

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	172
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1afs600-1fg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Related Documents

Datasheet

Core8051 www.microsemi.com/soc/ipdocs/Core8051_DS.pdf

Application Notes

Fusion FlashROM http://www.microsemi.com/soc/documents/Fusion_FROM_AN.pdf Fusion SRAM/FIFO Blocks http://www.microsemi.com/soc/documents/Fusion_RAM_FIFO_AN.pdf Using DDR in Fusion Devices http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129938 Fusion Security http://www.microsemi.com/soc/documents/Fusion_Security_AN.pdf Using Fusion RAM as Multipliers http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129940

Handbook

Cortex-M1 Handbook www.microsemi.com/soc/documents/CortexM1_HB.pdf

User Guides

Designer User Guide http://www.microsemi.com/soc/documents/designer_UG.pdf Fusion FPGA Fabric User Guide http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130817 IGLOO, ProASIC3, SmartFusion and Fusion Macro Library Guide http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf SmartGen, FlashROM, Flash Memory System Builder, and Analog System Builder User Guide http://www.microsemi.com/soc/documents/genguide_ug.pdf

White Papers

Fusion Technology http://www.microsemi.com/soc/documents/Fusion_Tech_WP.pdf

VersaNet Global Networks and Spine Access

The Fusion architecture contains a total of 18 segmented global networks that can access the VersaTiles, SRAM, and I/O tiles on the Fusion device. There are 6 chip (main) global networks that access the entire device and 12 quadrant networks (3 in each quadrant). Each device has a total of 18 globals. These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets, including clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-skew local networks using spines for up to 180 internal/external clocks (in an AFS1500 device) or other high-fanout nets in Fusion devices. Optimal usage of these low-skew networks can result in significant improvement in design performance on Fusion devices.

The nine spines available in a vertical column reside in global networks with two separate regions of scope: the quadrant global network, which has three spines, and the chip (main) global network, which has six spines. Note that there are three quadrant spines in each quadrant of the device. There are four quadrant global network regions per device (Figure 2-12 on page 2-12).

The spines are the vertical branches of the global network tree, shown in Figure 2-11 on page 2-11. Each spine in a vertical column of a chip (main) global network is further divided into two equal-length spine segments: one in the top and one in the bottom half of the die.

Each spine and its associated ribs cover a certain area of the Fusion device (the "scope" of the spine; see Figure 2-11 on page 2-11). Each spine is accessed by the dedicated global network MUX tree architecture, which defines how a particular spine is driven—either by the signal on the global network from a CCC, for example, or another net defined by the user (Figure 2-13). Quadrant spines can be driven from user I/Os on the north and south sides of the die, via analog I/Os configured as direct digital inputs. The ability to drive spines in the quadrant global networks can have a significant effect on system performance for high-fanout inputs to a design.

Details of the chip (main) global network spine-selection MUX are presented in Figure 2-13. The spine drivers for each spine are located in the middle of the die.

Quadrant spines are driven from a north or south rib. Access to the top and bottom ribs is from the corner CCC or from the I/Os on the north and south sides of the device. For details on using spines in Fusion devices, see the application note *Using Global Resources in Actel Fusion Devices*.

Figure 2-13 • Spine-Selection MUX of Global Tree

Global Resource Characteristics

AFS600 VersaNet Topology

Clock delays are device-specific. Figure 2-15 is an example of a global tree used for clock routing. The global tree presented in Figure 2-15 is driven by a CCC located on the west side of the AFS600 device. It is used to drive all D-flip-flops in the device.

Figure 2-15 • Example of Global Tree Use in an AFS600 Device for Clock Routing

Figure 2-31 • State Diagram for All Different Power Modes

When TRST is 1 or PUB is 0, the 1.5 V voltage regulator is always ON, putting the Fusion device in normal operation at all times. Therefore, when the JTAG port is not in reset, the Fusion device cannot enter sleep mode or standby mode.

