

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	114
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1afs250-fg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Clock Aggregation

Clock aggregation allows for multi-spine clock domains. A MUX tree provides the necessary flexibility to allow long lines or I/Os to access domains of one, two, or four global spines. Signal access to the clock aggregation system is achieved through long-line resources in the central rib, and also through local resources in the north and south ribs, allowing I/Os to feed directly into the clock system. As Figure 2-14 indicates, this access system is contiguous.

There is no break in the middle of the chip for north and south I/O VersaNet access. This is different from the quadrant clocks, located in these ribs, which only reach the middle of the rib. Refer to the *Using Global Resources in Actel Fusion Devices* application note.

Figure 2-14 • Clock Aggregation Tree Architecture

Global Buffers with No Programmable Delays

The CLKBUF and CLKBUF_LVPECL/LVDS macros are composite macros that include an I/O macro driving a global buffer, hardwired together (Figure 2-20).

The CLKINT macro provides a global buffer function driven by the FPGA core.

The CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are pass-through clock sources and do not use the PLL or provide any programmable delay functionality.

Many specific CLKBUF macros support the wide variety of single-ended and differential I/O standards supported by Fusion devices. The available CLKBUF macros are described in the *IGLOO*, *ProASIC3*, *SmartFusion and Fusion Macro Library Guide*.

Clock Source	Clock Conditioning	Output	
			GLA
CLKBUF_LVDS/LVPECL Macro CLKBUF Macro	CLKINT Macro		or
		None	GLB
			or
			GLC

Figure 2-20 • Global Buffers with No Programmable Delay

Global Buffers with Programmable Delay

The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to delay the clock input using a programmable delay (Figure 2-21 on page 2-25). The CLKDLY macro takes the selected clock input and adds a user-defined delay element. This macro generates an output clock phase shift from the input clock.

The CLKDLY macro can be driven by an INBUF macro to create a composite macro, where the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the I/O must be placed in one of the dedicated global I/O locations.

Many specific INBUF macros support the wide variety of single-ended and differential I/O standards supported by the Fusion family. The available INBUF macros are described in the *IGLOO*, *ProASIC3*, *SmartFusion and Fusion Macro Library Guide*.

The CLKDLY macro can be driven directly from the FPGA core.

The CLKDLY macro can also be driven from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate from the hardwired I/O connection described earlier.

The visual CLKDLY configuration in the SmartGen part of the Libero SoC and Designer tools allows the user to select the desired amount of delay and configures the delay elements appropriately. SmartGen also allows the user to select the input clock source. SmartGen will automatically instantiate the special macro, PLLINT, when needed.

CCC Physical Implementation

The CCC circuit is composed of the following (Figure 2-23):

- PLL core
- · 3 phase selectors
- 6 programmable delays and 1 fixed delay
- 5 programmable frequency dividers that provide frequency multiplication/division (not shown in Figure 2-23 because they are automatically configured based on the user's required frequencies)
- 1 dynamic shift register that provides CCC dynamic reconfiguration capability (not shown)

CCC Programming

The CCC block is fully configurable. It is configured via static flash configuration bits in the array, set by the user in the programming bitstream, or configured through an asynchronous dedicated shift register, dynamically accessible from inside the Fusion device. The dedicated shift register permits changes of parameters such as PLL divide ratios and delays during device operation. This latter mode allows the user to dynamically reconfigure the PLL without the need for core programming. The register file is accessed through a simple serial interface.

Note: Clock divider and multiplier blocks are not shown in this figure or in SmartGen. They are automatically configured based on the user's required frequencies.

Figure 2-23 • PLL Block

Device Architecture

Table 2-19 • Flash Memory Block Pin Names (continued)

Interface Name	Width	Direction	Description
STATUS[1:0]	2	Out	Status of the last operation completed:
			00: Successful completion
			01: Read-/Unprotect-Page: single error detected and corrected
			Write: operation addressed a write-protected page Erase-Page: protection violation Program: Page Buffer is unmodified Protection violation
			10: Read-/Unprotect-Page: two or more errors detected
			11: Write: attempt to write to another page before programming current page
			Erase-Page/Program: page write count has exceeded the 10-year retention threshold
UNPROTECTPAGE	1	In	When asserted, the page addressed is copied into the Page Buffer and the Page Buffer is made writable.
WD[31:0]	32	In	Write data
WEN	1	In	When asserted, stores WD in the page buffer.

