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Device Architecture
VersaNet Global Networks and Spine Access 
The Fusion architecture contains a total of 18 segmented global networks that can access the
VersaTiles, SRAM, and I/O tiles on the Fusion device. There are 6 chip (main) global networks that
access the entire device and 12 quadrant networks (3 in each quadrant). Each device has a total of 18
globals. These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets,
including clock signals. In addition, these highly segmented global networks offer users the flexibility to
create low-skew local networks using spines for up to 180 internal/external clocks (in an AFS1500
device) or other high-fanout nets in Fusion devices. Optimal usage of these low-skew networks can
result in significant improvement in design performance on Fusion devices. 

The nine spines available in a vertical column reside in global networks with two separate regions of
scope: the quadrant global network, which has three spines, and the chip (main) global network, which
has six spines. Note that there are three quadrant spines in each quadrant of the device. There are four
quadrant global network regions per device (Figure 2-12 on page 2-12). 

The spines are the vertical branches of the global network tree, shown in Figure 2-11 on page 2-11. Each
spine in a vertical column of a chip (main) global network is further divided into two equal-length spine
segments: one in the top and one in the bottom half of the die. 

Each spine and its associated ribs cover a certain area of the Fusion device (the "scope" of the spine;
see Figure 2-11 on page 2-11). Each spine is accessed by the dedicated global network MUX tree
architecture, which defines how a particular spine is driven—either by the signal on the global network
from a CCC, for example, or another net defined by the user (Figure 2-13). Quadrant spines can be
driven from user I/Os on the north and south sides of the die, via analog I/Os configured as direct digital
inputs. The ability to drive spines in the quadrant global networks can have a significant effect on system
performance for high-fanout inputs to a design. 

Details of the chip (main) global network spine-selection MUX are presented in Figure 2-13. The spine
drivers for each spine are located in the middle of the die. 

Quadrant spines are driven from a north or south rib. Access to the top and bottom ribs is from the corner
CCC or from the I/Os on the north and south sides of the device. For details on using spines in Fusion
devices, see the application note Using Global Resources in Actel Fusion Devices.

Figure 2-13 • Spine-Selection MUX of Global Tree
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Fusion Family of Mixed Signal FPGAs
Clock Conditioning Circuits
In Fusion devices, the CCCs are used to implement frequency division, frequency multiplication, phase
shifting, and delay operations.

The CCCs are available in six chip locations—each of the four chip corners and the middle of the east
and west chip sides.

Each CCC can implement up to three independent global buffers (with or without programmable delay),
or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to three
global outputs. Unused global outputs of a PLL can be used to implement independent global buffers, up
to a maximum of three global outputs for a given CCC.

A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, and 
CLKC-GLC) of a given CCC.

A PLL macro uses the CLKA CCC input to drive its reference clock. It uses the GLA and, optionally, the
GLB and GLC global outputs to drive the global networks. A PLL macro can also drive the YB and YC
regular core outputs. The GLB (or GLC) global output cannot be reused if the YB (or YC) output is used
(Figure 2-19). Refer to the "PLL Macro" section on page 2-27 for more information.

Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

• 3 dedicated single-ended I/Os using a hardwired connection

• 2 dedicated differential I/Os using a hardwired connection

• The FPGA core

The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or
through an asynchronous interface. This asynchronous interface is dynamically accessible from inside
the Fusion device to permit changes of parameters (such as divide ratios) during device operation. To
increase the versatility and flexibility of the clock conditioning system, the CCC configuration is
determined either by the user during the design process, with configuration data being stored in flash
memory as part of the device programming procedure, or by writing data into a dedicated shift register
during normal device operation. This latter mode allows the user to dynamically reconfigure the CCC
without the need for core programming. The shift register is accessed through a simple serial interface.
Refer to the "UJTAG Applications in Microsemi’s Low-Power Flash Devices" chapter of the Fusion FPGA
Fabric User Guide and the "CCC and PLL Characteristics" section on page 2-28 for more information.
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Fusion Family of Mixed Signal FPGAs
Example: Calculation for Match Count
To put the Fusion device on standby for one hour using an external crystal of 32.768 KHz:

The period of the crystal oscillator is Tcrystal:

Tcrystal = 1 / 32.768 KHz = 30.518 µs

The period of the counter is Tcounter:

Tcounter = 30.518 us X 128 = 3.90625 ms

The Match Count for 1 hour is tmatch:

tmatch / Tcounter = (1 hr X 60 min/hr X 60 sec/min) / 3.90625 ms = 921600 or 0xE1000

Using a 32.768 KHz crystal, the maximum standby time of the 40-bit counter is 4,294,967,296 seconds,
which is 136 years.

Table 2-15 • Memory Map for RTC in ACM Register and Description

ACMADDR Register Name Description Use
Default 
Value

0x40 COUNTER0 Counter bits 7:0 Used to preload the counter to a specified start
point.

