

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	119
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1afs600-2fg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Fusion Device Family Overview

Introduction	1-1
General Description	1-1
Unprecedented Integration	1-4
Related Documents	1-10

Device Architecture

Fusion Stack Architecture	
Core Architecture	
Clocking Resources	
Real-Time Counter System	
Embedded Memories	
Analog Block	
Analog Configuration MUX	
User I/Os	
Pin Descriptions	
Security	

DC and Power Characteristics

General Specifications	3-1
Calculating Power Dissipation	3-10
Power Consumption	3-32

Package Pin Assignments

QN108	 	 	 	 	 	 	 	 	 		 	 . 4-	1						
QN180																			
PQ208																			
FG256																			
FG484																			
FG676	 	 	 	 	 	 	 •••	 	 • • •	 	 	 	 • •	 	 	•••	 	 4-2	7

Datasheet Information

List of Changes	
Datasheet Categories	
Safety Critical, Life Support, and High-Reliability Applications Policy	/

Clock Aggregation

Clock aggregation allows for multi-spine clock domains. A MUX tree provides the necessary flexibility to allow long lines or I/Os to access domains of one, two, or four global spines. Signal access to the clock aggregation system is achieved through long-line resources in the central rib, and also through local resources in the north and south ribs, allowing I/Os to feed directly into the clock system. As Figure 2-14 indicates, this access system is contiguous.

There is no break in the middle of the chip for north and south I/O VersaNet access. This is different from the quadrant clocks, located in these ribs, which only reach the middle of the rib. Refer to the *Using Global Resources in Actel Fusion Devices* application note.

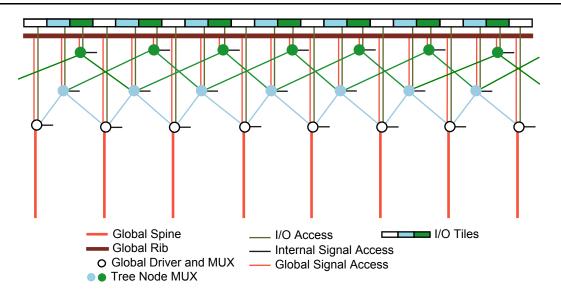


Figure 2-14 • Clock Aggregation Tree Architecture

1.5 V Voltage Regulator

The 1.5 V voltage regulator uses an external pass transistor to generate 1.5 V from a 3.3 V supply. The base of the pass transistor is tied to PTBASE, the collector is tied to 3.3 V, and an emitter is tied to PTBASE and the 1.5 V supplies of the Fusion device. Figure 2-27 on page 2-31 shows the hook-up of the 1.5 V voltage regulator to an external pass transistor.

Microsemi recommends using a PN2222A or 2N2222A transistor. The gain of such a transistor is approximately 25, with a maximum base current of 20 mA. The maximum current that can be supported is 0.5 A. Transistors with different gain can also be used for different current requirements.

Table 2-18 • Electrical Characteristics

Symbol	Parameter	Condition		Min	Typical	Max	Units
VOUT	Output Voltage	Tj = 25°C		1.425	1.5	1.575	V
ICC33A	Operation Current	Tj = 25⁰C	ILOAD = 1 mA		11		mA
			ILOAD = 100 mA		11		mA
			ILOAD = 0.5 A		30		mA
∆VOUT	Load Regulation	Tj = 25°C	ILOAD = 1 mA to 0.5 A		90		mV
	Line Regulation	Tj = 25°C	VCC33A = 2.97 V to 3.63 V				
			ILOAD = 1 mA		10.6		mV/V
			VCC33A = 2.97 V to 3.63 V				
			ILOAD = 100 mA		12.1		mV/V
∆VOUT			VCC33A = 2.97 V to 3.63 V				
			ILOAD = 500 mA		10.6		mV/V
	Dropout Voltage*	Tj = 25⁰C	ILOAD = 1 mA		0.63		V
			ILOAD = 100 mA		0.84		V
			ILOAD = 0.5 A		1.35		V
IPTBASE	PTBase Current	Tj = 25°C	ILOAD = 1 mA		48		μA
			ILOAD = 100 mA		736		μA
			ILOAD = 0.5 A		12	20	mA

VCC33A = 3.3 V

Note: *Data collected with 2N2222A.

