

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	114
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1afs250-2fgg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The system application, Level 3, is the larger user application that utilizes one or more applets. Designing at the highest level of abstraction supported by the Fusion technology stack, the application can be easily created in FPGA gates by importing and configuring multiple applets.

In fact, in some cases an entire FPGA system design can be created without any HDL coding.

An optional MCU enables a combination of software and HDL-based design methodologies. The MCU can be on-chip or off-chip as system requirements dictate. System portioning is very flexible, allowing the MCU to reside above the applets or to absorb applets, or applets and backbone, if desired.

The Fusion technology stack enables a very flexible design environment. Users can engage in design across a continuum of abstraction from very low to very high.

Core Architecture

VersaTile

Based upon successful ProASIC3/E logic architecture, Fusion devices provide granularity comparable to gate arrays. The Fusion device core consists of a sea-of-VersaTiles architecture.

As illustrated in Figure 2-2, there are four inputs in a logic VersaTile cell, and each VersaTile can be configured using the appropriate flash switch connections:

- Any 3-input logic function
- Latch with clear or set
- · D-flip-flop with clear or set
- Enable D-flip-flop with clear or set (on a 4th input)

VersaTiles can flexibly map the logic and sequential gates of a design. The inputs of the VersaTile can be inverted (allowing bubble pushing), and the output of the tile can connect to high-speed, very-long-line routing resources. VersaTiles and larger functions are connected with any of the four levels of routing hierarchy.

When the VersaTile is used as an enable D-flip-flop, the SET/CLR signal is supported by a fourth input, which can only be routed to the core cell over the VersaNet (global) network.

The output of the VersaTile is F2 when the connection is to the ultra-fast local lines, or YL when the connection is to the efficient long-line or very-long-line resources (Figure 2-2).

Note: *This input can only be connected to the global clock distribution network.

Figure 2-2 • Fusion Core VersaTile

Analog Block

With the Fusion family, Microsemi has introduced the world's first mixed-mode FPGA solution. Supporting a robust analog peripheral mix, Fusion devices will support a wide variety of applications. It is this Analog Block that separates Fusion from all other FPGA solutions on the market today.

By combining both flash and high-speed CMOS processes in a single chip, these devices offer the best of both worlds. The high-performance CMOS is used for building RAM resources. These high-performance structures support device operation up to 350 MHz. Additionally, the advanced Microsemi 0.13 μ m flash process incorporates high-voltage transistors and a high-isolation, triple-well process. Both of these are suited for the flash-based programmable logic and nonvolatile memory structures.

High-voltage transistors support the integration of analog technology in several ways. They aid in noise immunity so that the analog portions of the chip can be better isolated from the digital portions, increasing analog accuracy. Because they support high voltages, Microsemi flash FPGAs can be connected directly to high-voltage input signals, eliminating the need for external resistor divider networks, reducing component count, and increasing accuracy. By supporting higher internal voltages, the Microsemi advanced flash process enables high dynamic range on analog circuitry, increasing precision and signal–noise ratio. Microsemi flash FPGAs also drive high-voltage outputs, eliminating the need for external level shifters and drivers.

The unique triple-well process enables the integration of high-performance analog features with increased noise immunity and better isolation. By increasing the efficiency of analog design, the triple-well process also enables a smaller overall design size, reducing die size and cost.

The Analog Block consists of the Analog Quad I/O structure, RTC (for details refer to the "Real-Time Counter System" section on page 2-31), ADC, and ACM. All of these elements are combined in the single Analog Block macro, with which the user implements this functionality (Figure 2-64).

The Analog Block needs to be reset/reinitialized after the core powers up or the device is programmed. An external reset/initialize signal, which can come from the internal voltage regulator when it powers up, must be applied.

Gate Driver

The Fusion Analog Quad includes a Gate Driver connected to the Quad's AG pin (Figure 2-74). Designed to work with external p- or n-channel MOSFETs, the Gate driver is a configurable current sink or source and requires an external pull-up or pull-down resistor. The AG supports 4 selectable gate drive levels: 1 μ A, 3 μ A, 10 μ A, and 30 μ A (Figure 2-75 on page 2-91). The AG also supports a High Current Drive mode in which it can sink 20 mA; in this mode the switching rate is approximately 1.3 MHz with 100 ns turn-on time and 600 ns turn-off time. Modeled on an open-drain-style output, it does not output a voltage level without an appropriate pull-up or pull-down resistor. If 1 V is forced on the drain, the current sinking/sourcing will exceed the ability of the transistor, and the device could be damaged.

The AG pad is turned on via the corresponding GDON*x* pin in the Analog Block macro, where *x* is the number of the corresponding Analog Quad for the AG pad to be enabled (GDON0 to GDON9).

