

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	114
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1afs250-fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

VersaNet Global Networks and Spine Access

The Fusion architecture contains a total of 18 segmented global networks that can access the VersaTiles, SRAM, and I/O tiles on the Fusion device. There are 6 chip (main) global networks that access the entire device and 12 quadrant networks (3 in each quadrant). Each device has a total of 18 globals. These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets, including clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-skew local networks using spines for up to 180 internal/external clocks (in an AFS1500 device) or other high-fanout nets in Fusion devices. Optimal usage of these low-skew networks can result in significant improvement in design performance on Fusion devices.

The nine spines available in a vertical column reside in global networks with two separate regions of scope: the quadrant global network, which has three spines, and the chip (main) global network, which has six spines. Note that there are three quadrant spines in each quadrant of the device. There are four quadrant global network regions per device (Figure 2-12 on page 2-12).

The spines are the vertical branches of the global network tree, shown in Figure 2-11 on page 2-11. Each spine in a vertical column of a chip (main) global network is further divided into two equal-length spine segments: one in the top and one in the bottom half of the die.

Each spine and its associated ribs cover a certain area of the Fusion device (the "scope" of the spine; see Figure 2-11 on page 2-11). Each spine is accessed by the dedicated global network MUX tree architecture, which defines how a particular spine is driven—either by the signal on the global network from a CCC, for example, or another net defined by the user (Figure 2-13). Quadrant spines can be driven from user I/Os on the north and south sides of the die, via analog I/Os configured as direct digital inputs. The ability to drive spines in the quadrant global networks can have a significant effect on system performance for high-fanout inputs to a design.

Details of the chip (main) global network spine-selection MUX are presented in Figure 2-13. The spine drivers for each spine are located in the middle of the die.

Quadrant spines are driven from a north or south rib. Access to the top and bottom ribs is from the corner CCC or from the I/Os on the north and south sides of the device. For details on using spines in Fusion devices, see the application note *Using Global Resources in Actel Fusion Devices*.

Figure 2-13 • Spine-Selection MUX of Global Tree

Clock Conditioning Circuits

In Fusion devices, the CCCs are used to implement frequency division, frequency multiplication, phase shifting, and delay operations.

The CCCs are available in six chip locations—each of the four chip corners and the middle of the east and west chip sides.

Each CCC can implement up to three independent global buffers (with or without programmable delay), or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to three global outputs. Unused global outputs of a PLL can be used to implement independent global buffers, up to a maximum of three global outputs for a given CCC.

A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, and CLKC-GLC) of a given CCC.

A PLL macro uses the CLKA CCC input to drive its reference clock. It uses the GLA and, optionally, the GLB and GLC global outputs to drive the global networks. A PLL macro can also drive the YB and YC regular core outputs. The GLB (or GLC) global output cannot be reused if the YB (or YC) output is used (Figure 2-19). Refer to the "PLL Macro" section on page 2-27 for more information.

Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

- · 3 dedicated single-ended I/Os using a hardwired connection
- 2 dedicated differential I/Os using a hardwired connection
- The FPGA core

The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or through an asynchronous interface. This asynchronous interface is dynamically accessible from inside the Fusion device to permit changes of parameters (such as divide ratios) during device operation. To increase the versatility and flexibility of the clock conditioning system, the CCC configuration is determined either by the user during the design process, with configuration data being stored in flash memory as part of the device programming procedure, or by writing data into a dedicated shift register during normal device operation. This latter mode allows the user to dynamically reconfigure the CCC without the need for core programming. The shift register is accessed through a simple serial interface. Refer to the "UJTAG Applications in Microsemi's Low-Power Flash Devices" chapter of the *Fusion FPGA Fabric User Guide* and the "CCC and PLL Characteristics" section on page 2-28 for more information.

Example: Calculation for Match Count

To put the Fusion device on standby for one hour using an external crystal of 32.768 KHz: The period of the crystal oscillator is $T_{crystal}$:

T_{crystal} = 1 / 32.768 KHz = 30.518 µs

The period of the counter is T_{counter}:

T_{counter} = 30.518 us X 128 = 3.90625 ms

The Match Count for 1 hour is Δ tmatch:

 Δ tmatch / T_{counter} = (1 hr X 60 min/hr X 60 sec/min) / 3.90625 ms = 921600 or 0xE1000

Using a 32.768 KHz crystal, the maximum standby time of the 40-bit counter is 4,294,967,296 seconds, which is 136 years.