0x00

0x41 COUNTER1 Counter bits 15:8 0x00

0x42 COUNTER2 Counter bits 23:16 0x00

0x43 COUNTER3 Counter bits 31:24 0x00

0x44 COUNTER4 Counter bits 39:32 0x00

0x48 MATCHREG0 Match register bits 7:0 The RTC comparison bits 0x00

0x49 MATCHREG1 Match register bits 15:8 0x00

0x4A MATCHREG2 Match register bits 23:16 0x00

0x4B MATCHREG3 Match register bits 31:24 0x00

0x4C MATCHREG4 Match register bits 39:32 0x00

0x50 MATCHBIT0 Individual match bits 7:0 The output of the XNOR gates

0 – Not matched

1 – Matched

0x00

0x51 MATCHBIT1 Individual match bits 15:8 0x00

0x52 MATCHBIT2 Individual match bits 23:16 0x00

0x53 MATCHBIT3 Individual match bits 31:24 0x00

0x54 MATCHBIT4 Individual match bits 29:32 0x00

0x58 CTRL_STAT Control (write/read) / Status
(read only) register bits

Refer to Table 2-16 on page 2-35 for details. 0x00
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Device Architecture
Direct Digital Input
The AV, AC, and AT pads can also be configured as high-voltage digital inputs (Figure 2-69). As these
pads are 12 V–tolerant, the digital input can also be up to 12 V. However, the frequency at which these
pads can operate is limited to 10 MHz.

To enable one of these analog input pads to operate as a digital input, its corresponding Digital Input
Enable (DENAxy) pin on the Analog Block must be pulled High, where x is either V, C, or T (for AV, AC,
or AT pads, respectively) and y is in the range 0 to 9, corresponding to the appropriate Analog Quad.

When the pad is configured as a digital input, the signal will come out of the Analog Block macro on the
appropriate DAxOUTy pin, where x represents the pad type (V for AV pad, C for AC pad, or T for AT pad)
and y represents the appropriate Analog Quad number. Example: If the AT pad in Analog Quad 5 is
configured as a digital input, it will come out on the DATOUT5 pin of the Analog Block macro.

Figure 2-69 • Analog Quad Direct Digital Input Configuration
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Fusion Family of Mixed Signal FPGAs
There are several popular ADC architectures, each with advantages and limitations. 
The analog-to-digital converter in Fusion devices is a switched-capacitor Successive Approximation
Register (SAR) ADC. It supports 8-, 10-, and 12-bit modes of operation with a cumulative sample rate up
to 600 k samples per second (ksps). Built-in bandgap circuitry offers 1% internal voltage reference
accuracy or an external reference voltage can be used.

As shown in Figure 2-81, a SAR ADC contains N capacitors with binary-weighted values.

To begin a conversion, all of the capacitors are quickly discharged. Then VIN is applied to all the
capacitors for a period of time (acquisition time) during which the capacitors are charged to a value very
close to VIN. Then all of the capacitors are switched to ground, and thus –VIN is applied across the
comparator. Now the conversion process begins. First, C is switched to VREF. Because of the binary
weighting of the capacitors, the voltage at the input of the comparator is then shown by EQ 11.

Voltage at input of comparator = –VIN + VREF / 2

EQ 11

If VIN is greater than VREF / 2, the output of the comparator is 1; otherwise, the comparator output is 0.
A register is clocked to retain this value as the MSB of the result. Next, if the MSB is 0, C is switched
back to ground; otherwise, it remains connected to VREF, and C / 2 is connected to VREF. The result at
the comparator input is now either –VIN + VREF / 4 or –VIN + 3 VREF / 4 (depending on the state of the
MSB), and the comparator output now indicates the value of the next most significant bit. This bit is
likewise registered, and the process continues for each subsequent bit until a conversion is completed.
The conversion process requires some acquisition time plus N + 1 ADC clock cycles to complete.

Figure 2-81 • Example SAR ADC Architecture
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Device Architecture
This process results in a binary approximation of VIN. Generally, there is a fixed interval T, the sampling
period, between the samples. The inverse of the sampling period is often referred to as the sampling
frequency fS = 1 / T. The combined effect is illustrated in Figure 2-82.

Figure 2-82 demonstrates that if the signal changes faster than the sampling rate can accommodate, or if
the actual value of VIN falls between counts in the result, this information is lost during the conversion.
There are several techniques that can be used to address these issues. 

First, the sampling rate must be chosen to provide enough samples to adequately represent the input
signal. Based on the Nyquist-Shannon Sampling Theorem, the minimum sampling rate must be at least
twice the frequency of the highest frequency component in the target signal (Nyquist Frequency). For
example, to recreate the frequency content of an audio signal with up to 22 KHz bandwidth, the user
must sample it at a minimum of 44 ksps. However, as shown in Figure 2-82, significant post-processing
of the data is required to interpolate the value of the waveform during the time between each sample. 