Data operations are performed in widths of 1 to 4 bytes. A write to a location in a page that is not already in the Page Buffer will cause the page to be read from the FB Array and stored in the Page Buffer. The block that was addressed during the write will be put into the Block Buffer, and the data written by WD will overwrite the data in the Block Buffer. After the data is written to the Block Buffer, the Block Buffer is then written to the Page Buffer to keep both buffers in sync. Subsequent writes to the same block will overwrite the Block Buffer and the Page Buffer. A write to another block in the page will cause the addressed block to be loaded from the Page Buffer, and the write will be performed as described previously.

The data width can be selected dynamically via the DATAWIDTH input bus. The truth table for the data width settings is detailed in Table 2-21. The minimum resolvable address is one 8-bit byte. For data widths greater than 8 bits, the corresponding address bits are ignored—when DATAWIDTH = 0 (2 bytes), ADDR[0] is ignored, and when DATAWIDTH = '10' or '11' (4 bytes), ADDR[1:0] are ignored. Data pins are LSB-oriented and unused WD data pins must be grounded.

Table 2-21 • Data Width Settings

DATAWIDTH[1:0]	Data Width
00	1 byte [7:0]
01	2 byte [15:0]
10, 11	4 bytes [31:0]

Flash Memory Block Protection

Page Loss Protection

When the PAGELOSSPROTECT pin is set to logic 1, it prevents writes to any page other than the current page in the Page Buffer until the page is either discarded or programmed.

A write to another page while the current page is Page Loss Protected will return a STATUS of '11'.

Overwrite Protection

Any page that is Overwrite Protected will result in the STATUS being set to '01' when an attempt is made to either write, program, or erase it. To set the Overwrite Protection state for a page, set the OVERWRITEPROTECT pin when a Program operation is undertaken. To clear the Overwrite Protect state for a given page, an Unprotect Page operation must be performed on the page, and then the page must be programmed with the OVERWRITEPROTECT pin cleared to save the new page.

LOCKREQUEST

The LOCKREQUEST signal is used to give the user interface control over simultaneous access of the FB from both the User and JTAG interfaces. When LOCKREQUEST is asserted, the JTAG interface will hold off any access attempts until LOCKREQUEST is deasserted.

Flash Memory Block Operations

FB Operation Priority

The FB provides for priority of operations when multiple actions are requested simultaneously. Table 2-22 shows the priority order (priority 0 is the highest).

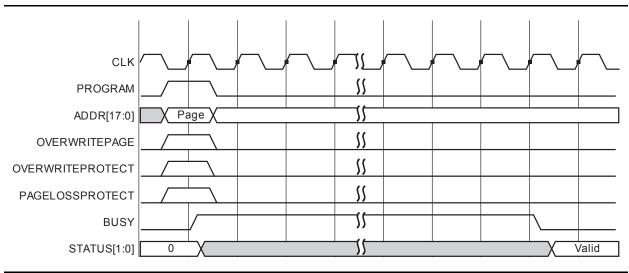
Table 2-22	٠	FΒ	Operation Priority
------------	---	----	---------------------------

Operation	Priority
System Initialization	0
FB Reset	1
Read	2
Write	3
Erase Page	4
Program	5
Unprotect Page	6
Discard Page	7

Program Operation

A Program operation is initiated by asserting the PROGRAM signal on the interface. Program operations save the contents of the Page Buffer to the FB Array. Due to the technologies inherent in the FB, the total programming (including erase) time per page of the eNVM is 6.8 ms. While the FB is writing the data to the array, the BUSY signal will be asserted.

During a Program operation, the sector and page addresses on ADDR are compared with the stored address for the page (and sector) in the Page Buffer. If there is a mismatch between the two addresses, the Program operation will be aborted and an error will be reported on the STATUS output.


It is possible to write the Page Buffer to a different page in memory. When asserting the PROGRAM pin, if OVERWRITEPAGE is asserted as well, the FB will write the contents of the Page Buffer to the sector and page designated on the ADDR inputs if the destination page is not Overwrite Protected.