All flash memory block input signals are active high, except for RESET.

Data operations are performed in widths of 1 to 4 bytes. A write to a location in a page that is not already in the Page Buffer will cause the page to be read from the FB Array and stored in the Page Buffer. The block that was addressed during the write will be put into the Block Buffer, and the data written by WD will overwrite the data in the Block Buffer. After the data is written to the Block Buffer, the Block Buffer is then written to the Page Buffer to keep both buffers in sync. Subsequent writes to the same block will overwrite the Block Buffer and the Page Buffer. A write to another block in the page will cause the addressed block to be loaded from the Page Buffer, and the write will be performed as described previously.

The data width can be selected dynamically via the DATAWIDTH input bus. The truth table for the data width settings is detailed in Table 2-21. The minimum resolvable address is one 8-bit byte. For data widths greater than 8 bits, the corresponding address bits are ignored—when DATAWIDTH = 0 (2 bytes), ADDR[0] is ignored, and when DATAWIDTH = '10' or '11' (4 bytes), ADDR[1:0] are ignored. Data pins are LSB-oriented and unused WD data pins must be grounded.

Table 2-21 • Data Width Settings

DATAWIDTH[1:0]	Data Width
00	1 byte [7:0]
01	2 byte [15:0]
10, 11	4 bytes [31:0]

Flash Memory Block Protection

Page Loss Protection

When the PAGELOSSPROTECT pin is set to logic 1, it prevents writes to any page other than the current page in the Page Buffer until the page is either discarded or programmed.

A write to another page while the current page is Page Loss Protected will return a STATUS of '11'.

Overwrite Protection

Any page that is Overwrite Protected will result in the STATUS being set to '01' when an attempt is made to either write, program, or erase it. To set the Overwrite Protection state for a page, set the OVERWRITEPROTECT pin when a Program operation is undertaken. To clear the Overwrite Protect state for a given page, an Unprotect Page operation must be performed on the page, and then the page must be programmed with the OVERWRITEPROTECT pin cleared to save the new page.

LOCKREQUEST

The LOCKREQUEST signal is used to give the user interface control over simultaneous access of the FB from both the User and JTAG interfaces. When LOCKREQUEST is asserted, the JTAG interface will hold off any access attempts until LOCKREQUEST is deasserted.

Flash Memory Block Operations

FB Operation Priority

The FB provides for priority of operations when multiple actions are requested simultaneously. Table 2-22 shows the priority order (priority 0 is the highest).

Table 2-22 • FB Operation

Operation	Priority
System Initialization	0
FB Reset	1
Read	2
Write	3
Erase Page	4
Program	5
Unprotect Page	6
Discard Page	7

Device Architecture

Table 2-25 • Flash Memory Block Timing (continued)Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{SUPGLOSSPRO}	Page Loss Protect Setup Time for the Control Logic	1.69	1.93	2.27	ns
t _{HDPGLOSSPRO}	Page Loss Protect Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SUPGSTAT}	Page Status Setup Time for the Control Logic	2.49	2.83	3.33	ns
t _{HDPGSTAT}	Page Status Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SUOVERWRPG}	Over Write Page Setup Time for the Control Logic	1.88	2.14	2.52	ns
t _{HDOVERWRPG}	Over Write Page Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SULOCKREQUEST}	Lock Request Setup Time for the Control Logic	0.87	0.99	1.16	ns
t _{HDLOCKREQUEST}	Lock Request Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{RECARNVM}	Reset Recovery Time	0.94	1.07	1.25	ns
t _{REMARNVM}	Reset Removal Time	0.00	0.00	0.00	ns
t _{mpwarnvm}	Asynchronous Reset Minimum Pulse Width for the Control Logic	10.00	12.50	12.50	ns
t _{MPWCLKNVM}	Clock Minimum Pulse Width for the Control Logic	4.00	5.00	5.00	ns
+	Maximum Frequency for Clock for the Control Logic – for AFS1500/AFS600	80.00	80.00	80.00	MHz
'FMAXCLKNVM	Maximum Frequency for Clock for the Control Logic – for AFS250/AFS090	100.00	80.00	80.00	MHz

FlashROM

Fusion devices have 1 kbit of on-chip nonvolatile flash memory that can be read from the FPGA core fabric. The FlashROM is arranged in eight banks of 128 bits during programming. The 128 bits in each bank are addressable as 16 bytes during the read-back of the FlashROM from the FPGA core (Figure 2-45).