To enter standby mode, the Fusion device must first power-up into normal operation. The RTC is enabled through the RTC Control/Status Register described in the "Real-Time Counter (part of AB macro)" section on page 2-33. A match value corresponding to the wake-up time is loaded into the Match Register. The 1.5 V voltage regulator is disabled by setting VRPU to 0 to allow the Fusion device to enter standby mode, when the 1.5 V supply is off but the RTC remains on.

Embedded Memories

Fusion devices include four types of embedded memory: flash block, FlashROM, SRAM, and FIFO.

Flash Memory Block

Fusion is the first FPGA that offers a flash memory block (FB). Each FB block stores 2 Mbits of data. The flash memory block macro is illustrated in Figure 2-32. The port pin name and descriptions are detailed on Table 2-19 on page 2-40. All flash memory block signals are active high, except for CLK and active low RESET. All flash memory operations are synchronous to the rising edge of CLK.

Figure 2-32 • Flash Memory Block

E			Byte Number in Bank				4	4 LSB of ADDR (READ)									
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ba 3 N	7																
<u>N</u>	6																
0 of	5																
AD	4																
	3																
(R	2																
	1																
9	0																

Figure 2-45 • FlashROM Architecture

FlashROM Characteristics

Figure 2-46 • FlashROM Timing Diagram

Table 2-26 • FlashROM Access Time

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{SU}	Address Setup Time	0.53	0.61	0.71	ns
t _{HOLD}	Address Hold Time	0.00	0.00	0.00	ns
t _{CK2Q}	Clock to Out	21.42	24.40	28.68	ns
F _{MAX}	Maximum Clock frequency	15.00	15.00	15.00	MHz

DINA and DINB

These are the input data signals, and they are nine bits wide. Not all nine bits are valid in all configurations. When a data width less than nine is specified, unused high-order signals must be grounded (Table 2-29).

DOUTA and DOUTB

These are the nine-bit output data signals. Not all nine bits are valid in all configurations. As with DINA and DINB, high-order bits may not be used (Table 2-29). The output data on unused pins is undefined.

Table 2-29 • Unused/Used Input and Output Data Pins for Various Supported Bus Widths

D×W	DINx/DOUTx						
D	Unused	Used					
4k×1	[8:1]	[0]					
2k×2	[8:2]	[1:0]					
1k×4	[8:4]	[3:0]					
512×9	None	[8:0]					

Note: The "x" in DINx and DOUTx implies A or B.

Figure 2-72 • Positive Current Monitor

Care must be taken when choosing the right resistor for current measurement application. Note that because of the 10× amplification, the maximum measurable difference between the AV and AC pads is V_{AREF} / 10. A larger AV-to-AC voltage drop will result in ADC saturation; that is, the digital code put out by the ADC will stay fixed at the full scale value. Therefore, the user must select the external sense resistor appropriately. Table 2-38 shows recommended resistor values for different current measurement ranges. When choosing resistor values for a system, there is a trade-off between measurement accuracy and power consumption. Choosing a large resistor will increase the voltage drop and hence increase accuracy of the measurement; however the larger voltage drop dissipates more power (P = I² × R).

The Current Monitor is a unipolar system, meaning that the differential voltage swing must be from 0 V to $V_{AREF}/10$. Therefore, the Current Monitor only supports differential voltage where $|V_{AV}-V_{AC}|$ is greater than 0 V. This results in the requirement that the potential of the AV pad must be larger than the potential of the AC pad. This is straightforward for positive voltage systems. For a negative voltage system, it means that the AV pad must be "more negative" than the AC pad. This is shown in Figure 2-73.

In this case, both the AV pad and the AC pad are configured for negative operations and the output of the differential amplifier still falls between 0 V and V_{AREF} as required.