A Program operation can be utilized to either modify the contents of the page in the flash memory block or change the protections for the page. Setting the OVERWRITEPROTECT bit on the interface while asserting the PROGRAM pin will put the page addressed into Overwrite Protect Mode. Overwrite Protect Mode safeguards a page from being inadvertently overwritten during subsequent Program or Erase operations.

Program operations that result in a STATUS value of '01' do not modify the addressed page. For all other values of STATUS, the addressed page is modified. Program errors include the following:

- 1. Attempting to program a page that is Overwrite Protected (STATUS = '01')
- 2. Attempting to program a page that is not in the Page Buffer when the Page Buffer has entered Page Loss Protection Mode (STATUS = '01')
- Attempting to perform a program with OVERWRITEPAGE set when the page addressed has been Overwrite Protected (STATUS = '01')
- 4. The Write Count of the page programmed exceeding the Write Threshold defined in the part specification (STATUS = '11')
- 5. The ECC Logic determining that there is an uncorrectable error within the programmed page (STATUS = '10')
- 6. Attempting to program a page that is **not** in the Page Buffer when OVERWRITEPAGE is not set and the page in the Page Buffer is modified (STATUS = '01')
- 7. Attempting to program the page in the Page Buffer when the Page Buffer is **not** modified

The waveform for a Program operation is shown in Figure 2-36.

Figure 2-36 • FB Program Waveform

Note: OVERWRITEPAGE is only sampled when the PROGRAM or ERASEPAGE pins are asserted. OVERWRITEPAGE is ignored in all other operations.

The following error indications are possible for Read operations:

- 1. STATUS = '01' when a single-bit data error was detected and corrected within the block addressed.
- 2. STATUS = '10' when a double-bit error was detected in the block addressed (note that the error is uncorrected).

In addition to data reads, users can read the status of any page in the FB by asserting PAGESTATUS along with REN. The format of the data returned by a page status read is shown in Table 2-23, and the definition of the page status bits is shown in Table 2-24.

Table 2-23 • Page Status Read Data Format

31	8	7	4	3	2	1	0
Write 0	Count	Rese	erved	Over Threshold	Read Protected	Write Protected	Overwrite Protected

Table 2-24 • Page Status Bit Definition

Page Status Bit(s)	Definition
31–8	The number of times the page addressed has been programmed/erased
7–4	Reserved; read as 0
3	Over Threshold indicator (see the "Program Operation" section on page 2-46)
2	Read Protected; read protect bit for page, which is set via the JTAG interface and only affects JTAG operations. This bit can be overridden by using the correct user key value.
1	Write Protected; write protect bit for page, which is set via the JTAG interface and only affects JTAG operations. This bit can be overridden by using the correct user key value.
0	Overwrite Protected; designates that the user has set the OVERWRITEPROTECT bit on the interface while doing a Program operation. The page cannot be written without first performing an Unprotect Page operation.

Table 2-49 • Analog Channel Specifications (continued)Commercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise),Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Temperature Mo	onitor Using Analog Pad	AT				
External	Resolution	8-bit ADC		°C		
Temperature Monitor		10-bit ADC			1	°C
(external diode		12-bit ADC		C	.25	°C
2N3904, T _J = 25°C) ⁴	Systematic Offset ⁵	AFS090, AFS250, AFS600, AFS1500, uncalibrated ⁷			5	°C
		AFS090, AFS250, AFS600, AFS1500, calibrated ⁷			±5	°C
	Accuracy			±3	±5	°C
	External Sensor Source	High level, TMSTBx = 0		10		μA
	Current	Low level, TMSTBx = 1		100		μA
	Max Capacitance on AT pad				1.3	nF
Internal	Resolution	8-bit ADC	4			°C
Temperature Monitor		10-bit ADC	1			°C
Monitor		12-bit ADC	0.25			°C
	Systematic Offset ⁵	AFS090 ⁷		5		
		AFS250, AFS600, AFS1500 ⁷			11	°C
	Accuracy			±3	±5	°C
t _{TMSHI}	Strobe High time		10		105	μs
t _{TMSLO}	Strobe Low time		5			μs
t _{TMSSET}	Settling time		5			μs

Notes:

1. VRSM is the maximum voltage drop across the current sense resistor.

2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no reliability concern on digital inputs as long as VIND does not exceed these limits.