The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly from the FPGA core. When programming, each of the eight 128-bit banks can be selectively reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports a synchronous read and can be read on byte boundaries. The upper three bits of the FlashROM address from the FPGA core define the bank that is being accessed. The lower four bits of the FlashROM address from the FPGA core define which of the 16 bytes in the bank is being accessed.

The maximum FlashROM access clock is given in Table 2-26 on page 2-54. Figure 2-46 shows the timing behavior of the FlashROM access cycle—the address has to be set up on the rising edge of the clock for DOUT to be valid on the next falling edge of the clock.

If the address is unchanged for two cycles:

- D0 becomes invalid t_{CK2Q} ns after the second rising edge of the clock.
- D0 becomes valid again t_{CK2Q} ns after the second falling edge.

If the address unchanged for three cycles:

- D0 becomes invalid t_{CK2Q} ns after the second rising edge of the clock.
- D0 becomes valid again t_{CK2Q} ns after the second falling edge.
- D0 becomes invalid t_{CK2Q} ns after the third rising edge of the clock.
- D0 becomes valid again t_{CK2Q} ns after the third falling edge.

Figure 2-57 • FIFO Read

Figure 2-60 • FIFO EMPTY Flag and AEMPTY Flag Assertion

		Tot Er	al Cha ror (LS	nnel SB)	Chann E	el Inpu rror (LS	t Offset SB)	Chani	nel Input Error (m\	Offset /)	Chan	nel Gaiı (%FSR	n Error)
Analog Pad	Prescaler Range (V)	Neg. Max.	Med.	Pos. Max.	Neg Max	Med.	Pos. Max.	Neg. Max.	Med.	Pos. Max.	Min.	Тур.	Max.
Positi	ve Range						ADC in	10-Bit N	lode				
AV, AC	16	-22	-2	12	-11	-2	14	-169	-32	224	3	0	-3
	8	-40	-5	17	-11	-5	21	-87	-40	166	2	0	-4
	4	-45	-9	24	-16	-11	36	-63	-43	144	2	0	-4
	2	-70	-19	33	-33	-20	66	-66	-39	131	2	0	-4
	1	-25	-7	5	-11	-3	26	-11	-3	26	3	-1	-3
	0.5	-41	-12	8	-12	-7	38	-6	-4	19	3	-1	-3
	0.25	-53	-14	19	-20	-14	40	-5	-3	10	5	0	-4
	0.125	-89	-29	24	-40	-28	88	-5	-4	11	7	0	-5
AT	16	-3	9	15	-4	0	4	-64	5	64	1	0	-1
	4	-10	2	15	-11	-2	11	-44	-8	44	1	0	-1
Negati	ve Range		ADC				ADC in	n 10-Bit Mode					
AV, AC	16	-35	-10	9	-24	-6	9	-383	-96	148	5	-1	-6
	8	-65	-19	12	-34	-12	9	-268	-99	75	5	-1	-5
	4	-86	-28	21	-64	-24	19	-254	-96	76	5	-1	-6
	2	-136	-53	37	-115	-42	39	-230	-83	78	6	-2	-7
	1	-98	-35	8	-39	-8	15	-39	-8	15	10	-3	-10
	0.5	-121	-46	7	-54	-14	18	-27	-7	9	10	-4	-11
	0.25	-149	-49	19	-72	-16	40	–18	-4	10	14	-4	-12
	0.125	-188	-67	38	-112	-27	56	-14	-3	7	16	-5	-14

Table 2-51 • Uncalibrated Analog Channel Accuracy*Worst-Case Industrial Conditions, TJ = 85°C

Note: *Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For 8-bit mode, divide the LSB count by 4. Gain remains the same.