Current Range	Recommended Minimum Resistor Value (Ohms)
> 5 mA – 10 mA	10 – 20
> 10 mA – 20 mA	5 – 10
> 20 mA – 50 mA	2.5 – 5
> 50 mA – 100 mA	1 – 2
> 100 mA – 200 mA	0.5 – 1
> 200 mA – 500 mA	0.3 – 0.5
> 500 mA – 1 A	0.1 – 0.2
> 1 A – 2 A	0.05 – 0.1
> 2 A – 4 A	0.025 – 0.05
> 4 A – 8 A	0.0125 – 0.025
> 8 A – 12 A	0.00625 – 0.02

Table 2-37 • Recommended Resistor for Different Current Range Measurement

ADC Interface Timing

Table 2-48 • ADC Interface Timing Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{SUMODE}	Mode Pin Setup Time	0.56	0.64	0.75	ns
t _{HDMODE}	Mode Pin Hold Time	0.26	0.29	0.34	ns
t _{SUTVC}	Clock Divide Control (TVC) Setup Time	0.68	0.77	0.90	ns
t _{HDTVC}	Clock Divide Control (TVC) Hold Time	0.32	0.36	0.43	ns
t _{SUSTC}	Sample Time Control (STC) Setup Time	1.58	1.79	2.11	ns
t _{HDSTC}	Sample Time Control (STC) Hold Time	1.27	1.45	1.71	ns
t _{SUVAREFSEL}	Voltage Reference Select (VAREFSEL) Setup Time	0.00	0.00	0.00	ns
t _{HDVAREFSEL}	Voltage Reference Select (VAREFSEL) Hold Time	0.67	0.76	0.89	ns
t _{SUCHNUM}	Channel Select (CHNUMBER) Setup Time	0.90	1.03	1.21	ns
t _{HDCHNUM}	Channel Select (CHNUMBER) Hold Time	0.00	0.00	0.00	ns
t _{SUADCSTART}	T Start of Conversion (ADCSTART) Setup Time		0.85	1.00	ns
t _{HDADCSTART}	Start of Conversion (ADCSTART) Hold Time	0.43	0.49	0.57	ns
t _{CK2QBUSY}	Busy Clock-to-Q		1.51	1.78	ns
t _{CK2QCAL}	Power-Up Calibration Clock-to-Q	0.63	0.71	0.84	ns
t _{CK2QVAL}	Valid Conversion Result Clock-to-Q	3.12	3.55	4.17	ns
t _{CK2QSAMPLE}	Sample Clock-to-Q	0.22	0.25	0.30	ns
t _{CK2QRESULT}	Conversion Result Clock-to-Q	2.53	2.89	3.39	ns
t _{CLR2QBUSY}	Busy Clear-to-Q	2.06	2.35	2.76	ns
t _{CLR2QCAL}	Power-Up Calibration Clear-to-Q	2.15	2.45	2.88	ns
t _{CLR2QVAL}	Valid Conversion Result Clear-to-Q	2.41	2.74	3.22	ns
t _{CLR2QSAMPLE}	Sample Clear-to-Q	2.17	2.48	2.91	ns
t _{CLR2QRESULT}	Conversion result Clear-to-Q	2.25	2.56	3.01	ns
t _{RECCLR}	Recovery Time of Clear	0.00	0.00	0.00	ns
t _{REMCLR}	Removal Time of Clear	0.63	0.72	0.84	ns
t _{MPWSYSCLK}	Clock Minimum Pulse Width for the ADC	4.00	4.00	4.00	ns
t _{FMAXSYSCLK}	Clock Maximum Frequency for the ADC	100.00	100.00	100.00	MHz

Table 2-52 • Calibrated Analog Channel Accuracy 1,2,3Worst-Case Industrial Conditions, TJ = 85°C

		Condition	Total	(LSB)	
Analog Pad	Prescaler Range (V)	Input Voltage ⁴ (V)	Negative Max.	Positive Max.	
P	ositive Range		A	DC in 10-Bit Mo	ode
AV, AC	16	0.300 to 12.0	-6	1	6
	8	0.250 to 8.00	-6	0	6
	4	0.200 to 4.00	-7	-1	7
	2	0.150 to 2.00	-7	0	7
	1	0.050 to 1.00	-6	-1	6
AT	16	0.300 to 16.0	-5	0	5
	4	0.100 to 4.00	-7	-1	7
Ne	egative Range		ADC in 10-Bit Mode		
AV, AC	16	-0.400 to -10.5	-7	1	9
	8	-0.350 to -8.00	-7	-1	7
	4	-0.300 to -4.00	-7	-2	9
	2	-0.250 to -2.00	-7	-2	7
	1	-0.050 to -1.00	-16	-1	20

Notes:

1. Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For 8-bit mode, divide the LSB count by 4. Overall accuracy remains the same.

2. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

3. Calibrated with two-point calibration methodology, using 20% and 80% full-scale points.

4. The lower limit of the input voltage is determined by the prescaler input offset.

Similarly,

Min. Output Voltage = (Max. Negative input offset) + (Input Voltage x Max. Negative Channel Gain) = $(-88 \text{ mV}) + (5 \text{ V} \times 0.96) = 4.712 \text{ V}$

Calculating Accuracy for a Calibrated Analog Channel

Formula

For a given prescaler range, EQ 31 gives the output voltage.

Output Voltage = Channel Error in V + Input Voltage

EQ 31

where

Channel Error in V = Total Channel Error in LSBs x Equivalent voltage per LSB

Example

Input Voltage = 5 VChosen Prescaler range = 8 V range Refer to Table 2-52 on page 2-123.

Max. Output Voltage = Max. Positive Channel Error in V + Input Voltage Max. Positive Channel Error in V = (6 LSB) × (8 mV per LSB in 10-bit mode) = 48 mV Max. Output Voltage = 48 mV + 5 V = **5.048 V**

Similarly,

Min. Output Voltage = Max. Negative Channel Error in V + Input Voltage = (-48 mV) + 5 V = 4.952 V

Calculating LSBs from a Given Error Budget

Formula

For a given prescaler range, LSB count = ± (Input Voltage × Required % error) / (Equivalent voltage per LSB)

Example

Input Voltage = $3.3 \vee$ Required error margin= 1% Refer to Table 2-52 on page 2-123. Equivalent voltage per LSB = 16 mV for a 16V prescaler, with ADC in 10-bit mode LSB Count = $\pm (5.0 \vee \times 1\%) / (0.016)$ LSB Count = ± 3.125 Equivalent voltage per LSB = 8 mV for an $8 \vee$ prescaler, with ADC in 10-bit mode LSB Count = $\pm (5.0 \vee \times 1\%) / (0.008)$ LSB Count = $\pm (5.0 \vee \times 1\%) / (0.008)$ LSB Count = ± 6.25 The $8 \vee$ prescaler satisfies the calculated LSB count accuracy requirement (see Table 2-52 on page 2-123).

5 V Input Tolerance

I/Os can support 5 V input tolerance when LVTTL 3.3 V, LVCMOS 3.3 V, LVCMOS 2.5 V / 5 V, and LVCMOS 2.5 V configurations are used (see Table 2-77 on page 2-147 for more details). There are four recommended solutions (see Figure 2-103 to Figure 2-106 on page 2-146 for details of board and macro setups) to achieve 5 V receiver tolerance. All the solutions meet a common requirement of limiting the voltage at the input to 3.6 V or less. In fact, the I/O absolute maximum voltage rating is 3.6 V, and any voltage above 3.6 V may cause long-term gate oxide failures.

Solution 1

The board-level design needs to ensure that the reflected waveform at the pad does not exceed the limits provided in Table 3-4 on page 3-4. This is a long-term reliability requirement.

This scheme will also work for a 3.3 V PCI / PCI-X configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the two external resistors, as explained below. Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

The following are some examples of possible resistor values (based on a simplified simulation model with no line effects and 10 Ω transmitter output resistance, where Rtx_out_high = (VCCI – VOH) / IOH, Rtx_out_low = VOL / IOL).

