/IO125PDB4V0

D5 GAB2/IO52NDB3V0 GAB0/IO02RSB0V0 GAB0/IO02NPB0V0 GAB0/IO02NPB0V0

D6 GAC0/IO04RSB0V0 GAC0/IO04RSB0V0 GAC0/IO03NDB0V0 GAC0/IO03NDB0V0

D7 IO08RSB0V0 IO13RSB0V0 IO06PDB0V0 IO09PDB0V1

D8 NC IO20RSB0V0 IO14NDB0V1 IO15NDB0V2

D9 NC IO21RSB0V0 IO14PDB0V1 IO15PDB0V2

D10 IO21RSB0V0 IO28RSB0V0 IO23PDB1V1 IO37PDB1V2

D11 IO23RSB0V0 GBB0/IO36RSB0V0 GBB0/IO27NDB1V1 GBB0/IO41NDB1V2

D12 NC NC VCCIB1 VCCIB1

D13 GBA2/IO31PDB1V0 GBA2/IO40PDB1V0 GBA2/IO30PDB2V0 GBA2/IO44PDB2V0

D14 GBB2/IO31NDB1V0 IO40NDB1V0 IO30NDB2V0 IO44NDB2V0

D15 GBC2/IO32PDB1V0 GBB2/IO41PDB1V0 GBB2/IO31PDB2V0 GBB2/IO45PDB2V0

D16 GCA2/IO32NDB1V0 IO41NDB1V0 IO31NDB2V0 IO45NDB2V0

E1 GND GND GND GND

E2 GFB0/IO48NPB3V0 IO73NDB3V0 IO81NDB4V0 IO118NDB4V0

E3 GFB2/IO50PPB3V0 IO73PDB3V0 IO81PDB4V0 IO118PDB4V0

E4 VCCIB3 VCCIB3 VCCIB4 VCCIB4

E5 NC IO74NPB3V0 IO83NPB4V0 IO123NPB4V0

E6 NC IO08RSB0V0 IO04NPB0V0 IO05NPB0V1

E7 GND GND GND GND

E8 NC IO18RSB0V0 IO08PDB0V1 IO11PDB0V1

E9 NC NC IO20NDB1V0 IO27NDB1V1

E10 GND GND GND GND

E11 IO24RSB0V0 GBB1/IO37RSB0V0 GBB1/IO27PDB1V1 GBB1/IO41PDB1V2

E12 NC IO50PPB1V0 IO33PSB2V0 IO48PSB2V0

FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function
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Package Pin Assignments
L17 VCCIB2 VCCIB2

L18 IO46PDB2V0 IO69PDB2V0

L19 GCA1/IO45PDB2V0 GCA1/IO64PDB2V0

L20 VCCIB2 VCCIB2

L21 GCC0/IO43NDB2V0 GCC0/IO62NDB2V0

L22 GCC1/IO43PDB2V0 GCC1/IO62PDB2V0

M1 NC IO103PDB4V0

M2 XTAL1 XTAL1

M3 VCCIB4 VCCIB4

M4 GNDOSC GNDOSC

M5 GFC0/IO72NDB4V0 GFC0/IO107NDB4V0

M6 VCCIB4 VCCIB4

M7 GFB0/IO71NDB4V0 GFB0/IO106NDB4V0

M8 VCCIB4 VCCIB4

M9 VCC VCC

M10 GND GND

M11 VCC VCC

M12 GND GND

M13 VCC VCC

M14 GND GND

M15 VCCIB2 VCCIB2

M16 IO48NDB2V0 IO70NDB2V0

M17 VCCIB2 VCCIB2

M18 IO46NDB2V0 IO69NDB2V0

M19 GCA0/IO45NDB2V0 GCA0/IO64NDB2V0

M20 VCCIB2 VCCIB2

M21 GCB0/IO44NDB2V0 GCB0/IO63NDB2V0

M22 GCB1/IO44PDB2V0 GCB1/IO63PDB2V0

N1 NC IO103NDB4V0

N2 GND GND

N3 IO68PDB4V0 IO101PDB4V0

N4 NC IO100NPB4V0

N5 GND GND

N6 NC IO99PDB4V0

N7 NC IO97PDB4V0

FG484

Pin 
Number AFS600 Function AFS1500 Function

N8 GND GND

N9 GND GND

N10 VCC VCC

N11 GND GND

N12 VCC VCC

N13 GND GND

N14 VCC VCC

N15 GND GND

N16 GDB2/IO56PDB2V0 GDB2/IO83PDB2V0

N17 NC IO78PDB2V0

N18 GND GND

N19 IO47NDB2V0 IO72NDB2V0

N20 IO47PDB2V0 IO72PDB2V0

N21 GND GND

N22 IO49PDB2V0 IO71PDB2V0

P1 GFA1/IO70PDB4V0 GFA1/IO105PDB4V0

P2 GFA0/IO70NDB4V0 GFA0/IO105NDB4V0

P3 IO68NDB4V0 IO101NDB4V0

P4 IO65PDB4V0 IO96PDB4V0

P5 IO65NDB4V0 IO96NDB4V0

P6 NC IO99NDB4V0

P7 NC IO97NDB4V0

P8 VCCIB4 VCCIB4

P9 VCC VCC

P10 GND GND

P11 VCC VCC

P12 GND GND

P13 VCC VCC

P14 GND GND

P15 VCCIB2 VCCIB2

P16 IO56NDB2V0 IO83NDB2V0

P17 NC IO78NDB2V0

P18 GDA1/IO54PDB2V0 GDA1/IO81PDB2V0

P19 GDB1/IO53PDB2V0 GDB1/IO80PDB2V0

P20 IO51NDB2V0 IO73NDB2V0

FG484

Pin 
Number AFS600 Function AFS1500 Function
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