Table 2-68 • I/O Bank Support by Device

I/O Bank	AFS090	AFS250	AFS600	AFS1500
Standard I/O	Ν	Ν	_	-
Advanced I/O	E, W	E, W	E, W	E, W
Pro I/O	-	_	Ν	Ν
Analog Quad	S	S	S	S

Note: E = *East side of the device*

W = West side of the device

N = North side of the device

S = South side of the device

Table 2-69 • Fusion VCCI Voltages and Compatible Standards

VCCI (typical)	Compatible Standards
3.3 V	LVTTL/LVCMOS 3.3, PCI 3.3, SSTL3 (Class I and II),* GTL+ 3.3, GTL 3.3,* LVPECL
2.5 V	LVCMOS 2.5, LVCMOS 2.5/5.0, SSTL2 (Class I and II),* GTL+ 2.5,* GTL 2.5,* LVDS, BLVDS, M-LVDS
1.8 V	LVCMOS 1.8
1.5 V	LVCMOS 1.5, HSTL (Class I),* HSTL (Class II)*

Note: *I/O standard supported by Pro I/O banks.

Table 2-70 • Fusion VREF Voltages and Compatible Standards*

VREF (typical)	Compatible Standards
1.5 V	SSTL3 (Class I and II)
1.25 V	SSTL2 (Class I and II)
1.0 V	GTL+ 2.5, GTL+ 3.3
0.8 V	GTL 2.5, GTL 3.3
0.75 V	HSTL (Class I), HSTL (Class II)

Note: *I/O standards supported by Pro I/O banks.

User I/O Characteristics

Timing Model

Figure 2-115	Timing Model
	Operating Conditions: -2 Speed, Commercial Temperature Range (T _J = 70°C),
	Worst-Case VCC = 1.425 V

Figure 2-118 • Tristate Output Buffer Timing Model and Delays (example)

Device Architecture

3.3 V PCI, 3.3 V PCI-X

The Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

Table 2-134 • Minimum and Maximum DC Input and Output Levels

3.3 V PCI/PCI-X	v	IL	V	IH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Per PCI specification	Per PCI curves						10	10				

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-123.

Figure 2-123 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the data path; Microsemi loading for tristate is described in Table 2-135.

Table 2-135 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for t _{DP(R)}	-	10
		0.615 * VCCI for t _{DP(F)}		

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

DC and Power Characteristics

Parameter	Description	Conditions	Temp.	Min.	Тур.	Max.	Unit
IJTAG	JTAG I/O quiescent	Operational standby ⁴ ,	T _J = 25°C		80	100	μA
	current	VJTAG = 3.63 V	T _J = 85°C		80	100	μA
			T _J = 100°C		80	100	μA
		Standby mode ⁵ or Sleep mode ⁶ , VJTAG = 0 V			0	0	μA
IPP	Programming supply current	Non-programming mode,	T _J = 25°C		39	80	μA
		VPUMP = 3.63 V	T _J = 85°C		40	80	μA
			T _J = 100°C		40	80	μA
		Standby mode ⁵ or Sleep mode ⁶ , VPUMP = 0 V			0	0	μA
ICCNVM	Embedded NVM	Reset asserted, V _{CCNVM} = 1.575 V	T _J = 25°C		50	150	μA
	current		Т _Ј =85°С		50	150	μA
			T _J = 100°C		50	150	μA
ICCPLL	1.5 V PLL quiescent	Operational standby	T _J = 25°C		130	200	μA
	current	, VCCPLL = 1.575 V	T _J = 85°C		130	200	μA
			T _J = 100°C		130	200	μA

Table 3-8 •	AFS1500 Quiescent	Supply Current	Characteristics	(continued)
-------------	-------------------	-----------------------	-----------------	-------------

Notes:

1. ICC is the 1.5 V power supplies, ICC and ICC15A.

2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.

Parameter	Description	Conditions	Temp.	Min	Тур	Мах	Unit
ICC ¹	1.5 V quiescent current	Operational standby ⁴ ,	T _J = 25°C		13	25	mA
		VCC = 1.575 V	T _J = 85°C		20	45	mA
			T _J =100°C		25	75	mA
		Standby mode ⁵ or Sleep mode ⁶ , VCC = 0 V			0	0	μA
ICC33 ²	3.3 V analog supplies	Operational standby ⁴ ,	T _J = 25°C		9.8	13	mA
	current	VCC33 = 3.63 V	T _J = 85°C		10.7	14	mA
			T _J = 100°C		10.8	15	mA
		Operational standby,	T _J = 25°C		0.31	2	mA
		only Analog Quad and -3.3 v output ON, VCC33 = 3.63 V	T _J = 85°C		0.35	2	mA
			T _J = 100°C		0.45	2	mA
		Standby mode ⁵ ,	T _J = 25°C		2.8	3.6	mA
		VCC33 = 3.63 V	T _J = 85°C		2.9	4	mA
			T _J = 100°C		3.5	6	mA
		Sleep mode ⁶ , V _{CC33} = 3.63 V	T _J = 25°C		17	19	μA
			T _J = 85°C		18	20	μA
			T _J = 100°C		24	25	μA
ICCI ³	I/O quiescent current	Operational standby ⁴ ,	T _J = 25°C		417	648	μA
		VCCIX = 3.63 V	T _J = 85°C		417	648	μA
			T _J = 100°C		417	649	μA
IJTAG	JTAG I/O quiescent current	Operational standby ⁴ ,	T _J = 25°C		80	100	μA
		VJ1AG = 3.63 V	T _J = 85°C		80	100	μA
			T _J = 100°C		80	100	μA
		Standby mode ⁵ or Sleep mode ⁶ , VJTAG = 0 V			0	0	μA