Table 2-15 • Memory Map for RTC in ACM Register and Description

ACMADDR	Register Name	Description	Use	Default Value
0x40	COUNTER0	Counter bits 7:0	Used to preload the counter to a specified start point.	0x00
0x41	COUNTER1	Counter bits 15:8		0x00
0x42	COUNTER2	Counter bits 23:16		0x00
0x43	COUNTER3	Counter bits 31:24		0x00
0x44	COUNTER4	Counter bits 39:32		0x00
0x48	MATCHREG0	Match register bits 7:0	The RTC comparison bits	0x00
0x49	MATCHREG1	Match register bits 15:8		0x00
0x4A	MATCHREG2	Match register bits 23:16		0x00
0x4B	MATCHREG3	Match register bits 31:24		0x00
0x4C	MATCHREG4	Match register bits 39:32		0x00
0x50	MATCHBIT0	Individual match bits 7:0	The output of the XNOR gates 0 – Not matched 1 – Matched	0x00
0x51	MATCHBIT1	Individual match bits 15:8		0x00
0x52	MATCHBIT2	Individual match bits 23:16		0x00
0x53	MATCHBIT3	Individual match bits 31:24		0x00
0x54	MATCHBIT4	Individual match bits 29:32		0x00
0x58	CTRL_STAT	Control (write/read) / Status (read only) register bits	Refer to Table 2-16 on page 2-35 for details.	0x00

Direct Digital Input

The AV, AC, and AT pads can also be configured as high-voltage digital inputs (Figure 2-69). As these pads are 12 V–tolerant, the digital input can also be up to 12 V. However, the frequency at which these pads can operate is limited to 10 MHz.

To enable one of these analog input pads to operate as a digital input, its corresponding Digital Input Enable (DENAxy) pin on the Analog Block must be pulled High, where x is either V, C, or T (for AV, AC, or AT pads, respectively) and y is in the range 0 to 9, corresponding to the appropriate Analog Quad.

When the pad is configured as a digital input, the signal will come out of the Analog Block macro on the appropriate DAxOUTy pin, where x represents the pad type (V for AV pad, C for AC pad, or T for AT pad) and y represents the appropriate Analog Quad number. Example: If the AT pad in Analog Quad 5 is configured as a digital input, it will come out on the DATOUT5 pin of the Analog Block macro.

Figure 2-69 • Analog Quad Direct Digital Input Configuration

There are several popular ADC architectures, each with advantages and limitations.

The analog-to-digital converter in Fusion devices is a switched-capacitor Successive Approximation Register (SAR) ADC. It supports 8-, 10-, and 12-bit modes of operation with a cumulative sample rate up to 600 k samples per second (ksps). Built-in bandgap circuitry offers 1% internal voltage reference accuracy or an external reference voltage can be used.

As shown in Figure 2-81, a SAR ADC contains N capacitors with binary-weighted values.

Figure 2-81 • Example SAR ADC Architecture

To begin a conversion, all of the capacitors are quickly discharged. Then VIN is applied to all the capacitors for a period of time (acquisition time) during which the capacitors are charged to a value very close to VIN. Then all of the capacitors are switched to ground, and thus –VIN is applied across the comparator. Now the conversion process begins. First, C is switched to VREF Because of the binary weighting of the capacitors, the voltage at the input of the comparator is then shown by EQ 11.

Voltage at input of comparator = -VIN + VREF / 2

EQ 11

If VIN is greater than VREF / 2, the output of the comparator is 1; otherwise, the comparator output is 0. A register is clocked to retain this value as the MSB of the result. Next, if the MSB is 0, C is switched back to ground; otherwise, it remains connected to VREF, and C / 2 is connected to VREF. The result at the comparator input is now either –VIN + VREF / 4 or –VIN + 3 VREF / 4 (depending on the state of the MSB), and the comparator output now indicates the value of the next most significant bit. This bit is likewise registered, and the process continues for each subsequent bit until a conversion is complete. The conversion process requires some acquisition time plus N + 1 ADC clock cycles to complete.

This process results in a binary approximation of VIN. Generally, there is a fixed interval T, the sampling period, between the samples. The inverse of the sampling period is often referred to as the sampling frequency $f_S = 1 / T$. The combined effect is illustrated in Figure 2-82.

Figure 2-82 • Conversion Example

Figure 2-82 demonstrates that if the signal changes faster than the sampling rate can accommodate, or if the actual value of VIN falls between counts in the result, this information is lost during the conversion. There are several techniques that can be used to address these issues.

First, the sampling rate must be chosen to provide enough samples to adequately represent the input signal. Based on the Nyquist-Shannon Sampling Theorem, the minimum sampling rate must be at least twice the frequency of the highest frequency component in the target signal (Nyquist Frequency). For example, to recreate the frequency content of an audio signal with up to 22 KHz bandwidth, the user must sample it at a minimum of 44 ksps. However, as shown in Figure 2-82, significant post-processing of the data is required to interpolate the value of the waveform during the time between each sample.