The gate-to-source voltage (V_{gs}) of the external MOSFET is limited to the programmable drive current times the external pull-up or pull-down resistor value (EQ 5).

$$V_{gs} \leq I_g \times (R_{pullup} \text{ or } R_{pulldown})$$

EQ 5

The rate at which the gate voltage of the external MOSFET slews is determined by the current, I_g , sourced or sunk by the AG pin and the gate-to-source capacitance, C_{GS} , of the external MOSFET. As an approximation, the slew rate is given by EQ 6.

$$dv/dt = I_g / C_{GS}$$

EQ 6

 C_{GS} is not a fixed capacitance but, depending on the circuitry connected to its drain terminal, can vary significantly during the course of a turn-on or turn-off transient. Thus, EQ 6 on page 2-91 can only be used for a first-order estimate of the switching speed of the external MOSFET.

Figure 2-75 • Gate Driver Example

Intra-Conversion

Performing a conversion during power-up calibration is possible but should be avoided, since the performance is not guaranteed, as shown in Table 2-49 on page 2-117. This is described as intra-conversion. Figure 2-92 on page 2-113 shows intra-conversion, (conversion that starts during power-up calibration).

Injected Conversion

A conversion can be interrupted by another conversion. Before the current conversion is finished, a second conversion can be started by issuing a pulse on signal ADCSTART. When a second conversion is issued before the current conversion is completed, the current conversion would be dropped and the ADC would start the second conversion on the rising edge of the SYSCLK. This is known as injected conversion. Since the ADC is synchronous, the minimum time to issue a second conversion is two clock cycles of SYSCLK after the previous one. Figure 2-93 on page 2-113 shows injected conversion, (conversion that starts before a previously started conversion is finished). The total time for calibration still remains 3,840 ADCCLK cycles.

ADC Example

This example shows how to choose the correct settings to achieve the fastest sample time in 10-bit mode for a system that runs at 66 MHz. Assume the acquisition times defined in Table 2-44 on page 2-108 for 10-bit mode, which gives 0.549 µs as a minimum hold time.

The period of SYSCLK: $t_{SYSCLK} = 1/66$ MHz = 0.015 μ s

Choosing TVC between 1 and 33 will meet the maximum and minimum period for the ADCCLK requirement. A higher TVC leads to a higher ADCCLK period.

The minimum TVC is chosen so that $t_{distrib}$ and $t_{post-cal}$ can be run faster. The period of ADCCLK with a TVC of 1 can be computed by EQ 24.

$$t_{ADCCLK} = 4 \times (1 + TVC) \times t_{SYSCLK} = 4 \times (1 + 1) \times 0.015 \ \mu s = 0.12 \ \mu s$$

EQ 24

The STC value can now be computed by using the minimum sample/hold time from Table 2-44 on page 2-108, as shown in EQ 25.

STC =
$$\frac{t_{sample}}{t_{ADCCLK}} - 2 = \frac{0.549 \ \mu s}{0.12 \ \mu s} - 2 = 4.575 - 2 = 2.575$$

EQ 25

You must round up to 3 to accommodate the minimum sample time requirement. The actual sample time, t_{sample} , with an STC of 3, is now equal to 0.6 μ s, as shown in EQ 26

$$t_{sample} = (2 + STC) \times t_{ADCCLK} = (2 + 3) \times t_{ADCCLK} = 5 \times 0.12 \ \mu s = 0.6 \ \mu s$$

EQ 26

Microsemi recommends post-calibration for temperature drift over time, so post-calibration is enabled. The post-calibration time, $t_{post-cal}$, can be computed by EQ 27. The post-calibration time is 0.24 µs.

$$t_{post-cal} = 2 \times t_{ADCCLK} = 0.24 \ \mu s$$

EQ 27

The distribution time, $t_{distrib}$, is equal to 1.2 µs and can be computed as shown in EQ 28 (N is number of bits, referring back to EQ 8 on page 2-94).

$$_{\text{distrib}} = N \times t_{\text{ADCCLK}} = 10 \times 0.12 = 1.2 \, \mu \text{s}$$

t

EQ 28

The total conversion time can now be summated, as shown in EQ 29 (referring to EQ 23 on page 2-109).

 $t_{sync_read} + t_{sample} + t_{distrib} + t_{post-cal} + t_{sync_write} = (0.015 + 0.60 + 1.2 + 0.24 + 0.015) \ \mu s = 2.07 \ \mu s = EQ \ 29$

Features Supported on Pro I/Os

Table 2-72 lists all features supported by transmitter/receiver for single-ended and differential I/Os.