Similarly, to re-create the amplitude variation of a signal, the signal must be sampled with adequate
resolution. Continuing with the audio example, the dynamic range of the human ear (the ratio of the
amplitude of the threshold of hearing to the threshold of pain) is generally accepted to be 135 dB, and the
dynamic range of a typical symphony orchestra performance is around 85 dB. Most commercial
recording media provide about 96 dB of dynamic range using 16-bit sample resolution. But 16-bit fidelity
does not necessarily mean that you need a 16-bit ADC. As long as the input is sampled at or above the
Nyquist Frequency, post-processing techniques can be used to interpolate intermediate values and
reconstruct the original input signal to within desired tolerances.

If sophisticated digital signal processing (DSP) capabilities are available, the best results are obtained by
implementing a reconstruction filter, which is used to interpolate many intermediate values with higher
resolution than the original data. Interpolating many intermediate values increases the effective number
of samples, and higher resolution increases the effective number of bits in the sample. In many cases,
however, it is not cost-effective or necessary to implement such a sophisticated reconstruction algorithm.
For applications that do not require extremely fine reproduction of the input signal, alternative methods
can enhance digital sampling results with relatively simple post-processing. The details of such
techniques are out of the scope of this chapter; refer to the Improving ADC Results through
Oversampling and Post-Processing of Data white paper for more information.

Figure 2-82 • Conversion Example

T

LSB
2-99 Revision 6

http://www.microsemi.com/soc/documents/Improve_ADC_WP.pdf
http://www.microsemi.com/soc/documents/Improve_ADC_WP.pdf


Device Architecture
Table 2-73 • Maximum I/O Frequency for Single-Ended, Voltage-Referenced, and Differential I/Os;
All I/O Bank Types (maximum drive strength and high slew selected)

Specification Performance Up To

LVTTL/LVCMOS 3.3 V 200 MHz

LVCMOS 2.5 V 250 MHz

LVCMOS 1.8 V 200 MHz

LVCMOS 1.5 V 130 MHz

PCI 200 MHz

PCI-X 200 MHz

HSTL-I 300 MHz

HSTL-II 300 MHz

SSTL2-I 300 MHz

SSTL2-II 300 MHz

SSTL3-I 300 MHz

SSTL3-II 300 MHz

GTL+ 3.3 V 300 MHz

GTL+ 2.5 V 300 MHz

GTL 3.3 V 300 MHz

GTL 2.5 V 300 MHz

LVDS 350 MHz

LVPECL 300 MHz
2-137 Revision 6



Fusion Family of Mixed Signal FPGAs
Table 2-78 • Fusion Standard I/O Standards—OUT_DRIVE Settings

I/O Standards

OUT_DRIVE (mA) 

2 4 6 8 Slew

LVTTL/LVCMOS 3.3 V 3 3 3 3 High Low

LVCMOS 2.5 V 3 3 3 3 High Low

LVCMOS 1.8 V 3 3 – – High Low

LVCMOS 1.5 V 3 – – – High Low

Table 2-79 • Fusion Advanced I/O Standards—SLEW and OUT_DRIVE Settings

I/O Standards

OUT_DRIVE (mA) 

2 4 6 8 12 16 Slew

LVTTL/LVCMOS 3.3 V 3 3 3 3 3 3 High Low 

LVCMOS 2.5 V 3 3 3 3 3 – High Low 

LVCMOS 1.8 V 3 3 3 3 – – High Low 

LVCMOS 1.5 V 3 3 – – – – High Low 

Table 2-80 • Fusion Pro I/O Standards—SLEW and OUT_DRIVE Settings

 I/O Standards

OUT_DRIVE (mA)

Slew2 4 6 8 12 16 24

LVTTL/LVCMOS 3.3 V 3 3 3 3 3 3 3 High Low

LVCMOS 2.5 V 3 3 3 3 3 3 3 High Low

LVCMOS 2.5 V/5.0 V 3 3 3 3 3 3 3 High Low

LVCMOS 1.8 V 3 3 3 3 3 3 – High Low

LVCMOS 1.5 V 3 3 3 3 3 – – High Low
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Fusion Family of Mixed Signal FPGAs
Table 2-82 • Advanced I/O Default Attributes

I/O Standards SLEW (output only) OUT_DRIVE (output only) S
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LVTTL/LVCMOS 3.3 V Refer to the following 
tables for more 
information:

Table 2-78 on page 2-152

Table 2-79 on page 2-152

Table 2-80 on page 2-152 

Refer to the following tables 
for more information:

Table 2-78 on page 2-152

Table 2-79 on page 2-152

Table 2-80 on page 2-152 

Off None 35 pF – 

LVCMOS 2.5 V Off None 35 pF –

LVCMOS 2.5/5.0 V Off None 35 pF –

LVCMOS 1.8 V Off None 35 pF –

LVCMOS 1.5 V Off None 35 pF –

PCI (3.3 V) Off None 10 pF –

PCI-X (3.3 V) Off None 10 pF –

LVDS, BLVDS, M-LVDS Off None – –

LVPECL Off None – –
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Device Architecture
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The
reliability data below is based on a 3.3 V, 36 mA I/O setting, which is the worst case for this type of
analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months
to cause a reliability concern. The I/O design does not contain any short circuit protection, but such
protection would only be needed in extremely prolonged stress conditions.