Similarly, to re-create the amplitude variation of a signal, the signal must be sampled with adequate resolution. Continuing with the audio example, the dynamic range of the human ear (the ratio of the amplitude of the threshold of hearing to the threshold of pain) is generally accepted to be 135 dB, and the dynamic range of a typical symphony orchestra performance is around 85 dB. Most commercial recording media provide about 96 dB of dynamic range using 16-bit sample resolution. But 16-bit fidelity does not necessarily mean that you need a 16-bit ADC. As long as the input is sampled at or above the Nyquist Frequency, post-processing techniques can be used to interpolate intermediate values and reconstruct the original input signal to within desired tolerances.

If sophisticated digital signal processing (DSP) capabilities are available, the best results are obtained by implementing a reconstruction filter, which is used to interpolate many intermediate values with higher resolution than the original data. Interpolating many intermediate values increases the effective number of samples, and higher resolution increases the effective number of bits in the sample. In many cases, however, it is not cost-effective or necessary to implement such a sophisticated reconstruction algorithm. For applications that do not require extremely fine reproduction of the input signal, alternative methods can enhance digital sampling results with relatively simple post-processing. The details of such techniques are out of the scope of this chapter; refer to the *Improving ADC Results through Oversampling and Post-Processing of Data* white paper for more information.

Device Architecture

Table 2-73 • Maximum I/O Frequency for Single-Ended, Voltage-Referenced, and Differential I/Os; All I/O Bank Types (maximum drive strength and high slew selected)

Specification	Performance Up To
LVTTL/LVCMOS 3.3 V	200 MHz
LVCMOS 2.5 V	250 MHz
LVCMOS 1.8 V	200 MHz
LVCMOS 1.5 V	130 MHz
PCI	200 MHz
PCI-X	200 MHz
HSTL-I	300 MHz
HSTL-II	300 MHz
SSTL2-I	300 MHz
SSTL2-II	300 MHz
SSTL3-I	300 MHz
SSTL3-II	300 MHz
GTL+ 3.3 V	300 MHz
GTL+ 2.5 V	300 MHz
GTL 3.3 V	300 MHz
GTL 2.5 V	300 MHz
LVDS	350 MHz
LVPECL	300 MHz

Table 2-78 • Fusion Standard I/O Standards—OUT_DRIVE Settings

		OUT_DRIVE (mA)								
I/O Standards	2	4	6	8	Slew					
LVTTL/LVCMOS 3.3 V	3	3	3	3	High	Low				
LVCMOS 2.5 V	3	3	3	3	High	Low				
LVCMOS 1.8 V	3	3	-	-	High	Low				
LVCMOS 1.5 V	3	_	-	-	High	Low				

Table 2-79 • Fusion Advanced I/O Standards—SLEW and OUT_DRIVE Settings

		OUT_DRIVE (mA)									
I/O Standards	2	4	6	8	12	16	Slew				
LVTTL/LVCMOS 3.3 V	3	3	3	3	3	3	High	Low			
LVCMOS 2.5 V	3	3	3	3	3	-	High	Low			
LVCMOS 1.8 V	3	3	3	3	-	-	High	Low			
LVCMOS 1.5 V	3	3	_	_	_	_	High	Low			

Table 2-	.80 • Fu	sion Pro	I/O Sta	ndards-	-SLEW a	nd OUT	DRIVE Set	tings

I/O Standards	2	4	6	8	12	16	24	Slew	
LVTTL/LVCMOS 3.3 V	3	3	3	3	3	3	3	High	Low
LVCMOS 2.5 V	3	3	3	3	3	3	3	High	Low
LVCMOS 2.5 V/5.0 V	3	3	3	3	3	3	3	High	Low
LVCMOS 1.8 V	3	3	3	3	3	3	-	High	Low
LVCMOS 1.5 V	3	3	3	3	3	-	_	High	Low

Table 2-82 • Advanced I/O Default Attributes

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (tribuf and bibuf only)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER
LVTTL/LVCMOS 3.3 V	Refer to the following	Refer to the following tables	Off	None	35 pF	-
LVCMOS 2.5 V	information:	Table 2-78 on page 2-152	Off	None	35 pF	-
LVCMOS 2.5/5.0 V	Table 2-78 on page 2-152	Table 2-79 on page 2-152	Off	None	35 pF	-
LVCMOS 1.8 V	Table 2-79 on page 2-152	Table 2-80 on page 2-152	Off	None	35 pF	-
LVCMOS 1.5 V	Table 2-80 on page 2-152		Off	None	35 pF	-
PCI (3.3 V)			Off	None	10 pF	-
PCI-X (3.3 V)			Off	None	10 pF	-
LVDS, BLVDS, M-LVDS			Off	None	_	_
LVPECL			Off	None	-	-

Device Architecture

Table 2-98 • I/O Short Currents IOSH/IOSL (continued)