3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.

- 4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance allowed across the AT pins is 500 pF.
- 5. The temperature offset is a fixed positive value.
- 6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.
- 7. When using SmartGen Analog System Builder, CalibIP is required to obtain specified offset. For further details on CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

Calit	orated Typica	al Error per	[.] Positive F	Prescaler S	etting ¹ (%F	SR)	Direct ADC ^{2,3} (%FSR)
16 V (AT)	16 V (12 V) (AV/AC)	8 V (AV/AC)	4 V (AT)	4 V (AV/AC)	2 V (AV/AC)	1 V (AV/AC)	VAREF = 2.56 V
1							
1							
1	1						
2	2	1					
2	2	1	1	1			
3	2	1	1	1			1
4	4	1	1	1	1		1
5	5	2	2	2	1		1
7	6	2	2	2	1		1
9	9	4	3	3	1	1	1
	16 V (AT) 1 1 1 2 2 3 4 5 7	16 V (AT) 16 V (12 V) (AV/AC) 1 1 1 1 1 1 2 2 2 2 3 2 4 4 5 5 7 6	16 V (AT) 16 V (12 V) (AV/AC) 8 V (AV/AC) 1	16 V (AT) 16 V (12 V) (AV/AC) 8 V (AV/AC) 4 V (AT) 1 - <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>16 V (AT)(AV/AC)(AV/AC)$(AV/AC)$$(AV/AC)$$(AV/AC)$$(AV/AC)$$(AV/AC)$1111111111111122111113211111441111155222117622211</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16 V (AT)(AV/AC)(AV/AC) (AV/AC) (AV/AC) (AV/AC) (AV/AC) (AV/AC) 1111111111111122111113211111441111155222117622211

Table 2-53 • Analog Channel Accuracy: Monitoring Standard Positive VoltagesTypical Conditions, $T_A = 25^{\circ}C$

Notes:

1. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

2. Direct ADC mode using an external VAREF of 2.56V±4.6mV, without Analog Calibration macro.

3. For input greater than 2.56 V, the ADC output will saturate. A higher VAREF or prescaler usage is recommended.

Examples

Calculating Accuracy for an Uncalibrated Analog Channel

Formula

For a given prescaler range, EQ 30 gives the output voltage.

Output Voltage = (Channel Output Offset in V) + (Input Voltage x Channel Gain)

EQ 30

where

Channel Output offset in V = Channel Input offset in LSBs x Equivalent voltage per LSB Channel Gain Factor = 1 + (% Channel Gain / 100)

Example

Input Voltage = 5 V Chosen Prescaler range = 8 V range Refer to Table 2-51 on page 2-122.

Max. Output Voltage = (Max Positive input offset) + (Input Voltage x Max Positive Channel Gain)

Max. Positive input offset = (21 LSB) x (8 mV per LSB in 10-bit mode) Max. Positive input offset = 166 mV Max. Positive Gain Error = +3% Max. Positive Channel Gain = 1 + (+3% / 100) Max. Positive Channel Gain = 1.03 Max. Output Voltage = (166 mV) + (5 V x 1.03) Max. Output Voltage = **5.316 V**

Hot-Swap Support

Hot-swapping (also called hot plugging) is the operation of hot insertion or hot removal of a card in (or from) a powered-up system. The levels of hot-swap support and examples of related applications are described in Table 2-74. The I/Os also need to be configured in hot insertion mode if hot plugging compliance is required.