2.5 V LVCMOS 2 mA 16 18

4 mA 16 18

6 mA 32 37

8 mA 32 37

12 mA 65 74

16 mA 83 87

24 mA 169 124

1.8 V LVCMOS 2 mA 9 11

4 mA 17 22

6 mA 35 44

8 mA 45 51

12 mA 91 74

16 mA 91 74

1.5 V LVCMOS 2 mA 13 16

4 mA 25 33

6 mA 32 39

8 mA 66 55

12 mA 66 55

3.3 V PCI/PCI-X Per PCI/PCI-X 
specification

103 109

Applicable to Standard I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS 2 mA 25 27

4 mA 25 27

6 mA 51 54

8 mA 51 54

2.5 V LVCMOS 2 mA 16 18

4 mA 16 18

6 mA 32 37

8 mA 32 37

1.8 V LVCMOS 2 mA 9 11

4 mA 17 22

1.5 V LVCMOS 2 mA 13 16

Table 2-98 • I/O Short Currents IOSH/IOSL (continued)

Drive Strength IOSH (mA)* IOSL (mA)*

Note: *TJ = 100°C
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Fusion Family of Mixed Signal FPGAs
Table 2-106 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 3.0 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

4 mA  Std. 0.66 10.26 0.04 1.20 0.43 10.45 8.90 2.64 2.46 12.68 11.13  ns 

 –1 0.56 8.72 0.04 1.02 0.36 8.89 7.57 2.25 2.09 10.79 9.47  ns 

 –2 0.49 7.66 0.03 0.90 0.32 7.80 6.64 1.98 1.83 9.47 8.31  ns 

8 mA  Std. 0.66 7.27 0.04 1.20 0.43 7.41 6.28 2.98 3.04 9.65 8.52  ns 

 –1 0.56 6.19 0.04 1.02 0.36 6.30 5.35 2.54 2.59 8.20 7.25  ns 

 –2 0.49 5.43 0.03 0.90 0.32 5.53 4.69 2.23 2.27 7.20 6.36  ns 

12 mA  Std. 0.66 5.58 0.04 1.20 0.43 5.68 4.87 3.21 3.42 7.92 7.11  ns 

 –1 0.56 4.75 0.04 1.02 0.36 4.84 4.14 2.73 2.91 6.74 6.05  ns 

 –2 0.49 4.17 0.03 0.90 0.32 4.24 3.64 2.39 2.55 5.91 5.31  ns 

16 mA  Std. 0.66 5.21 0.04 1.20 0.43 5.30 4.56 3.26 3.51 7.54 6.80  ns 

 –1 0.56 4.43 0.04 1.02 0.36 4.51 3.88 2.77 2.99 6.41 5.79  ns 

 –2 0.49 3.89 0.03 0.90 0.32 3.96 3.41 2.43 2.62 5.63 5.08  ns 

24 mA  Std. 0.66 4.85 0.04 1.20 0.43 4.94 4.54 3.32 3.88 7.18 6.78  ns 

 –1 0.56 4.13 0.04 1.02 0.36 4.20 3.87 2.82 3.30 6.10 5.77  ns 

 –2 0.49 3.62 0.03 0.90 0.32 3.69 3.39 2.48 2.90 5.36 5.06  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
1.5 V LVCMOS (JESD8-11)
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 1.5 V applications. It uses a 1.5 V input buffer and push-pull output buffer.  

Table 2-126 • Minimum and Maximum DC Input and Output Levels

1.5 V 
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

Applicable to Pro I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 4 4 33 25 10 10

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 6 6 39 32 10 10

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 8 8 55 66 10 10

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12 12 55 66 10 10

Applicable to Advanced I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 33 25 10 10

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 6 6 39 32 10 10

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 8 8 55 66 10 10

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12 55 66 10 10

Applicable to Pro I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-122 • AC Loading

Table 2-127 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 1.5 0.75 – 35

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point
Test Point

Enable PathData Path 35 pF

R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics  

Table 2-136 • 3.3 V PCI/PCI-X
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 3.0 V
Applicable to Pro I/Os

Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

 Std. 0.66 2.81 0.04 1.05 1.67 0.43 2.86 2.00 3.28 3.61 5.09 4.23 ns

 –1 0.56 2.39 0.04 0.89 1.42 0.36 2.43 1.70 2.79 3.07 4.33 3.60 ns

 –2 0.49 2.09 0.03 0.78 1.25 0.32 2.13 1.49 2.45 2.70 3.80 3.16 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Table 2-137 • 3.3 V PCI/PCI-X
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 3.0 V
Applicable to Advanced I/Os

Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

 Std. 0.66 2.68 0.04 0.86 0.43 2.73 1.95 3.21 3.58 4.97 4.19 0.66 ns

 –1 0.56 2.28 0.04 0.73 0.36 2.32 1.66 2.73 3.05 4.22 3.56 0.56 ns

 –2 0.49 2.00 0.03 0.65 0.32 2.04 1.46 2.40 2.68 3.71 3.13 0.49 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
Pin Descriptions

Supply Pins

GND Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is
decoupled from the simultaneous switching noise originated from the output buffer ground domain. This
minimizes the noise transfer within the package and improves input signal integrity. GNDQ needs to
always be connected on the board to GND. Note: In FG256, FG484, and FG676 packages, GNDQ and
GND pins are connected within the package and are labeled as GND pins in the respective package pin
assignment tables.

ADCGNDREF Analog Reference Ground

Analog ground reference used by the ADC. This pad should be connected to a quiet analog ground.

GNDA Ground (analog)

Quiet ground supply voltage to the Analog Block of Fusion devices. The use of a separate analog ground
helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V
maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.

GNDAQ Ground (analog quiet)

Quiet ground supply voltage to the analog I/O of Fusion devices. The use of a separate analog ground
helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V
maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.
Note: In FG256, FG484, and FG676 packages, GNDAQ and GNDA pins are connected within the
package and are labeled as GNDA pins in the respective package pin assignment tables. 

GNDNVM Flash Memory Ground

Ground supply used by the Fusion device's flash memory block module(s).

GNDOSC Oscillator Ground

Ground supply for both integrated RC oscillator and crystal oscillator circuit.

VCC15A Analog Power Supply (1.5 V)

1.5 V clean analog power supply input for use by the 1.5 V portion of the analog circuitry.

VCC33A Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the 3.3 V portion of the analog circuitry.

VCC33N Negative 3.3 V Output

This is the –3.3 V output from the voltage converter. A 2.2 µF capacitor must be connected from this pin
to ground.

VCC33PMP Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the analog charge pump. To avoid high current draw,
VCC33PMP should be powered up simultaneously with or after VCC33A.

VCCNVM Flash Memory Block Power Supply (1.5 V)

1.5 V power supply input used by the Fusion device's flash memory block module(s). To avoid high
current draw, VCC should be powered up before or simultaneously with VCCNVM.

VCCOSC Oscillator Power Supply (3.3 V)

Power supply for both integrated RC oscillator and crystal oscillator circuit. The internal 100 MHz
oscillator, powered by the VCCOSC pin, is needed for device programming, operation of the VDDN33
pump, and eNVM operation. VCCOSC is off only when VCCA is off. VCCOSC must be powered
whenever the Fusion device needs to function.
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3 – DC and Power Characteristics

General Specifications

Operating Conditions
Stresses beyond those listed in Table 3-1 may cause permanent damage to the device.

Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
Devices should not be operated outside the recommended operating ranges specified in Table 3-2 on
page 3-3.

Table 3-1 • Absolute Maximum Ratings 

Symbol Parameter Commercial Industrial Units

VCC DC core supply voltage –0.3 to 1.65 –0.3 to 1.65 V

VJTAG JTAG DC voltage –0.3 to 3.75 –0.3 to 3.75 V

VPUMP Programming voltage –0.3 to 3.75 –0.3 to 3.75 V

VCCPLL Analog power supply (PLL) –0.3 to 1.65 –0.3 to 1.65 V

VCCI DC I/O output buffer supply voltage –0.3 to 3.75 –0.3 to 3.75 V

VI I/O input voltage 1 –0.3 V to 3.6 V (when I/O hot insertion mode is
enabled)
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever
voltage is lower (when I/O hot-insertion mode is
disabled)

V

VCC33A +3.3 V power supply –0.3 to 3.75 2 –0.3 to 3.75 2 V

VCC33PMP +3.3 V power supply –0.3 to 3.75 2 –0.3 to 3.75 2 V

VAREF Voltage reference for ADC –0.3 to 3.75 –0.3 to 3.75 V

VCC15A Digital power supply for the analog system –0.3 to 1.65 –0.3 to 1.65 V

VCCNVM Embedded flash power supply –0.3 to 1.65 –0.3 to 1.65 V

VCCOSC Oscillator power supply –0.3 to 3.75 –0.3 to 3.75 V

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may
undershoot or overshoot according to the limits shown in Table 3-4 on page 3-4.

2. Analog data not valid beyond 3.65 V.

3. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on
voltage on the pad.

4. For flash programming and retention maximum limits, refer to Table 3-5 on page 3-5. For recommended operating limits
refer to Table 3-2 on page 3-3.
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Fusion Family of Mixed Signal FPGAs
Methodology
Total Power Consumption—PTOTAL

Operating Mode, Standby Mode, and Sleep Mode

PTOTAL = PSTAT + PDYN

PSTAT is the total static power consumption.