	Drive Strength	IOSH (mA)*	IOSL (mA)*		
2.5 V LVCMOS	2 mA	16	18		
	4 mA	16	18		
	6 mA	32	37		
	8 mA	32	37		
	12 mA	65	74		
	16 mA	83	87		
	24 mA	169	124		
1.8 V LVCMOS	2 mA	9	11		
	4 mA	17	22		
	6 mA	35	44		
	8 mA	45	51		
	12 mA	91	74		
	16 mA	91	74		
1.5 V LVCMOS	2 mA	13	16		
	4 mA	25	33		
	6 mA	32	39		
	8 mA	66	55		
	12 mA	66	55		
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	103	109		
Applicable to Standard I/O Banks					
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27		
	4 mA	25	27		
	6 mA	51	54		
	8 mA	51	54		
2.5 V LVCMOS	2 mA	16	18		
	4 mA	16	18		
	6 mA	32	37		
	8 mA	32	37		
1.8 V LVCMOS	2 mA	9	11		
	4 mA	17	22		
1.5 V LVCMOS	2 mA	13	16		

Note: $^{*}T_{J} = 100^{\circ}C$

The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 36 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-106 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive	Speed												
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.66	10.26	0.04	1.20	0.43	10.45	8.90	2.64	2.46	12.68	11.13	ns
	-1	0.56	8.72	0.04	1.02	0.36	8.89	7.57	2.25	2.09	10.79	9.47	ns
	-2	0.49	7.66	0.03	0.90	0.32	7.80	6.64	1.98	1.83	9.47	8.31	ns
8 mA	Std.	0.66	7.27	0.04	1.20	0.43	7.41	6.28	2.98	3.04	9.65	8.52	ns
	-1	0.56	6.19	0.04	1.02	0.36	6.30	5.35	2.54	2.59	8.20	7.25	ns
	-2	0.49	5.43	0.03	0.90	0.32	5.53	4.69	2.23	2.27	7.20	6.36	ns
12 mA	Std.	0.66	5.58	0.04	1.20	0.43	5.68	4.87	3.21	3.42	7.92	7.11	ns
	-1	0.56	4.75	0.04	1.02	0.36	4.84	4.14	2.73	2.91	6.74	6.05	ns
	-2	0.49	4.17	0.03	0.90	0.32	4.24	3.64	2.39	2.55	5.91	5.31	ns
16 mA	Std.	0.66	5.21	0.04	1.20	0.43	5.30	4.56	3.26	3.51	7.54	6.80	ns
	-1	0.56	4.43	0.04	1.02	0.36	4.51	3.88	2.77	2.99	6.41	5.79	ns
	-2	0.49	3.89	0.03	0.90	0.32	3.96	3.41	2.43	2.62	5.63	5.08	ns
24 mA	Std.	0.66	4.85	0.04	1.20	0.43	4.94	4.54	3.32	3.88	7.18	6.78	ns
	-1	0.56	4.13	0.04	1.02	0.36	4.20	3.87	2.82	3.30	6.10	5.77	ns
	-2	0.49	3.62	0.03	0.90	0.32	3.69	3.39	2.48	2.90	5.36	5.06	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Device Architecture

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and push-pull output buffer.

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Applicable	to Pro I	/O Banks										
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	6	6	39	32	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	8	8	55	66	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12	55	66	10	10
Applicable	to Adva	inced I/O Ban	iks						-	-		
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	6	6	39	32	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	8	8	55	66	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12	55	66	10	10
Applicable	to Pro I	/O Banks							-	-		
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-122 • AC Loading

Table 2-127 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.5	0.75	-	35

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Timing Characteristics

Table 2-136 • 3.3 V PCI/PCI-X

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Pro I/Os

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.81	0.04	1.05	1.67	0.43	2.86	2.00	3.28	3.61	5.09	4.23	ns
-1	0.56	2.39	0.04	0.89	1.42	0.36	2.43	1.70	2.79	3.07	4.33	3.60	ns
-2	0.49	2.09	0.03	0.78	1.25	0.32	2.13	1.49	2.45	2.70	3.80	3.16	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-137 • 3.3 V PCI/PCI-X

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/Os

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.68	0.04	0.86	0.43	2.73	1.95	3.21	3.58	4.97	4.19	0.66	ns
-1	0.56	2.28	0.04	0.73	0.36	2.32	1.66	2.73	3.05	4.22	3.56	0.56	ns
-2	0.49	2.00	0.03	0.65	0.32	2.04	1.46	2.40	2.68	3.71	3.13	0.49	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Pin Descriptions

Supply Pins

GND Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ needs to always be connected on the board to GND. Note: In FG256, FG484, and FG676 packages, GNDQ and GND pins are connected within the package and are labeled as GND pins in the respective package pin assignment tables.

ADCGNDREF Analog Reference Ground

Analog ground reference used by the ADC. This pad should be connected to a quiet analog ground.