Table 2-72 • Fusion Pro I/O Features

Feature	Description
Single-ended and voltage- referenced transmitter	 Hot insertion in every mode except PCI or 5 V input tolerant (these modes use clamp diodes and do not allow hot insertion)
features	Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.
	Weak pull-up and pull-down
	Two slew rates
	 Skew between output buffer enable/disable time: 2 ns delay (rising edge) and 0 ns delay (falling edge); see "Selectable Skew between Output Buffer Enable/Disable Time" on page 2-149 for more information
	Five drive strengths
	5 V-tolerant receiver ("5 V Input Tolerance" section on page 2-144)
	 LVTTL/LVCMOS 3.3 V outputs compatible with 5 V TTL inputs ("5 V Output Tolerance" section on page 2-148)
	High performance (Table 2-76 on page 2-143)
Single-ended receiver features	Schmitt trigger option
	ESD protection
	 Programmable delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 ns with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V)
	High performance (Table 2-76 on page 2-143)
	 Separate ground planes, GND/GNDQ, for input buffers only to avoid output- induced noise in the input circuitry
Voltage-referenced differential receiver features	 Programmable Delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 ns with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V)
	High performance (Table 2-76 on page 2-143)
	 Separate ground planes, GND/GNDQ, for input buffers only to avoid output- induced noise in the input circuitry
CMOS-style LVDS, BLVDS, M-LVDS, or LVPECL	 Two I/Os and external resistors are used to provide a CMOS-style LVDS, BLVDS, M-LVDS, or LVPECL transmitter solution.
transmitter	Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.
	Weak pull-up and pull-down
	Fast slew rate
LVDS/LVPECL differential	ESD protection
receiver teatures	High performance (Table 2-76 on page 2-143)
	 Programmable delay: 0.625 ns with '000' setting, 6.575 ns with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V)
	 Separate input buffer ground and power planes to avoid output-induced noise in the input circuitry

Device Architecture

Table 2-77 • Comparison Table for 5 V–Compliant Receiver Scheme

Scheme	Board Components	Speed	Current Limitations
1	Two resistors	Low to high ¹	Limited by transmitter's drive strength
2	Resistor and Zener 3.3 V	Medium	Limited by transmitter's drive strength
3	Bus switch	High	N/A
4	Minimum resistor value ² R = 47 Ω at T _J = 70°C	Medium	Maximum diode current at 100% duty cycle, signal constantly at '1'
	R = 150 Ω at T_J = 85°C		52.7 mA at $T_J = 70^{\circ}$ C / 10-year lifetime 16.5 mA at $T_J = 85^{\circ}$ C / 10-year lifetime
	$R = 420 \Omega a (1_{\rm J} = 100 C)$		5.9 mA at $T_J = 100^{\circ}$ C / 10-year lifetime
			For duty cycles other than 100%, the currents can be increased by a factor = 1 / (duty cycle).
			Example: 20% duty cycle at 70°C
			Maximum current = (1 / 0.2) * 52.7 mA = 5 * 52.7 mA = 263.5 mA

Notes:

1. Speed and current consumption increase as the board resistance values decrease.

2. Resistor values ensure I/O diode long-term reliability.

Device Architecture

Result: No Bus Contention

Figure 2-112 • Timing Diagram (with skew circuit selected)

Weak Pull-Up and Weak Pull-Down Resistors

Fusion devices support optional weak pull-up and pull-down resistors for each I/O pin. When the I/O is pulled up, it is connected to the VCCI of its corresponding I/O bank. When it is pulled down, it is connected to GND. Refer to Table 2-97 on page 2-171 for more information.

Slew Rate Control and Drive Strength

Fusion devices support output slew rate control: high and low. The high slew rate option is recommended to minimize the propagation delay. This high-speed option may introduce noise into the system if appropriate signal integrity measures are not adopted. Selecting a low slew rate reduces this kind of noise but adds some delays in the system. Low slew rate is recommended when bus transients are expected. Drive strength should also be selected according to the design requirements and noise immunity of the system.

The output slew rate and multiple drive strength controls are available in LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V, LVCMOS 2.5 V, 5.0 V input, LVCMOS 1.8 V, and LVCMOS 1.5 V. All other I/O standards have a high output slew rate by default.

For Fusion slew rate and drive strength specifications, refer to the appropriate I/O bank table:

- Fusion Standard I/O (Table 2-78 on page 2-152)
- Fusion Advanced I/O (Table 2-79 on page 2-152)
- Fusion Pro I/O (Table 2-80 on page 2-152)

Table 2-83 on page 2-155 lists the default values for the above selectable I/O attributes as well as those that are preset for each I/O standard.

Refer to Table 2-78, Table 2-79, and Table 2-80 on page 2-152 for SLEW and OUT_DRIVE settings. Table 2-81 on page 2-153 and Table 2-82 on page 2-154 list the I/O default attributes. Table 2-83 on page 2-155 lists the voltages for the supported I/O standards.