Example 1 (high speed, high current):

Rtx_out_high = Rtx_out_low = 10 Ω

R1 = 36 Ω (±5%), P(r1)min = 0.069 Ω

R2 = 82 Ω (±5%), P(r2)min = 0.158 Ω

Imax_tx = 5.5 V / (82 * 0.95 + 36 * 0.95 + 10) = 45.04 mA

t_{RISE} = t_{FALL} = 0.85 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

t_{RISE} = t_{FALL} = 4 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Example 2 (low-medium speed, medium current):

Rtx_out_high = Rtx_out_low = 10 Ω

R1 = 220 Ω (±5%), P(r1)min = 0.018 Ω

R2 = 390 Ω (±5%), P(r2)min = 0.032 Ω

Imax_tx = 5.5 V / (220 * 0.95 + 390 * 0.95 + 10) = 9.17 mA

t_{RISE} = t_{FALL} = 4 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

t_{RISE} = t_{FALL} = 20 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Other values of resistors are also allowed as long as the resistors are sized appropriately to limit the voltage at the receiving end to 2.5 V < Vin(rx) < 3.6 V when the transmitter sends a logic 1. This range of Vin_dc(rx) must be assured for any combination of transmitter supply (5 V ± 0.5 V), transmitter output resistance, and board resistor tolerances.

Result: No Bus Contention

Figure 2-112 • Timing Diagram (with skew circuit selected)

Weak Pull-Up and Weak Pull-Down Resistors

Fusion devices support optional weak pull-up and pull-down resistors for each I/O pin. When the I/O is pulled up, it is connected to the VCCI of its corresponding I/O bank. When it is pulled down, it is connected to GND. Refer to Table 2-97 on page 2-171 for more information.

Slew Rate Control and Drive Strength

Fusion devices support output slew rate control: high and low. The high slew rate option is recommended to minimize the propagation delay. This high-speed option may introduce noise into the system if appropriate signal integrity measures are not adopted. Selecting a low slew rate reduces this kind of noise but adds some delays in the system. Low slew rate is recommended when bus transients are expected. Drive strength should also be selected according to the design requirements and noise immunity of the system.

The output slew rate and multiple drive strength controls are available in LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V, LVCMOS 2.5 V, 5.0 V input, LVCMOS 1.8 V, and LVCMOS 1.5 V. All other I/O standards have a high output slew rate by default.

For Fusion slew rate and drive strength specifications, refer to the appropriate I/O bank table:

- Fusion Standard I/O (Table 2-78 on page 2-152)
- Fusion Advanced I/O (Table 2-79 on page 2-152)
- Fusion Pro I/O (Table 2-80 on page 2-152)

Table 2-83 on page 2-155 lists the default values for the above selectable I/O attributes as well as those that are preset for each I/O standard.

Refer to Table 2-78, Table 2-79, and Table 2-80 on page 2-152 for SLEW and OUT_DRIVE settings. Table 2-81 on page 2-153 and Table 2-82 on page 2-154 list the I/O default attributes. Table 2-83 on page 2-155 lists the voltages for the supported I/O standards.

Table 2-99 • Short Current Event Duration before Failure

Temperature	Time Before Failure
-40°C	>20 years
0°C	>20 years
25°C	>20 years
70°C	5 years
85°C	2 years
100°C	6 months

Table 2-100 • Schmitt Trigger Input Hysteresis Hysteresis Voltage Value (typ.) for Schmitt Mode Input Buffers

Input Buffer Configuration	Hysteresis Value (typ.)
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)	240 mV
2.5 V LVCMOS (Schmitt trigger mode)	140 mV
1.8 V LVCMOS (Schmitt trigger mode)	80 mV
1.5 V LVCMOS (Schmitt trigger mode)	60 mV

Table 2-101 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)	Reliability
LVTTL/LVCMOS (Schmitt trigger disabled)	No requirement	10 ns*	20 years (100°C)
LVTTL/LVCMOS (Schmitt trigger enabled)	No requirement	No requirement, but input noise voltage cannot exceed Schmitt hysteresis	20 years (100°C)
HSTL/SSTL/GTL	No requirement	10 ns*	10 years (100°C)
LVDS/BLVDS/M-LVDS/LVPECL	No requirement	10 ns*	10 years (100°C)

Note: * The maximum input rise/fall time is related only to the noise induced into the input buffer trace. If the noise is low, the rise time and fall time of input buffers, when Schmitt trigger is disabled, can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure there is no excessive noise coupling into input signals.

1.8 V LVCMOS

Low-Voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.8 V applications. It uses a 1.8 V input buffer and push-pull output buffer.