GNDA Ground (analog)

Quiet ground supply voltage to the Analog Block of Fusion devices. The use of a separate analog ground helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.

GNDAQ Ground (analog quiet)

Quiet ground supply voltage to the analog I/O of Fusion devices. The use of a separate analog ground helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation. Note: In FG256, FG484, and FG676 packages, GNDAQ and GNDA pins are connected within the package and are labeled as GNDA pins in the respective package pin assignment tables.

GNDNVM Flash Memory Ground

Ground supply used by the Fusion device's flash memory block module(s).

GNDOSC Oscillator Ground

Ground supply for both integrated RC oscillator and crystal oscillator circuit.

VCC15A Analog Power Supply (1.5 V)

1.5 V clean analog power supply input for use by the 1.5 V portion of the analog circuitry.

VCC33A Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the 3.3 V portion of the analog circuitry.

VCC33N Negative 3.3 V Output

This is the -3.3 V output from the voltage converter. A 2.2 μ F capacitor must be connected from this pin to ground.

VCC33PMP Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the analog charge pump. To avoid high current draw, VCC33PMP should be powered up simultaneously with or after VCC33A.

VCCNVM Flash Memory Block Power Supply (1.5 V)

1.5 V power supply input used by the Fusion device's flash memory block module(s). To avoid high current draw, VCC should be powered up before or simultaneously with VCCNVM.

VCCOSC Oscillator Power Supply (3.3 V)

Power supply for both integrated RC oscillator and crystal oscillator circuit. The internal 100 MHz oscillator, powered by the VCCOSC pin, is needed for device programming, operation of the VDDN33 pump, and eNVM operation. VCCOSC is off only when VCCA is off. VCCOSC must be powered whenever the Fusion device needs to function.

3 – DC and Power Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 3-1 may cause permanent damage to the device.

Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating ranges specified in Table 3-2 on page 3-3.

Symbol	Parameter	Commercial	Industrial	Units	
VCC	DC core supply voltage	-0.3 to 1.65	–0.3 to 1.65	V	
VJTAG	JTAG DC voltage	-0.3 to 3.75	-0.3 to 3.75	V	
VPUMP	Programming voltage	-0.3 to 3.75	-0.3 to 3.75	V	
VCCPLL	Analog power supply (PLL)	-0.3 to 1.65	-0.3 to 1.65	V	
VCCI	DC I/O output buffer supply voltage	-0.3 to 3.75	-0.3 to 3.75	V	
VI	I/O input voltage ¹	 -0.3 V to 3.6 V (when I/O hot insertion mode enabled) -0.3 V to (VCCI + 1 V) or 3.6 V, whicheve voltage is lower (when I/O hot-insertion mode disabled) 			
VCC33A	+3.3 V power supply	–0.3 to 3.75 ²	–0.3 to 3.75 ²	V	
VCC33PMP	+3.3 V power supply	-0.3 to 3.75 ²	-0.3 to 3.75 ²	V	
VAREF	Voltage reference for ADC	-0.3 to 3.75	-0.3 to 3.75	V	
VCC15A	Digital power supply for the analog system	-0.3 to 1.65	–0.3 to 1.65	V	
VCCNVM	Embedded flash power supply	-0.3 to 1.65	-0.3 to 1.65	V	
VCCOSC	Oscillator power supply	-0.3 to 3.75	-0.3 to 3.75	V	

Table 3-1 • Absolute Maximum Ratings

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 3-4 on page 3-4.

2. Analog data not valid beyond 3.65 V.

3. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.

4. For flash programming and retention maximum limits, refer to Table 3-5 on page 3-5. For recommended operating limits refer to Table 3-2 on page 3-3.

Methodology

Total Power Consumption—PTOTAL

Operating Mode, Standby Mode, and Sleep Mode

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

Operating Mode

 $\label{eq:pstat} \begin{array}{l} \mathsf{P}_{\mathsf{STAT}} = \mathsf{PDC1} + (\mathsf{N}_{\mathsf{NVM-BLOCKS}} * \mathsf{PDC4}) + \mathsf{PDC5} + (\mathsf{N}_{\mathsf{QUADS}} * \mathsf{PDC6}) + (\mathsf{N}_{\mathsf{INPUTS}} * \mathsf{PDC7}) + (\mathsf{N}_{\mathsf{OUTPUTS}} * \mathsf{PDC8}) + (\mathsf{N}_{\mathsf{PLLS}} * \mathsf{PDC9}) \end{array}$

 $N_{\ensuremath{\mathsf{NVM}}\xspace-BLOCKS}$ is the number of NVM blocks available in the device.

 N_{QUADS} is the number of Analog Quads used in the design.

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

N_{PLLS} is the number of PLLs available in the device.