Device Architecture

Table 2-81 • Fusion Pro I/O Default Attributes

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (tribuf and bibuf only)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER	IN_DELAY (input only)	IN_DELAY_VAL (input only)	SCHMITT_TRIGGER (input only)
LVTTL/LVCMO S 3.3 V	Refer to the following tables for more	Refer to the following tables for more	Off	None	35 pF	-	Off	0	Off
LVCMOS 2.5 V	Table 2-78 on page 2-152	information:	Off	None	35 pF	-	Off	0	Off
LVCMOS 2.5/5.0 V	Table 2-78 on page 2-152 T Table 2-79 on page 2-152 T Table 2-80 on page 2-152 T	Table 2-79 on page 2-152 Table 2-80 on page 2-152	Off	None	35 pF	-	Off	0	Off
LVCMOS 1.8 V			Off	None	35 pF	-	Off	0	Off
LVCMOS 1.5 V			Off	None	35 pF	-	Off	0	Off
PCI (3.3 V)			Off	None	10 pF	-	Off	0	Off
PCI-X (3.3 V)			Off	None	10 pF	-	Off	0	Off
GTL+ (3.3 V)			Off	None	10 pF	-	Off	0	Off
GTL+ (2.5 V)			Off	None	10 pF	-	Off	0	Off
GTL (3.3 V)			Off	None	10 pF	-	Off	0	Off
GTL (2.5 V)			Off	None	10 pF	-	Off	0	Off
HSTL Class I			Off	None	20 pF	-	Off	0	Off
HSTL Class II			Off	None	20 pF	-	Off	0	Off
SSTL2 Class I and II			Off	None	30 pF	-	Off	0	Off
SSTL3 Class I and II			Off	None	30 pF	-	Off	0	Off
LVDS, BLVDS, M-LVDS			Off	None	0 pF	_	Off	0	Off
LVPECL			Off	None	0 pF	_	Off	0	Off

Table 2-93 • Summary of I/O Timing Characteristics – Software Default SettingsCommercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,Worst-Case VCCI = I/O Standard DependentApplicable to Advanced I/Os

I/O Standard	Drive Strength (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (Ohm)	tpour	top	toin	tey	teout	tzı	tzH	t _{LZ}	tHZ	tzıs	tzHS	Units
3.3 V LVTTL/ 3.3 V LVCMOS	12 mA	High	35 pF	-	0.49	2.64	0.03	0.90	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
2.5 V LVCMOS	12 mA	High	35 pF	_	0.49	2.66	0.03	0.98	0.32	2.71	2.56	2.47	2.57	4.38	4.23	ns
1.8 V LVCMOS	12 mA	High	35 pF	_	0.49	2.64	0.03	0.91	0.32	2.69	2.27	2.76	3.05	4.36	3.94	ns
1.5 V LVCMOS	12 mA	High	35 pF	_	0.49	3.05	0.03	1.07	0.32	3.10	2.67	2.95	3.14	4.77	4.34	ns
3.3 V PCI	Per PCI spec	High	10 pF	25 ²	0.49	2.00	0.03	0.65	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns
3.3 V PCI-X	Per PCI-X spec	High	10 pF	25 ²	0.49	2.00	0.03	0.62	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns
LVDS	24 mA	High	_	-	0.49	1.37	0.03	1.20	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ns
LVPECL	24 mA	High	-	_	0.49	1.34	0.03	1.05	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ns

Notes:

1. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values.

2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-123 on page 2-197 for connectivity. This resistor is not required during normal operation.

Table 2-94 • Summary of I/O Timing Characteristics – Software Default SettingsCommercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,Worst-Case VCCI = I/O Standard DependentApplicable to Standard I/Os

I/O Standard	Drive Strength (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (Ohm)	t pour	t _{DP}	t _{DIN}	t _Þ v	teour	tzı	tzH	t _{LZ}	t _{HZ}	Units
3.3 V LVTTL/ 3.3 V LVCMOS	8 mA	High	35 pF	-	0.49	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns
2.5 V LVCMOS	8 mA	High	35pF	-	0.49	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns
1.8 V LVCMOS	4 mA	High	35pF	_	0.49	4.74	0.03	0.90	0.32	4.02	4.74	1.80	1.85	ns
1.5 V LVCMOS	2 mA	High	35pF	—	0.49	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values.

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-136. The building blocks of the LVPECL transmitter–receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

Figure 2-136 • LVPECL Circuit Diagram and Board-Level Implementation

DC Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
VCCI	Supply Voltage	3.0		3.3		3.6		V
VOL	Output Low Voltage	0.96	1.27	1.06	1.43	1.30	1.57	V
VOH	Output High Voltage	1.8	2.11	1.92	2.28	2.13	2.41	V
VIL, VIH	Input Low, Input High Voltages	0	3.6	0	3.6	0	3.6	V
VODIFF	Differential Output Voltage	0.625	0.97	0.625	0.97	0.625	0.97	V
VOCM	Output Common Mode Voltage	1.762	1.98	1.762	1.98	1.762	1.98	V
VICM	Input Common Mode Voltage	1.01	2.57	1.01	2.57	1.01	2.57	V
VIDIFF	Input Differential Voltage	300		300		300		mV

Table 2-171 • Minimum and Maximum DC Input and Output Levels

Table 2-172 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)
1.64	1.94	Cross point	_

Note: **Measuring point* = *Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.*

Timing Characteristics

Table 2-173 • LVPECL

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Pro I/Os

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	2.14	0.04	1.63	ns
-1	0.56	1.82	0.04	1.39	ns
-2	0.49	1.60	0.03	1.22	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

ISP

Fusion devices support IEEE 1532 ISP via JTAG and require a single VPUMP voltage of 3.3 V during programming. In addition, programming via a microcontroller in a target system can be achieved. Refer to the standard or the "In-System Programming (ISP) of Microsemi's Low Power Flash Devices Using FlashPro4/3/3X" chapter of the *Fusion FPGA Fabric User's Guide* for more details.