Table 3-9 •	AFS600 Quiescent Supply Current Characteristics
-------------	---

Notes:

1. ICC is the 1.5 V power supplies, ICC and ICC15A.

2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.

Microsemi

Package Pin Assignments

QN108			QN108	QN108		
Pin Number	AFS090 Function	Pin Number	AFS090 Function	Pin Number	AFS090 Function	
A1	NC	A39	GND	B21	AC2	
A2	GNDQ	A40	GCB1/IO35PDB1V0	B22	ATRTN1	
A3	GAA2/IO52PDB3V0	A41	GCB2/IO33PDB1V0	B23	AG3	
A4	GND	A42	GBA2/IO31PDB1V0	B24	AV3	
A5	GFA1/IO47PDB3V0	A43	NC	B25	VCC33A	
A6	GEB1/IO45PDB3V0	A44	GBA1/IO30RSB0V0	B26	VAREF	
A7	VCCOSC	A45	GBB1/IO28RSB0V0	B27	PUB	
A8	XTAL2	A46	GND	B28	VCC33A	
A9	GEA1/IO44PPB3V0	A47	VCC	B29	PTBASE	
A10	GEA0/IO44NPB3V0	A48	GBC1/IO26RSB0V0	B30	VCCNVM	
A11	GEB2/IO42PDB3V0	A49	IO21RSB0V0	B31	VCC	
A12	VCCNVM	A50	IO19RSB0V0	B32	TDI	
A13	VCC15A	A51	IO09RSB0V0	B33	TDO	
A14	PCAP	A52	GAC0/IO04RSB0V0	B34	VJTAG	
A15	NC	A53	VCCIB0	B35	GDC0/IO38NDB1V	
A16	GNDA	A54	GND		0	
A17	AV0	A55	GAB0/IO02RSB0V0	B36	VCCIB1	
A18	AG0	A56	GAA0/IO00RSB0V0	B37	GCB0/IO35NDB1V0	
A19	ATRTN0	B1	VCOMPLA	B38	GCC2/IO33NDB1V	
A20	AT1	B2	VCCIB3	B39		
A21	AC1	B3	GAB2/IO52NDB3V0	B40	VCCIB1	
A22	AV2	B4	VCCIB3	B 10 B41	GNDO	
A23	AG2	B5	GFA0/IO47NDB3V0	B42	GBA0/IO29RSB0\/0	
A24	AT2	B6	GEB0/IO45NDB3V0	B43	VCCIB0	
A25	AT3	B7	XTAL1	B 18	GBB0/IO27RSB0V0	
A26	AC3	B8	GNDOSC	B45	GBC0/IO25RSB0V0	
A27	GNDAQ	B9	GEC2/IO43PSB3V0	B46	IO20RSB0V0	
A28	ADCGNDREF	B10	GEA2/IO42NDB3V0	B47	IO10RSB0V0	
A29	NC	B11	VCC	B48	GAC1/IO05RSB0V0	
A30	GNDA	B12	GNDNVM	B49	GAB1/IO03RSB0V0	
A31	PTEM	B13	NCAP	B50	VCC	
A32	GNDNVM	B14	VCC33PMP	B51	GAA1/IO01RSB0V0	
A33	VPUMP	B15	VCC33N	B52	VCCPLA	
A34	TCK	B16	GNDAQ			
A35	TMS	B17	AC0			
A36	TRST	B18	AT0			
A37	GDB1/IO39PSB1V0	B19	AG1			
A38	GDC1/IO38PDB1V0	B20	AV1			