PDYN is the total dynamic power consumption.

Total Static Power Consumption—PSTAT

Operating Mode

PSTAT = PDC1 + (NNVM-BLOCKS * PDC4) + PDC5+ (NQUADS * PDC6) + (NINPUTS * PDC7) + 
(NOUTPUTS * PDC8) + (NPLLS * PDC9)

NNVM-BLOCKS is the number of NVM blocks available in the device.

NQUADS is the number of Analog Quads used in the design.

NINPUTS is the number of I/O input buffers used in the design.

NOUTPUTS is the number of I/O output buffers used in the design.

NPLLS is the number of PLLs available in the device.

Standby Mode

PSTAT = PDC2

Sleep Mode

PSTAT = PDC3

Total Dynamic Power Consumption—PDYN

Operating Mode

PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL + PNVM+ 
PXTL-OSC + PRC-OSC + PAB

Standby Mode

PDYN = PXTL-OSC

Sleep Mode

PDYN = 0 W

Global Clock Dynamic Contribution—PCLOCK

Operating Mode

PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK

NSPINE is the number of global spines used in the user design—guidelines are provided in the
"Spine Architecture" section of the Global Resources chapter in the Fusion and Extended
Temperature Fusion FPGA Fabric User's Guide.

NROW is the number of VersaTile rows used in the design—guidelines are provided in the "Spine
Architecture" section of the Global Resources chapter in the Fusion and Extended Temperature
Fusion FPGA Fabric User's Guide.

FCLK is the global clock signal frequency.

NS-CELL is the number of VersaTiles used as sequential modules in the design.

Standby Mode and Sleep Mode

PCLOCK = 0 W

Sequential Cells Dynamic Contribution—PS-CELL

Operating Mode
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Fusion Family of Mixed Signal FPGAs
FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function

A1 GND GND GND GND

A2 VCCIB0 VCCIB0 VCCIB0 VCCIB0

A3 GAB0/IO02RSB0V0 GAA0/IO00RSB0V0 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0