JTAG IEEE 1532

Programming with IEEE 1532

Fusion devices support the JTAG-based IEEE1532 standard for ISP. As part of this support, when a Fusion device is in an unprogrammed state, all user I/O pins are disabled. This is achieved by keeping the global IO_EN signal deactivated, which also has the effect of disabling the input buffers. Consequently, the SAMPLE instruction will have no effect while the Fusion device is in this unprogrammed state—different behavior from that of the ProASICPLUS® device family. This is done because SAMPLE is defined in the IEEE1532 specification as a noninvasive instruction. If the input buffers were to be enabled by SAMPLE temporarily turning on the I/Os, then it would not truly be a noninvasive instruction. Refer to the standard or the "In-System Programming (ISP) of Microsemi's Low Power Flash Devices Using FlashPro4/3/3X" chapter of the *Fusion FPGA Fabric User's Guide* for more details.

Boundary Scan

Fusion devices are compatible with IEEE Standard 1149.1, which defines a hardware architecture and the set of mechanisms for boundary scan testing. The basic Fusion boundary scan logic circuit is composed of the test access port (TAP) controller, test data registers, and instruction register (Figure 2-146 on page 2-230). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS) and the optional IDCODE instruction (Table 2-185 on page 2-230).

Each test section is accessed through the TAP, which has five associated pins: TCK (test clock input), TDI, TDO (test data input and output), TMS (test mode selector), and TRST (test reset input). TMS, TDI, and TRST are equipped with pull-up resistors to ensure proper operation when no input data is supplied to them. These pins are dedicated for boundary scan test usage. Refer to the "JTAG Pins" section on page 2-226 for pull-up/-down recommendations for TDO and TCK pins. The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 2-146 on page 2-230. The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state.

VJTAG	Tie-Off Resistance*
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Table 2-184 • TRST and TCK Pull-Down Recommendations

Note: **Equivalent parallel resistance if more than one device is on JTAG chain.*

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain High for five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-Logic-Reset state.

Fusion devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register cells, each with a serial-in, serial-out, parallel-in, and parallel-out pin.

The serial pins are used to serially connect all the boundary scan register cells in a device into a boundary scan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are

Parameter	Description	Conditions	Temp.	Min	Тур	Мах	Unit
ICC ¹	1.5 V quiescent current	Operational standby ⁴ ,	T _J = 25°C		5	7.5	mA
		VCC = 1.575 V	T _J = 85°C		6.5	20	mA
			T _J = 100°C		14	48	mA
		Standby mode ⁵ or Sleep mode ⁶ , V _{CC} = 0 V			0	0	μA
ICC33 ²	3.3 V analog supplies	Operational standby ⁴ ,	T _J = 25°C		9.8	12	mA
	current	VCC33 = 3.63 V	T _J = 85°C		9.8	12	mA
			T _J = 100°C		10.7	15	mA
		Operational standby, only	T _J = 25°C		0.30	2	mA
		output ON, VCC33 = 3.63 V	T _J = 85°C		0.30	2	mA
			T _J = 100°C		0.45	2	mA
		Standby mode ⁵ ,	T _J = 25°C		2.9	2.9	mA
		VCC33 - 3.03 V	T _J = 85°C		2.9	3.0	mA
			T _J = 100°C		3.5	6	mA
		Sleep mode ⁶ , VCC33 = 3.63 V	T _J = 25°C		17	18	μΑ
			T _J = 85°C		18	20	μA
			T _J = 100°C		24	25	μA
ICCI ³	I/O quiescent current	Operational standby ⁶ ,	T _J = 25°C		260	437	μΑ
		VCCIx = 3.63 V	T _J = 85°C		260	437	μΑ
			T _J = 100°C		260	437	μA
IJTAG	JTAG I/O quiescent current	Operational standby ⁴ ,	T _J = 25°C		80	100	μΑ
		VJTAG = 3.63 V	T _J = 85°C		80	100	μA
			T _J = 100°C		80	100	μA
		Standby mode ⁵ or Sleep mode ⁶ , VJTAG = 0 V			0	0	μA
IPP	Programming supply current	Non-programming mode, VPUMP = 3.63 V	T _J = 25°C		37	80	μA
			T _J = 85°C		37	80	μA
			T _J = 100°C		80	100	μA
		Standby mode ⁵ or Sleep mode ⁶ , VPUMP = 0 V			0	0	μA

Notes:

1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.

2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, and ICCI2.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.

 P_{S-CELL} = N_{S-CELL} * (PAC5 + (α_1 / 2) * PAC6) * F_{CLK}

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

 $P_{S-CELL} = 0 W$

Combinatorial Cells Dynamic Contribution—P_{C-CELL}

Operating Mode

 $P_{C-CELL} = N_{C-CELL} * (\alpha_1 / 2) * PAC7 * F_{CLK}$

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

 $P_{C-CELL} = 0 W$

Routing Net Dynamic Contribution-PNET

Operating Mode

 $P_{NET} = (N_{S-CELL} + N_{C-CELL}) * (\alpha_1 / 2) * PAC8 * F_{CLK}$

N_{S-CELL} is the number VersaTiles used as sequential modules in the design.