Standby Mode

P_{STAT} = PDC2

Sleep Mode

P_{STAT} = PDC3

Total Dynamic Power Consumption—P_{DYN}

Operating Mode

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL} + P_{NVM}+ P_{XTL-OSC} + P_{RC-OSC} + P_{AB}

Standby Mode

 $P_{DYN} = P_{XTL-OSC}$

Sleep Mode

 $P_{DYN} = 0 W$

Global Clock Dynamic Contribution—P_{CLOCK}

Operating Mode

 $P_{CLOCK} = (PAC1 + N_{SPINE} * PAC2 + N_{ROW} * PAC3 + N_{S-CELL} * PAC4) * F_{CLK}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *Fusion and Extended Temperature Fusion FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *Fusion and Extended Temperature Fusion FPGA Fabric User's Guide*.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

Standby Mode and Sleep Mode

 $P_{CLOCK} = 0 W$

Sequential Cells Dynamic Contribution—P_{S-CELL}

Operating Mode

FG256								
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function				
A1	GND	GND	GND	GND				
A2	VCCIB0	VCCIB0	VCCIB0	VCCIB0				
A3	GAB0/IO02RSB0V0	GAA0/IO00RSB0V0	GAA0/IO01NDB0V0	GAA0/IO01NDB0V0				
A4	GAB1/IO03RSB0V0	GAA1/IO01RSB0V0	GAA1/IO01PDB0V0	GAA1/IO01PDB0V0				
A5	GND	GND	GND	GND				
A6	IO07RSB0V0	IO11RSB0V0	IO10PDB0V1	IO07PDB0V1				
A7	IO10RSB0V0	IO14RSB0V0	IO12PDB0V1	IO13PDB0V2				
A8	IO11RSB0V0	IO15RSB0V0	IO12NDB0V1	IO13NDB0V2				
A9	IO16RSB0V0	IO24RSB0V0	IO22NDB1V0	IO24NDB1V0				
A10	IO17RSB0V0	IO25RSB0V0	IO22PDB1V0	IO24PDB1V0				
A11	IO18RSB0V0	IO26RSB0V0	IO24NDB1V1	IO29NDB1V1				
A12	GND	GND	GND	GND				
A13	GBC0/IO25RSB0V0	GBA0/IO38RSB0V0	GBA0/IO28NDB1V1	GBA0/IO42NDB1V2				
A14	GBA0/IO29RSB0V0	IO32RSB0V0	IO29NDB1V1	IO43NDB1V2				
A15	VCCIB0	VCCIB0	VCCIB1	VCCIB1				
A16	GND	GND	GND	GND				
B1	VCOMPLA	VCOMPLA	VCOMPLA	VCOMPLA				
B2	VCCPLA	VCCPLA	VCCPLA	VCCPLA				
B3	GAA0/IO00RSB0V0	IO07RSB0V0	IO00NDB0V0	IO00NDB0V0				
B4	GAA1/IO01RSB0V0	IO06RSB0V0	IO00PDB0V0	IO00PDB0V0				
B5	NC	GAB1/IO03RSB0V0	GAB1/IO02PPB0V0	GAB1/IO02PPB0V0				
B6	IO06RSB0V0	IO10RSB0V0	IO10NDB0V1	IO07NDB0V1				
B7	VCCIB0	VCCIB0	VCCIB0	VCCIB0				
B8	IO12RSB0V0	IO16RSB0V0	IO18NDB1V0	IO22NDB1V0				
В9	IO13RSB0V0	IO17RSB0V0	IO18PDB1V0	IO22PDB1V0				
B10	VCCIB0	VCCIB0	VCCIB1	VCCIB1				
B11	IO19RSB0V0	IO27RSB0V0	IO24PDB1V1	IO29PDB1V1				
B12	GBB0/IO27RSB0V0	GBC0/IO34RSB0V0	GBC0/IO26NPB1V1	GBC0/IO40NPB1V2				
B13	GBC1/IO26RSB0V0	GBA1/IO39RSB0V0	GBA1/IO28PDB1V1	GBA1/IO42PDB1V2				
B14	GBA1/IO30RSB0V0	IO33RSB0V0	IO29PDB1V1	IO43PDB1V2				
B15	NC	NC	VCCPLB	VCCPLB				
B16	NC	NC	VCOMPLB	VCOMPLB				
C1	VCCIB3	VCCIB3	VCCIB4	VCCIB4				
C2	GND	GND	GND	GND				
C3	VCCIB3	VCCIB3	VCCIB4	VCCIB4				
C4	NC	NC	VCCIB0	VCCIB0				
C5	VCCIB0	VCCIB0	VCCIB0	VCCIB0				
C6	GAC1/IO05RSB0V0	GAC1/IO05RSB0V0	GAC1/IO03PDB0V0	GAC1/IO03PDB0V0				