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Applicable to Pro I/O Banks												
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	8	8	51	45	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	12	12	74	91	10	10
16 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	16	16	74	91	10	10
Applicable	to Advar	nced I/O Banl	(S									
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	8	8	51	45	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	12	12	74	91	10	10
16 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	16	16	74	91	10	10
Applicable	to Stand	ard I/O Banks	5			•						
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	4	4	22	17	10	10

Table 2-118 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-121 • AC Loading

Table 2-119 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input Low (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)	
0	1.8	0.9	_	35	

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

VCC Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is also required for powering the JTAG state machine, in addition to VJTAG. Even when a Fusion device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the Fusion device.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are either four (AFS090 and AFS250) or five (AFS600 and AFS1500) I/O banks on the Fusion devices plus a dedicated VJTAG bank.

Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND.

VCCPLA/B PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V, where A and B refer to the PLL. AFS090 and AFS250 each have a single PLL. The AFS600 and AFS1500 devices each have two PLLs. Microsemi recommends tying VCCPLX to VCC and using proper filtering circuits to decouple VCC noise from PLL.

If unused, VCCPLA/B should be tied to GND.

VCOMPLA/B Ground for West and East PLL

VCOMPLA is the ground of the west PLL (CCC location F) and VCOMPLB is the ground of the east PLL (CCC location C).

VJTAG JTAG Supply Voltage

Fusion devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned to be used, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a Fusion device is in a JTAG chain of interconnected boards and it is desired to power down the board containing the Fusion device, this may be done provided both VJTAG and VCC to the Fusion part remain powered; otherwise, JTAG signals will not be able to transition the Fusion device, even in bypass mode.

VPUMP Programming Supply Voltage

Fusion devices support single-voltage ISP programming of the configuration flash and FlashROM. For programming, VPUMP should be in the 3.3 V +/-5% range. During normal device operation, VPUMP can be left floating or can be tied to any voltage between 0 V and 3.6 V.

When the VPUMP pin is tied to ground, it shuts off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

PQ208

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.

Package Pin Assignments

FG484		FG484			
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function
E9	NC	IO08PDB0V1	F22	IO35PDB2V0	IO51PDB2V0
E10	GND	GND	G1	IO77PDB4V0	IO115PDB4V0
E11	IO15NDB1V0	IO22NDB1V0	G2	GND	GND
E12	IO15PDB1V0	IO22PDB1V0	G3	IO78NDB4V0	IO116NDB4V0
E13	GND	GND	G4	IO78PDB4V0	IO116PDB4V0
E14	NC	IO32PPB1V1	G5	VCCIB4	VCCIB4
E15	NC	IO36NPB1V2	G6	NC	IO117PDB4V0
E16	VCCIB1	VCCIB1	G7	VCCIB4	VCCIB4
E17	GND	GND	G8	GND	GND
E18	NC	IO47NPB2V0	G9	IO04NDB0V0	IO06NDB0V1
E19	IO33PDB2V0	IO49PDB2V0	G10	IO04PDB0V0	IO06PDB0V1
E20	VCCIB2	VCCIB2	G11	IO12NDB0V1	IO16NDB0V2
E21	IO32NDB2V0	IO46NDB2V0	G12	IO12PDB0V1	IO16PDB0V2
E22	GBC2/IO32PDB2V0	GBC2/IO46PDB2V0	G13	NC	IO28NDB1V1
F1	IO80NDB4V0	IO118NDB4V0	G14	NC	IO28PDB1V1
F2	IO80PDB4V0	IO118PDB4V0	G15	GND	GND
F3	NC	IO119NSB4V0	G16	NC	IO38PPB1V2
F4	IO84NDB4V0	IO124NDB4V0	G17	NC	IO53PDB2V0
F5	GND	GND	G18	VCCIB2	VCCIB2
F6	VCOMPLA	VCOMPLA	G19	IO36PDB2V0	IO52PDB2V0
F7	VCCPLA	VCCPLA	G20	IO36NDB2V0	IO52NDB2V0
F8	VCCIB0	VCCIB0	G21	GND	GND
F9	IO08NDB0V1	IO12NDB0V1	G22	IO35NDB2V0	IO51NDB2V0
F10	IO08PDB0V1	IO12PDB0V1	H1	IO77NDB4V0	IO115NDB4V0
F11	VCCIB0	VCCIB0	H2	IO76PDB4V0	IO113PDB4V0
F12	VCCIB1	VCCIB1	H3	VCCIB4	VCCIB4
F13	IO22NDB1V0	IO30NDB1V1	H4	IO79NDB4V0	IO114NDB4V0
F14	IO22PDB1V0	IO30PDB1V1	H5	IO79PDB4V0	IO114PDB4V0
F15	VCCIB1	VCCIB1	H6	NC	IO117NDB4V0
F16	NC	IO36PPB1V2	H7	GND	GND
F17	NC	IO38NPB1V2	H8	VCC	VCC
F18	GND	GND	H9	VCCIB0	VCCIB0
F19	IO33NDB2V0	IO49NDB2V0	H10	GND	GND
F20	IO34PDB2V0	IO50PDB2V0	H11	VCCIB0	VCCIB0
F21	IO34NDB2V0	IO50NDB2V0	H12	VCCIB1	VCCIB1