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

 $P_{NET} = 0 W$

I/O Input Buffer Dynamic Contribution—PINPUTS

Operating Mode

 $P_{INPUTS} = N_{INPUTS} * (\alpha_2 / 2) * PAC9 * F_{CLK}$

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 3-16 on page 3-27.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

P_{INPUTS} = 0 W

I/O Output Buffer Dynamic Contribution—POUTPUTS

Operating Mode

 $\mathsf{P}_{\mathsf{OUTPUTS}} = \mathsf{N}_{\mathsf{OUTPUTS}} * (\alpha_2 / 2) * \beta_1 * \mathsf{PAC10} * \mathsf{F}_{\mathsf{CLK}}$

N_{OUTPUTS} is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 3-16 on page 3-27.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 3-17 on page 3-27.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

P_{OUTPUTS} = 0 W

FG484

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.

Package Pin Assignments

FG484 FG484					
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function
A1	GND	GND	AA14	AG7	AG7
A2	VCC	NC	AA15	AG8	AG8
A3	GAA1/IO01PDB0V0	GAA1/IO01PDB0V0	AA16	GNDA	GNDA
A4	GAB0/IO02NDB0V0	GAB0/IO02NDB0V0	AA17	AG9	AG9
A5	GAB1/IO02PDB0V0	GAB1/IO02PDB0V0	AA18	VAREF	VAREF
A6	IO07NDB0V1	IO07NDB0V1	AA19	VCCIB2	VCCIB2
A7	IO07PDB0V1	IO07PDB0V1	AA20	PTEM	PTEM
A8	IO10PDB0V1	IO09PDB0V1	AA21	GND	GND
A9	IO14NDB0V1	IO13NDB0V2	AA22	VCC	NC
A10	IO14PDB0V1	IO13PDB0V2	AB1	GND	GND
A11	IO17PDB1V0	IO24PDB1V0	AB2	VCC	NC
A12	IO18PDB1V0	IO26PDB1V0	AB3	NC	IO94NSB4V0
A13	IO19NDB1V0	IO27NDB1V1	AB4	GND	GND
A14	IO19PDB1V0	IO27PDB1V1	AB5	VCC33N	VCC33N
A15	IO24NDB1V1	IO35NDB1V2	AB6	AT0	AT0
A16	IO24PDB1V1	IO35PDB1V2	AB7	ATRTN0	ATRTN0
A17	GBC0/IO26NDB1V1	GBC0/IO40NDB1V2	AB8	AT1	AT1
A18	GBA0/IO28NDB1V1	GBA0/IO42NDB1V2	AB9	AT2	AT2
A19	IO29NDB1V1	IO43NDB1V2	AB10	ATRTN1	ATRTN1
A20	IO29PDB1V1	IO43PDB1V2	AB11	AT3	AT3
A21	VCC	NC	AB12	AT6	AT6
A22	GND	GND	AB13	ATRTN3	ATRTN3
AA1	VCC	NC	AB14	AT7	AT7
AA2	GND	GND	AB15	AT8	AT8
AA3	VCCIB4	VCCIB4	AB16	ATRTN4	ATRTN4
AA4	VCCIB4	VCCIB4	AB17	AT9	AT9
AA5	PCAP	PCAP	AB18	VCC33A	VCC33A
AA6	AG0	AG0	AB19	GND	GND
AA7	GNDA	GNDA	AB20	NC	IO76NPB2V0
AA8	AG1	AG1	AB21	VCC	NC
AA9	AG2	AG2	AB22	GND	GND
AA10	GNDA	GNDA	B1	VCC	NC
AA11	AG3	AG3	B2	GND	GND
AA12	AG6	AG6	B3	GAA0/IO01NDB0V0	GAA0/IO01NDB0V0
AA13	GNDA	GNDA	B4	GND	GND