Package Pin Assignments

FG484			FG484		
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function
A1	GND	GND	AA14	AG7	AG7
A2	VCC	NC	AA15	AG8	AG8
A3	GAA1/IO01PDB0V0	GAA1/IO01PDB0V0	AA16	GNDA	GNDA
A4	GAB0/IO02NDB0V0	GAB0/IO02NDB0V0	AA17	AG9	AG9
A5	GAB1/IO02PDB0V0	GAB1/IO02PDB0V0	AA18	VAREF	VAREF
A6	IO07NDB0V1	IO07NDB0V1	AA19	VCCIB2	VCCIB2
A7	IO07PDB0V1	IO07PDB0V1	AA20	PTEM	PTEM
A8	IO10PDB0V1	IO09PDB0V1	AA21	GND	GND
A9	IO14NDB0V1	IO13NDB0V2	AA22	VCC	NC
A10	IO14PDB0V1	IO13PDB0V2	AB1	GND	GND
A11	IO17PDB1V0	IO24PDB1V0	AB2	VCC	NC
A12	IO18PDB1V0	IO26PDB1V0	AB3	NC	IO94NSB4V0
A13	IO19NDB1V0	IO27NDB1V1	AB4	GND	GND
A14	IO19PDB1V0	IO27PDB1V1	AB5	VCC33N	VCC33N
A15	IO24NDB1V1	IO35NDB1V2	AB6	AT0	AT0
A16	IO24PDB1V1	IO35PDB1V2	AB7	ATRTN0	ATRTN0
A17	GBC0/IO26NDB1V1	GBC0/IO40NDB1V2	AB8	AT1	AT1
A18	GBA0/IO28NDB1V1	GBA0/IO42NDB1V2	AB9	AT2	AT2
A19	IO29NDB1V1	IO43NDB1V2	AB10	ATRTN1	ATRTN1
A20	IO29PDB1V1	IO43PDB1V2	AB11	AT3	AT3
A21	VCC	NC	AB12	AT6	AT6
A22	GND	GND	AB13	ATRTN3	ATRTN3
AA1	VCC	NC	AB14	AT7	AT7
AA2	GND	GND	AB15	AT8	AT8
AA3	VCCIB4	VCCIB4	AB16	ATRTN4	ATRTN4
AA4	VCCIB4	VCCIB4	AB17	AT9	AT9
AA5	PCAP	PCAP	AB18	VCC33A	VCC33A
AA6	AG0	AG0	AB19	GND	GND
AA7	GNDA	GNDA	AB20	NC	IO76NPB2V0
AA8	AG1	AG1	AB21	VCC	NC
AA9	AG2	AG2	AB22	GND	GND
AA10	GNDA	GNDA	B1	VCC	NC
AA11	AG3	AG3	B2	GND	GND
AA12	AG6	AG6	B3	GAA0/IO01NDB0V0	GAA0/IO01NDB0V0
AA13	GNDA	GNDA	B4	GND	GND