A4 GAB1/IO03RSB0V0 GAA1/IO01RSB0V0 GAA1/IO01PDB0V0 GAA1/IO01PDB0V0

A5 GND GND GND GND

A6 IO07RSB0V0 IO11RSB0V0 IO10PDB0V1 IO07PDB0V1

A7 IO10RSB0V0 IO14RSB0V0 IO12PDB0V1 IO13PDB0V2

A8 IO11RSB0V0 IO15RSB0V0 IO12NDB0V1 IO13NDB0V2

A9 IO16RSB0V0 IO24RSB0V0 IO22NDB1V0 IO24NDB1V0

A10 IO17RSB0V0 IO25RSB0V0 IO22PDB1V0 IO24PDB1V0

A11 IO18RSB0V0 IO26RSB0V0 IO24NDB1V1 IO29NDB1V1

A12 GND GND GND GND

A13 GBC0/IO25RSB0V0 GBA0/IO38RSB0V0 GBA0/IO28NDB1V1 GBA0/IO42NDB1V2

A14 GBA0/IO29RSB0V0 IO32RSB0V0 IO29NDB1V1 IO43NDB1V2

A15 VCCIB0 VCCIB0 VCCIB1 VCCIB1

A16 GND GND GND GND

B1 VCOMPLA VCOMPLA VCOMPLA VCOMPLA

B2 VCCPLA VCCPLA VCCPLA VCCPLA

B3 GAA0/IO00RSB0V0 IO07RSB0V0 IO00NDB0V0 IO00NDB0V0

B4 GAA1/IO01RSB0V0 IO06RSB0V0 IO00PDB0V0 IO00PDB0V0

B5 NC GAB1/IO03RSB0V0 GAB1/IO02PPB0V0 GAB1/IO02PPB0V0

B6 IO06RSB0V0 IO10RSB0V0 IO10NDB0V1 IO07NDB0V1

B7 VCCIB0 VCCIB0 VCCIB0 VCCIB0

B8 IO12RSB0V0 IO16RSB0V0 IO18NDB1V0 IO22NDB1V0

B9 IO13RSB0V0 IO17RSB0V0 IO18PDB1V0 IO22PDB1V0

B10 VCCIB0 VCCIB0 VCCIB1 VCCIB1

B11 IO19RSB0V0 IO27RSB0V0 IO24PDB1V1 IO29PDB1V1

B12 GBB0/IO27RSB0V0 GBC0/IO34RSB0V0 GBC0/IO26NPB1V1 GBC0/IO40NPB1V2

B13 GBC1/IO26RSB0V0 GBA1/IO39RSB0V0 GBA1/IO28PDB1V1 GBA1/IO42PDB1V2

B14 GBA1/IO30RSB0V0 IO33RSB0V0 IO29PDB1V1 IO43PDB1V2

B15 NC NC VCCPLB VCCPLB

B16 NC NC VCOMPLB VCOMPLB

C1 VCCIB3 VCCIB3 VCCIB4 VCCIB4

C2 GND GND GND GND

C3 VCCIB3 VCCIB3 VCCIB4 VCCIB4

C4 NC NC VCCIB0 VCCIB0

C5 VCCIB0 VCCIB0 VCCIB0 VCCIB0

C6 GAC1/IO05RSB0V0 GAC1/IO05RSB0V0 GAC1/IO03PDB0V0 GAC1/IO03PDB0V0
Revision 6 4-12



Package Pin Assignments
H3 XTAL2 XTAL2 XTAL2 XTAL2

H4 XTAL1 XTAL1 XTAL1 XTAL1

H5 GNDOSC GNDOSC GNDOSC GNDOSC

H6 VCCOSC VCCOSC VCCOSC VCCOSC

H7 VCC VCC VCC VCC

H8 GND GND GND GND

H9 VCC VCC VCC VCC

H10 GND GND GND GND

H11 GDC0/IO38NDB1V0 IO51NDB1V0 IO47NDB2V0 IO69NDB2V0

H12 GDC1/IO38PDB1V0 IO51PDB1V0 IO47PDB2V0 IO69PDB2V0

H13 GDB1/IO39PDB1V0 GCA1/IO49PDB1V0 GCA1/IO45PDB2V0 GCA1/IO64PDB2V0

H14 GDB0/IO39NDB1V0 GCA0/IO49NDB1V0 GCA0/IO45NDB2V0 GCA0/IO64NDB2V0

H15 GCA0/IO36NDB1V0 GCB0/IO48NDB1V0 GCB0/IO44NDB2V0 GCB0/IO63NDB2V0

H16 GCA1/IO36PDB1V0 GCB1/IO48PDB1V0 GCB1/IO44PDB2V0 GCB1/IO63PDB2V0

J1 GEA0/IO44NDB3V0 GFA0/IO66NDB3V0 GFA0/IO70NDB4V0 GFA0/IO105NDB4V0

J2 GEA1/IO44PDB3V0 GFA1/IO66PDB3V0 GFA1/IO70PDB4V0 GFA1/IO105PDB4V0

J3 IO43NDB3V0 GFB0/IO67NDB3V0 GFB0/IO71NDB4V0 GFB0/IO106NDB4V0

J4 GEC2/IO43PDB3V0 GFB1/IO67PDB3V0 GFB1/IO71PDB4V0 GFB1/IO106PDB4V0

J5 NC GFC0/IO68NDB3V0 GFC0/IO72NDB4V0 GFC0/IO107NDB4V0

J6 NC GFC1/IO68PDB3V0 GFC1/IO72PDB4V0 GFC1/IO107PDB4V0

J7 GND GND GND GND

J8 VCC VCC VCC VCC

J9 GND GND GND GND

J10 VCC VCC VCC VCC

J11 GDC2/IO41NPB1V0 IO56NPB1V0 IO56NPB2V0 IO83NPB2V0

J12 NC GDB0/IO53NPB1V0 GDB0/IO53NPB2V0 GDB0/IO80NPB2V0

J13 NC GDA1/IO54PDB1V0 GDA1/IO54PDB2V0 GDA1/IO81PDB2V0

J14 GDA0/IO40PDB1V0 GDC1/IO52PPB1V0 GDC1/IO52PPB2V0 GDC1/IO79PPB2V0

J15 NC IO50NPB1V0 IO51NSB2V0 IO77NSB2V0

J16 GDA2/IO40NDB1V0 GDC0/IO52NPB1V0 GDC0/IO52NPB2V0 GDC0/IO79NPB2V0

K1 NC IO65NPB3V0 IO67NPB4V0 IO92NPB4V0

K2 VCCIB3 VCCIB3 VCCIB4 VCCIB4

K3 NC IO65PPB3V0 IO67PPB4V0 IO92PPB4V0

K4 NC IO64PDB3V0 IO65PDB4V0 IO96PDB4V0

K5 GND GND GND GND

K6 NC IO64NDB3V0 IO65NDB4V0 IO96NDB4V0

K7 VCC VCC VCC VCC

K8 GND GND GND GND

FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function
4-15 Revision 6



Package Pin Assignments
L17 VCCIB2 VCCIB2

L18 IO46PDB2V0 IO69PDB2V0

L19 GCA1/IO45PDB2V0 GCA1/IO64PDB2V0

L20 VCCIB2 VCCIB2

L21 GCC0/IO43NDB2V0 GCC0/IO62NDB2V0

L22 GCC1/IO43PDB2V0 GCC1/IO62PDB2V0

M1 NC IO103PDB4V0

M2 XTAL1 XTAL1

M3 VCCIB4 VCCIB4

M4 GNDOSC GNDOSC