Fusion Family of Mixed Signal FPGAs

Revision	Changes	Page	
Advance 1.0 (continued)	In Table 2-47 • ADC Characteristics in Direct Input Mode, the commercial conditions were updated and note 2 is new.	2-121	
	The V_{CC33ACAP} signal name was changed to "XTAL1 Crystal Oscillator Circuit Input".		
	Table 2-48 • Uncalibrated Analog Channel Accuracy* is new.	2-123	
	Table 2-49 • Calibrated Analog Channel Accuracy ^{1,2,3} is new.	2-124	
	Table 2-50 • Analog Channel Accuracy: Monitoring Standard Positive Voltages is new.	2-125	
	In Table 2-57 • Voltage Polarity Control Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$)*, the following I/O Bank names were changed:	2-131	
	Hot-Swap changed to Standard		
	LVDS changed to Advanced		
	In Table 2-58 • Prescaler Op Amp Power-Down Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$), the following I/O Bank names were changed:	2-132	
	Hot-Swap changed to Standard		
	In the title of Table 2.64 - 1/O Standards Supported by Dark Tures, IV/DS 1/O uses	0.404	
	changed to Advanced I/O.	2-134	
	The title was changed from "Fusion Standard, LVDS, and Standard plus Hot-Swap I/O" to Table 2-68 • Fusion Standard and Advanced I/O Features. In addition, the table headings were all updated. The heading used to be Standard and LVDS I/O and was changed to Advanced I/O. Standard Hot-Swap was changed to just Standard.	2-136	
	 This sentence was deleted from the "Slew Rate Control and Drive Strength" section: The Standard hot-swap I/Os do not support slew rate control. In addition, these references were changed: From: Fusion hot-swap I/O (Table 2-69 on page 2-122) To: Fusion Standard I/O From: Fusion LVDS I/O (Table 2-70 on page 2-122) To: Fusion Advanced I/O 	2-152	
	The "Cold-Sparing Support" section was significantly updated.	2-143	
	In the title of Table 2-75 • Fusion Standard I/O Standards—OUT_DRIVE Settings, Hot-Swap was changed to Standard.	2-153	
	In the title of Table 2-76 • Fusion Advanced I/O Standards—SLEW and OUT_DRIVE Settings, LVDS was changed to Advanced.	2-153	
	In the title of Table 2-81 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications, LVDS was changed to Advanced.	2-157	
	In Figure 2-111 • Naming Conventions of Fusion Devices with Three Digital I/O Banks and Figure 2-112 • Naming Conventions of Fusion Devices with Four I/O Banks the following names were changed: Hot-Swap changed to Standard	2-160	
	LVDS changed to Advanced		
	The Figure 2-113 • Timing Model was updated.	2-161	
	In the notes for Table 2-86 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions, T_J was changed to T_A .	2-166	

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "Fusion Device Status" table, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.