Datasheet Information

Revision	Changes	Page
v2.0, Revision 1 (July 2009)	The MicroBlade and Fusion datasheets have been combined. Pigeon Point information is new.	N/A
	CoreMP7 support was removed since it is no longer offered.	
	–F was removed from the datasheet since it is no longer offered.	
	The operating temperature was changed from ambient to junction to better reflect actual conditions of operations.	
	Commercial: 0°C to 85°C	
	Industrial: –40°C to 100°C	
	The version number category was changed from Preliminary to Production, which means the datasheet contains information based on final characterization. The version number changed from Preliminary v1.7 to v2.0.	
	The "Integrated Analog Blocks and Analog I/Os" section was updated to include a reference to the "Analog System Characteristics" section in the <i>Device Architecture</i> chapter of the datasheet, which includes Table 2-46 • Analog Channel Specifications and specific voltage data.	1-4
	The phrase "Commercial-Case Conditions" in timing table titles was changed to "Commercial Temperature Range Conditions."	N/A
	The "Crystal Oscillator" section was updated significantly. Please review carefully.	2-20
	The "Real-Time Counter (part of AB macro)" section was updated significantly. Please review carefully.	2-33
	There was a typo in Table 2-19 • Flash Memory Block Pin Names for the ERASEPAGE description; it was the same as DISCARDPAGE. As as a result, the ERASEPAGE description was updated.	2-40
	The $t_{\mbox{FMAXCLKNVM}}$ parameter was updated in Table 2-25 \bullet Flash Memory Block Timing.	2-52
	Table 2-31 • RAM4K9 and Table 2-32 • RAM512X18 were updated.	2-66
	In Table 2-36 • Analog Block Pin Description, the Function description for PWRDWN was changed from "Comparator power-down if 1"	2-78
	to "ADC comparator power-down if 1. When asserted, the ADC will stop functioning, and the digital portion of the analog block will continue operating. This may result in invalid status flags from the analog block. Therefore, Microsemi does not recommend asserting the PWRDWN pin."	
	Figure 2-75 • Gate Driver Example was updated.	2-91
	The "ADC Operation" section was updated. Please review carefully.	2-104
	Figure 2-92 • Intra-Conversion Timing Diagram and Figure 2-93 • Injected Conversion Timing Diagram are new.	2-113
	The "Typical Performance Characteristics" section is new.	2-115
	Table 2-49 • Analog Channel Specifications was significantly updated.	2-117
	Table 2-50 • ADC Characteristics in Direct Input Mode was significantly updated.	2-120
	In Table 2-52 • Calibrated Analog Channel Accuracy 1,2,3, note 2 was updated.	2-123
	In Table 2-53 • Analog Channel Accuracy: Monitoring Standard Positive Voltages, note 1 was updated.	2-124
	In Table 2-54 • ACM Address Decode Table for Analog Quad, bit 89 was removed.	2-126

Datasheet Information

Revision	Changes	Page
Advance v1.0 (January 2008)	All Timing Characteristics tables were updated. For the Differential I/O Standards, the Standard I/O support tables are new.	N/A
	Table 2-3 • Array Coordinates was updated to change the max x and y values	2-9
	Table 2-12 • Fusion CCC/PLL Specification was updated.	2-31
	A note was added to Table 2-16 · RTC ACM Memory Map.	2-37
	A reference to the Peripheral's User's Guide was added to the "Voltage Regulator Power Supply Monitor (VRPSM)" section.	2-42
	In Table 2-25 • Flash Memory Block Timing, the commercial conditions were updated.	2-55
	In Table 2-26 • FlashROM Access Time, the commercial conditions were missing and have been added below the title of the table.	2-58
	In Table 2-36 • Analog Block Pin Description, the function description was updated for the ADCRESET.	2-82
	In the "Voltage Monitor" section, the following sentence originally had \pm 10% and it was changed to +10%.	2-86
	The Analog Quad inputs are tolerant up to 12 V + 10%.	
	In addition, this statement was deleted from the datasheet:	
	Each I/O will draw power when connected to power (3 mA at 3 V).	0.00
	The "Terminology" section is new.	2-88
	The "Current Monitor" section was significantly updated. Figure 2-72 • Timing Diagram for Current Monitor Strobe to Figure 2-74 • Negative Current Monitor and Table 2-37 • Recommended Resistor for Different Current Range Measurement are new.	2-90
	The "ADC Description" section was updated to add the "Terminology" section.	2-93
	In the "Gate Driver" section, 25 mA was changed to 20 mA and 1.5 MHz was changed to 1.3 MHz. In addition, the following sentence was deleted: The maximum AG pad switching frequency is 1.25 MHz.	2-94
	The "Temperature Monitor" section was updated to rewrite most of the text and add Figure 2-78, Figure 2-79, and Table 2-38 • Temperature Data Format.	2-96
	In Table 2-38 • Temperature Data Format, the temperature K column was changed for 85°C from 538 to 358.	2-98
	In Table 2-45 • ADC Interface Timing, "Typical-Case" was changed to "Worst-Case."	2-110
	The "ADC Interface Timing" section is new.	2-110
	Table 2-46 • Analog Channel Specifications was updated.	2-118
	The "V _{CC15A} Analog Power Supply (1.5 V)" section was updated.	2-224
	The "V _{CCPLA/B} PLL Supply Voltage" section is new.	2-225
	In "V $_{\rm CCNVM}$ Flash Memory Block Power Supply (1.5 V)" section, supply was changed to supply input.	2-224
	The "V_{CCPLAVB} PLL Supply Voltage" pin description was updated to include the following statement:	2-225
	Actel recommends tying VCCPLX to VCC and using proper filtering circuits to decouple V_{CC} noise from PLL.	
	The "V _{COMPLA/B} Ground for West and East PLL" section was updated.	2-225