M5 GFC0/IO72NDB4V0 GFC0/IO107NDB4V0

M6 VCCIB4 VCCIB4

M7 GFB0/IO71NDB4V0 GFB0/IO106NDB4V0

M8 VCCIB4 VCCIB4

M9 VCC VCC

M10 GND GND

M11 VCC VCC

M12 GND GND

M13 VCC VCC

M14 GND GND

M15 VCCIB2 VCCIB2

M16 IO48NDB2V0 IO70NDB2V0

M17 VCCIB2 VCCIB2

M18 IO46NDB2V0 IO69NDB2V0

M19 GCA0/IO45NDB2V0 GCA0/IO64NDB2V0

M20 VCCIB2 VCCIB2

M21 GCB0/IO44NDB2V0 GCB0/IO63NDB2V0

M22 GCB1/IO44PDB2V0 GCB1/IO63PDB2V0

N1 NC IO103NDB4V0

N2 GND GND

N3 IO68PDB4V0 IO101PDB4V0

N4 NC IO100NPB4V0

N5 GND GND

N6 NC IO99PDB4V0

N7 NC IO97PDB4V0

FG484

Pin 
Number AFS600 Function AFS1500 Function

N8 GND GND

N9 GND GND

N10 VCC VCC

N11 GND GND

N12 VCC VCC

N13 GND GND

N14 VCC VCC

N15 GND GND

N16 GDB2/IO56PDB2V0 GDB2/IO83PDB2V0

N17 NC IO78PDB2V0

N18 GND GND

N19 IO47NDB2V0 IO72NDB2V0

N20 IO47PDB2V0 IO72PDB2V0

N21 GND GND

N22 IO49PDB2V0 IO71PDB2V0

P1 GFA1/IO70PDB4V0 GFA1/IO105PDB4V0

P2 GFA0/IO70NDB4V0 GFA0/IO105NDB4V0

P3 IO68NDB4V0 IO101NDB4V0

P4 IO65PDB4V0 IO96PDB4V0

P5 IO65NDB4V0 IO96NDB4V0

P6 NC IO99NDB4V0

P7 NC IO97NDB4V0

P8 VCCIB4 VCCIB4

P9 VCC VCC

P10 GND GND

P11 VCC VCC

P12 GND GND

P13 VCC VCC

P14 GND GND

P15 VCCIB2 VCCIB2

P16 IO56NDB2V0 IO83NDB2V0

P17 NC IO78NDB2V0

P18 GDA1/IO54PDB2V0 GDA1/IO81PDB2V0

P19 GDB1/IO53PDB2V0 GDB1/IO80PDB2V0

P20 IO51NDB2V0 IO73NDB2V0

FG484

Pin 
Number AFS600 Function AFS1500 Function
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Datasheet Information
Advance v1.0
(continued)

This change table states that in the "208-Pin PQFP" table listed under the Advance
v0.8 changes, the AFS090 device had a pin change. That is incorrect. Pin 102 was
updated for AFS250 and AFS600. The function name changed from VCC33ACAP to
VCC33A.

3-8

Advance v0.9
(October 2007)

In the "Package I/Os: Single-/Double-Ended (Analog)" table, the
AFS1500/M7AFS1500 I/O counts were updated for the following devices:

FG484: 223/109

FG676: 252/126

II

In the "108-Pin QFN" table, the function changed from VCC33ACAP to VCC33A for the
following pin:

B25

3-2

In the "180-Pin QFN" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS090: B29

AFS250: B29

3-4

In the "208-Pin PQFP" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS090: 102

AFS250: 102

3-8

In the "256-Pin FBGA" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS090: T14

AFS250: T14

AFS600: T14

AFS1500: T14

3-12

Advance v0.9
(continued)

In the "484-Pin FBGA" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS600: AB18

AFS1500: AB18

3-20

In the "676-Pin FBGA" table, the function changed from VCC33ACAP to VCC33A for the
following pins:

AFS1500: AD20

3-28

Advance v0.8
(June 2007)

Figure 2-16 • Fusion Clocking Options and the "RC Oscillator" section were updated
to change GND_OSC and VCC_OSC to GNDOSC and VCCOSC.

2-20, 2-21

Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro was updated
to change the positions of OADIVRST and OADIVHALF, and a note was added.

2-25

The "Crystal Oscillator" section was updated to include information about controlling
and enabling/disabling the crystal oscillator.

2-22

Table 2-11 · Electrical Characteristics of the Crystal Oscillator was updated to
change the typical value of IDYNXTAL for 0.032–0.2 MHz to 0.19.

2-24

The "1.5 V Voltage Regulator" section was updated to add "or floating" in the
paragraph stating that an external pull-down is required on TRST to power down the
VR.

2-41

The "1.5 V Voltage Regulator" section was updated to include information on
powering down with the VR.

2-41

Revision Changes Page
5-11 Revision 6