Package Pin Assignments

FG256								
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function				
H3	XTAL2	XTAL2	XTAL2	XTAL2				
H4	XTAL1	XTAL1	XTAL1	XTAL1				
H5	GNDOSC	GNDOSC	GNDOSC	GNDOSC				
H6	VCCOSC	VCCOSC	VCCOSC	VCCOSC				
H7	VCC	VCC	VCC	VCC				
H8	GND	GND	GND	GND				
H9	VCC	VCC	VCC	VCC				
H10	GND	GND	GND	GND				
H11	GDC0/IO38NDB1V0	IO51NDB1V0	IO47NDB2V0	IO69NDB2V0				
H12	GDC1/IO38PDB1V0	IO51PDB1V0	IO47PDB2V0	IO69PDB2V0				
H13	GDB1/IO39PDB1V0	GCA1/IO49PDB1V0	GCA1/IO45PDB2V0	GCA1/IO64PDB2V0				
H14	GDB0/IO39NDB1V0	GCA0/IO49NDB1V0	GCA0/IO45NDB2V0	GCA0/IO64NDB2V0				
H15	GCA0/IO36NDB1V0	GCB0/IO48NDB1V0	GCB0/IO44NDB2V0	GCB0/IO63NDB2V0				
H16	GCA1/IO36PDB1V0	GCB1/IO48PDB1V0	GCB1/IO44PDB2V0	GCB1/IO63PDB2V0				
J1	GEA0/IO44NDB3V0	GFA0/IO66NDB3V0	GFA0/IO70NDB4V0	GFA0/IO105NDB4V0				
J2	GEA1/IO44PDB3V0	GFA1/IO66PDB3V0	GFA1/IO70PDB4V0	GFA1/IO105PDB4V0				
J3	IO43NDB3V0	GFB0/IO67NDB3V0	GFB0/IO71NDB4V0	GFB0/IO106NDB4V0				
J4	GEC2/IO43PDB3V0	GFB1/IO67PDB3V0	GFB1/IO71PDB4V0	GFB1/IO106PDB4V0				
J5	NC	GFC0/IO68NDB3V0	GFC0/IO72NDB4V0	GFC0/IO107NDB4V0				
J6	NC	GFC1/IO68PDB3V0	GFC1/IO72PDB4V0	GFC1/IO107PDB4V0				
J7	GND	GND	GND	GND				
J8	VCC	VCC	VCC	VCC				
J9	GND	GND	GND	GND				
J10	VCC	VCC	VCC	VCC				
J11	GDC2/IO41NPB1V0	IO56NPB1V0	IO56NPB2V0	IO83NPB2V0				
J12	NC	GDB0/IO53NPB1V0	GDB0/IO53NPB2V0	GDB0/IO80NPB2V0				
J13	NC	GDA1/IO54PDB1V0	GDA1/IO54PDB2V0	GDA1/IO81PDB2V0				
J14	GDA0/IO40PDB1V0	GDC1/IO52PPB1V0	GDC1/IO52PPB2V0	GDC1/IO79PPB2V0				
J15	NC	IO50NPB1V0	IO51NSB2V0	IO77NSB2V0				
J16	GDA2/IO40NDB1V0	GDC0/IO52NPB1V0	GDC0/IO52NPB2V0	GDC0/IO79NPB2V0				
K1	NC	IO65NPB3V0	IO67NPB4V0	IO92NPB4V0				
K2	VCCIB3	VCCIB3	VCCIB4	VCCIB4				
K3	NC	IO65PPB3V0	IO67PPB4V0	IO92PPB4V0				
K4	NC	IO64PDB3V0	IO65PDB4V0	IO96PDB4V0				
K5	GND	GND	GND	GND				
K6	NC	IO64NDB3V0	IO65NDB4V0	IO96NDB4V0				
K7	VCC	VCC	VCC	VCC				
K8	GND	GND	GND	GND				