Fusion Family of Mixed Signal FPGAs

Revision	Changes	Page
Advance 1.0 (continued)	In Table 2-47 • ADC Characteristics in Direct Input Mode, the commercial conditions were updated and note 2 is new.	2-121
	The V_{CC33ACAP} signal name was changed to "XTAL1 Crystal Oscillator Circuit Input".	2-228
	Table 2-48 • Uncalibrated Analog Channel Accuracy* is new.	2-123
	Table 2-49 • Calibrated Analog Channel Accuracy ^{1,2,3} is new.	2-124
	Table 2-50 • Analog Channel Accuracy: Monitoring Standard Positive Voltages is new.	2-125
	In Table 2-57 • Voltage Polarity Control Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$)*, the following I/O Bank names were changed:	2-131
	Hot-Swap changed to Standard	
	LVDS changed to Advanced	
	In Table 2-58 • Prescaler Op Amp Power-Down Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$), the following I/O Bank names were changed:	2-132
	Hot-Swap changed to Standard	
	In the title of Table 2.64 - 1/O Standards Supported by Dark Tures, IV/DS 1/O uses	0.404
	changed to Advanced I/O.	2-134
	The title was changed from "Fusion Standard, LVDS, and Standard plus Hot-Swap I/O" to Table 2-68 • Fusion Standard and Advanced I/O Features. In addition, the table headings were all updated. The heading used to be Standard and LVDS I/O and was changed to Advanced I/O. Standard Hot-Swap was changed to just Standard.	2-136
	 This sentence was deleted from the "Slew Rate Control and Drive Strength" section: The Standard hot-swap I/Os do not support slew rate control. In addition, these references were changed: From: Fusion hot-swap I/O (Table 2-69 on page 2-122) To: Fusion Standard I/O From: Fusion LVDS I/O (Table 2-70 on page 2-122) To: Fusion Advanced I/O 	2-152
	The "Cold-Sparing Support" section was significantly updated.	2-143
	In the title of Table 2-75 • Fusion Standard I/O Standards—OUT_DRIVE Settings, Hot-Swap was changed to Standard.	2-153
	In the title of Table 2-76 • Fusion Advanced I/O Standards—SLEW and OUT_DRIVE Settings, LVDS was changed to Advanced.	2-153
	In the title of Table 2-81 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications, LVDS was changed to Advanced.	2-157
	In Figure 2-111 • Naming Conventions of Fusion Devices with Three Digital I/O Banks and Figure 2-112 • Naming Conventions of Fusion Devices with Four I/O Banks the following names were changed: Hot-Swap changed to Standard	2-160
	LVDS changed to Advanced	
	The Figure 2-113 • Timing Model was updated.	2-161
	In the notes for Table 2-86 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions, T_J was changed to T_A .	2-166

Datasheet Information

Revision	Changes	Page
Advance v1.0 (continued)	This change table states that in the "208-Pin PQFP" table listed under the Advance v0.8 changes, the AFS090 device had a pin change. That is incorrect. Pin 102 was updated for AFS250 and AFS600. The function name changed from $V_{CC33ACAP}$ to V_{CC33A} .	3-8
Advance v0.9 (October 2007)	In the "Package I/Os: Single-/Double-Ended (Analog)" table, the AFS1500/M7AFS1500 I/O counts were updated for the following devices: FG484: 223/109 FG676: 252/126	II
	In the "108-Pin QFN" table, the function changed from $V_{CC33ACAP}$ to V_{CC33A} for the following pin: B25	3-2
	In the "180-Pin QFN" table, the function changed from V _{CC33ACAP} to V _{CC33A} for the following pins: AFS090: B29 AFS250: B29	3-4
	In the "208-Pin PQFP" table, the function changed from V _{CC33ACAP} to V _{CC33A} for the following pins: AFS090: 102 AFS250: 102	3-8
	In the "256-Pin FBGA" table, the function changed from $V_{CC33ACAP}$ to V_{CC33A} for the following pins: AFS090: T14 AFS250: T14 AFS600: T14 AFS1500: T14	3-12
Advance v0.9 (continued)	In the "484-Pin FBGA" table, the function changed from V _{CC33ACAP} to V _{CC33A} for the following pins: AFS600: AB18 AFS1500: AB18	3-20
	In the "676-Pin FBGA" table, the function changed from V _{CC33ACAP} to V _{CC33A} for the following pins: AFS1500: AD20	3-28
Advance v0.8 (June 2007)	Figure 2-16 • Fusion Clocking Options and the "RC Oscillator" section were updated to change GND_OSC and VCC_OSC to GNDOSC and VCCOSC.	2-20, 2-21
	Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro was updated to change the positions of OADIVRST and OADIVHALF, and a note was added.	2-25
	The "Crystal Oscillator" section was updated to include information about controlling and enabling/disabling the crystal oscillator.	2-22
	Table 2-11 \cdot Electrical Characteristics of the Crystal Oscillator was updated to change the typical value of I _{DYNXTAL} for 0.032–0.2 MHz to 0.19.	2-24
	The "1.5 V Voltage Regulator" section was updated to add "or floating" in the paragraph stating that an external pull-down is required on TRST to power down the VR.	2-41
	The "1.5 V Voltage Regulator" section was updated to include information on powering down with the VR.	2-41