	FG484		FG484		
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function
B5	IO05NDB0V0	IO04NDB0V0	C18	VCCIB1	VCCIB1
B6	IO05PDB0V0	IO04PDB0V0	C19	VCOMPLB	VCOMPLB
B7	GND	GND	C20	GBA2/IO30PDB2V0	GBA2/IO44PDB2V0
B8	IO10NDB0V1	IO09NDB0V1	C21	NC	IO48PSB2V0
B9	IO13PDB0V1	IO11PDB0V1	C22	GBB2/IO31PDB2V0	GBB2/IO45PDB2V0
B10	GND	GND	D1	IO82NDB4V0	IO121NDB4V0
B11	IO17NDB1V0	IO24NDB1V0	D2	GND	GND
B12	IO18NDB1V0	IO26NDB1V0	D3	IO83NDB4V0	IO123NDB4V0
B13	GND	GND	D4	GAC2/IO83PDB4V0	GAC2/IO123PDB4V0
B14	IO21NDB1V0	IO31NDB1V1	D5	GAA2/IO85PDB4V0	GAA2/IO125PDB4V0
B15	IO21PDB1V0	IO31PDB1V1	D6	GAC0/IO03NDB0V0	GAC0/IO03NDB0V0
B16	GND	GND	D7	GAC1/IO03PDB0V0	GAC1/IO03PDB0V0
B17	GBC1/IO26PDB1V1	GBC1/IO40PDB1V2	D8	IO09NDB0V1	IO10NDB0V1
B18	GBA1/IO28PDB1V1	GBA1/IO42PDB1V2	D9	IO09PDB0V1	IO10PDB0V1
B19	GND	GND	D10	IO11NDB0V1	IO14NDB0V2
B20	VCCPLB	VCCPLB	D11	IO16NDB1V0	IO23NDB1V0
B21	GND	GND	D12	IO16PDB1V0	IO23PDB1V0
B22	VCC	NC	D13	NC	IO32NPB1V1
C1	IO82PDB4V0	IO121PDB4V0	D14	IO23NDB1V1	IO34NDB1V1
C2	NC	IO122PSB4V0	D15	IO23PDB1V1	IO34PDB1V1
C3	IO00NDB0V0	IO00NDB0V0	D16	IO25PDB1V1	IO37PDB1V2
C4	IO00PDB0V0	IO00PDB0V0	D17	GBB1/IO27PDB1V1	GBB1/IO41PDB1V2
C5	VCCIB0	VCCIB0	D18	VCCIB2	VCCIB2
C6	IO06NDB0V0	IO05NDB0V1	D19	NC	IO47PPB2V0
C7	IO06PDB0V0	IO05PDB0V1	D20	IO30NDB2V0	IO44NDB2V0
C8	VCCIB0	VCCIB0	D21	GND	GND
C9	IO13NDB0V1	IO11NDB0V1	D22	IO31NDB2V0	IO45NDB2V0
C10	IO11PDB0V1	IO14PDB0V2	E1	IO81NDB4V0	IO120NDB4V0
C11	VCCIB0	VCCIB0	E2	IO81PDB4V0	IO120PDB4V0
C12	VCCIB1	VCCIB1	E3	VCCIB4	VCCIB4
C13	IO20NDB1V0	IO29NDB1V1	E4	GAB2/IO84PDB4V0	GAB2/IO124PDB4V0
C14	IO20PDB1V0	IO29PDB1V1	E5	IO85NDB4V0	IO125NDB4V0
C15	VCCIB1	VCCIB1	E6	GND	GND
C16	IO25NDB1V1	IO37NDB1V2	E7	VCCIB0	VCCIB0
C17	GBB0/IO27NDB1V1	GBB0/IO41NDB1V2	E8	NC	IO08NDB0V1

Fusion Family of Mixed Signal FPGAs

Revision	Changes	Page
Advance v0.3	The "Temperature Monitor" section was updated.	2-96
(continued)	EQ 2 is new.	2-103
	The "ADC Description" section was updated.	2-102
	Figure 2-16 • Fusion Clocking Options was updated.	2-20
	Table 2-46 · Analog Channel Specifications was updated.	2-118
	The notes in Table 2-72 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance Capabilities were updated.	2-144
	The "Simultaneously Switching Outputs and PCB Layout" section is new.	2-149
	LVPECL and LVDS were updated in Table 2-81 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications.	
	LVPECL and LVDS were updated in Table 2-82 • Fusion Pro I/O Attributes vs. I/O Standard Applications.	
	The "Timing Model" was updated.	2-161
	All voltage-referenced Minimum and Maximum DC Input and Output Level tables were updated.	
	All Timing Characteristic tables were updated	N/A
	Table 2-83 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions was updated.	
	Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings was updated.	
	Table 2-93 • I/O Output Buffer Maximum Resistances ¹ was updated.	
	The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O standards included in the datasheet.	2-211
	The "CoreMP7 and Cortex-M1 Software Tools" section is new.	2-257
	Table 2-83 • Summary of Maximum and Minimum DC Input and Output LevelsApplicable to Commercial and Industrial Conditions was updated.	2-165
	Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings was updated.	2-134
	Table 2-93 • I/O Output Buffer Maximum Resistances ¹ was updated.	2-171
	The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O standards included in the datasheet.	2-211
	The "108-Pin QFN" table for the AFS090 device is new.	3-2
	The "180-Pin QFN" table for the AFS090 device is new.	
	The "208-Pin PQFP" table for the AFS090 device is new.	3-8
	The "256-Pin FBGA" table for the AFS090 device is new.	
	The "256-Pin FBGA" table for the AFS250 device is new.	3-12

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.