Package Pin Assignments

	FG484		FG484				
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function		
L17	VCCIB2	VCCIB2	N8	GND	GND		
L18	IO46PDB2V0	IO69PDB2V0	N9	GND	GND		
L19	GCA1/IO45PDB2V0	GCA1/IO64PDB2V0	N10	VCC	VCC		
L20	VCCIB2	VCCIB2	N11	GND	GND		
L21	GCC0/IO43NDB2V0	GCC0/IO62NDB2V0	N12	VCC	VCC		
L22	GCC1/IO43PDB2V0	GCC1/IO62PDB2V0	N13	GND	GND		
M1	NC	IO103PDB4V0	N14	VCC	VCC		
M2	XTAL1	XTAL1	N15	GND	GND		
M3	VCCIB4	VCCIB4	N16	GDB2/IO56PDB2V0	GDB2/IO83PDB2V0		
M4	GNDOSC	GNDOSC	N17	NC	IO78PDB2V0		
M5	GFC0/IO72NDB4V0	GFC0/IO107NDB4V0	N18	GND	GND		
M6	VCCIB4	VCCIB4	N19	IO47NDB2V0	IO72NDB2V0		
M7	GFB0/IO71NDB4V0	GFB0/IO106NDB4V0	N20	IO47PDB2V0	IO72PDB2V0		
M8	VCCIB4	VCCIB4	N21	GND	GND		
M9	VCC	VCC	N22	IO49PDB2V0	IO71PDB2V0		
M10	GND	GND	P1	GFA1/IO70PDB4V0	GFA1/IO105PDB4V0		
M11	VCC	VCC	P2	GFA0/IO70NDB4V0	GFA0/IO105NDB4V0		
M12	GND	GND	P3	IO68NDB4V0	IO101NDB4V0		
M13	VCC	VCC	P4	IO65PDB4V0	IO96PDB4V0		
M14	GND	GND	P5	IO65NDB4V0	IO96NDB4V0		
M15	VCCIB2	VCCIB2	P6	NC	IO99NDB4V0		
M16	IO48NDB2V0	IO70NDB2V0	P7	NC	IO97NDB4V0		
M17	VCCIB2	VCCIB2	P8	VCCIB4	VCCIB4		
M18	IO46NDB2V0	IO69NDB2V0	P9	VCC	VCC		
M19	GCA0/IO45NDB2V0	GCA0/IO64NDB2V0	P10	GND	GND		
M20	VCCIB2	VCCIB2	P11	VCC	VCC		
M21	GCB0/IO44NDB2V0	GCB0/IO63NDB2V0	P12	GND	GND		
M22	GCB1/IO44PDB2V0	GCB1/IO63PDB2V0	P13	VCC	VCC		
N1	NC	IO103NDB4V0	P14	GND	GND		
N2	GND	GND	P15	VCCIB2	VCCIB2		
N3	IO68PDB4V0	IO101PDB4V0	P16	IO56NDB2V0	IO83NDB2V0		
N4	NC	IO100NPB4V0	P17	NC	IO78NDB2V0		
N5	GND	GND	P18	GDA1/IO54PDB2V0	GDA1/IO81PDB2V0		
N6	NC	IO99PDB4V0	P19	GDB1/IO53PDB2V0	GDB1/IO80PDB2V0		
N7	NC	IO97PDB4V0	P20	IO51NDB2V0	IO73NDB2V0		

Datasheet Information

Revision	Changes	Page
Advance v1.0 (continued)	This change table states that in the "208-Pin PQFP" table listed under the Advance v0.8 changes, the AFS090 device had a pin change. That is incorrect. Pin 102 was updated for AFS250 and AFS600. The function name changed from $V_{CC33ACAP}$ to V_{CC33A} .	3-8
Advance v0.9 (October 2007)	In the "Package I/Os: Single-/Double-Ended (Analog)" table, the AFS1500/M7AFS1500 I/O counts were updated for the following devices: FG484: 223/109 FG676: 252/126	II
	In the "108-Pin QFN" table, the function changed from $V_{CC33ACAP}$ to V_{CC33A} for the following pin: B25	3-2
	In the "180-Pin QFN" table, the function changed from V _{CC33ACAP} to V _{CC33A} for the following pins: AFS090: B29 AFS250: B29	3-4
	In the "208-Pin PQFP" table, the function changed from V _{CC33ACAP} to V _{CC33A} for the following pins: AFS090: 102 AFS250: 102	3-8
	In the "256-Pin FBGA" table, the function changed from $V_{CC33ACAP}$ to V_{CC33A} for the following pins: AFS090: T14 AFS250: T14 AFS600: T14 AFS1500: T14	3-12
Advance v0.9 (continued)	In the "484-Pin FBGA" table, the function changed from V _{CC33ACAP} to V _{CC33A} for the following pins: AFS600: AB18 AFS1500: AB18	3-20
	In the "676-Pin FBGA" table, the function changed from V _{CC33ACAP} to V _{CC33A} for the following pins: AFS1500: AD20	3-28
Advance v0.8 (June 2007)	Figure 2-16 • Fusion Clocking Options and the "RC Oscillator" section were updated to change GND_OSC and VCC_OSC to GNDOSC and VCCOSC.	2-20, 2-21
	Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro was updated to change the positions of OADIVRST and OADIVHALF, and a note was added.	2-25
	The "Crystal Oscillator" section was updated to include information about controlling and enabling/disabling the crystal oscillator.	2-22
	Table 2-11 \cdot Electrical Characteristics of the Crystal Oscillator was updated to change the typical value of I _{DYNXTAL} for 0.032–0.2 MHz to 0.19.	2-24
	The "1.5 V Voltage Regulator" section was updated to add "or floating" in the paragraph stating that an external pull-down is required on TRST to power down the VR.	2-41
	The "1.5 V Voltage Regulator" section was updated to include information on powering down with the VR.	2-41