Table 2-74 • Levels of Hot-Swap Support

Hot Swapping Level	Description	Power Applied to Device	Bus State	Card Ground Connection	Device Circuitry Connected to Bus Pins	Example of Application with Cards that Contain Fusion Devices	Compliance of Fusion Devices
1	Cold-swap	No	_	_	_	System and card with Microsemi FPGA chip are powered down, then card gets plugged into system, then power supplies are turned on for system but not for FPGA on card.	Compliant I/Os can but do not have to be set to hot insertion mode.
2	Hot-swap while reset	Yes	Held in reset state	Must be made and maintained for 1 ms before, during, and after insertion/ removal	_	In PCI hot plug specification, reset control circuitry isolates the card busses until the card supplies are at their nominal operating levels and stable.	Compliant I/Os can but do not have to be set to hot insertion mode.
3	Hot-swap while bus idle		Held idle (no ongoing I/O processes during insertion/re moval)	Same as Level 2	glitch-free during power-up or	no toggling activity on bus. It is critical that	Compliant with cards with two levels of staging. I/Os have to be set to hot insertion mode.
4	Hot-swap on an active bus	Yes	Bus may have active I/O processes ongoing, but device being inserted or removed must be idle.	Same as Level 2	Same as Level 3	is critical that the logic states set on the bus signal do not get	Compliant with cards with two levels of staging. I/Os have to be set to hot insertion mode.

5 V Input Tolerance

I/Os can support 5 V input tolerance when LVTTL 3.3 V, LVCMOS 3.3 V, LVCMOS 2.5 V / 5 V, and LVCMOS 2.5 V configurations are used (see Table 2-77 on page 2-147 for more details). There are four recommended solutions (see Figure 2-103 to Figure 2-106 on page 2-146 for details of board and macro setups) to achieve 5 V receiver tolerance. All the solutions meet a common requirement of limiting the voltage at the input to 3.6 V or less. In fact, the I/O absolute maximum voltage rating is 3.6 V, and any voltage above 3.6 V may cause long-term gate oxide failures.

Solution 1

The board-level design needs to ensure that the reflected waveform at the pad does not exceed the limits provided in Table 3-4 on page 3-4. This is a long-term reliability requirement.

This scheme will also work for a 3.3 V PCI / PCI-X configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the two external resistors, as explained below. Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

The following are some examples of possible resistor values (based on a simplified simulation model with no line effects and 10 Ω transmitter output resistance, where Rtx_out_high = (VCCI – VOH) / IOH, Rtx_out_low = VOL / IOL).

Example 1 (high speed, high current):

Rtx_out_high = Rtx_out_low = 10 Ω

R1 = 36 Ω (±5%), P(r1)min = 0.069 Ω

R2 = 82 Ω (±5%), P(r2)min = 0.158 Ω

Imax_tx = 5.5 V / (82 * 0.95 + 36 * 0.95 + 10) = 45.04 mA

t_{RISE} = t_{FALL} = 0.85 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

t_{RISE} = t_{FALL} = 4 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Example 2 (low-medium speed, medium current):

Rtx_out_high = Rtx_out_low = 10 Ω

R1 = 220 Ω (±5%), P(r1)min = 0.018 Ω

R2 = 390 Ω (±5%), P(r2)min = 0.032 Ω

Imax_tx = 5.5 V / (220 * 0.95 + 390 * 0.95 + 10) = 9.17 mA

t_{RISE} = t_{FALL} = 4 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

t_{RISE} = t_{FALL} = 20 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Other values of resistors are also allowed as long as the resistors are sized appropriately to limit the voltage at the receiving end to 2.5 V < Vin(rx) < 3.6 V when the transmitter sends a logic 1. This range of Vin_dc(rx) must be assured for any combination of transmitter supply (5 V ± 0.5 V), transmitter output resistance, and board resistor tolerances.

Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-90 • Summary of AC Measuring Points Applicable to All I/O Bank Types

Standard	Input Reference Voltage (VREF_TYP)	Board Termination Voltage (VTT_REF)	Measuring Trip Point (Vtrip)					
3.3 V LVTTL / 3.3 V LVCMOS	-	-	1.4 V					
2.5 V LVCMOS	_	-	1.2 V					
1.8 V LVCMOS	_	-	0.90 V					
1.5 V LVCMOS	_	-	0.75 V					
3.3 V PCI	_	-	0.285 * VCCI (RR) 0.615 * VCCI (FF))					
3.3 V PCI-X	_	-	0.285 * VCCI (RR) 0.615 * VCCI (FF)					
3.3 V GTL	0.8 V	1.2 V	VREF					
2.5 V GTL	0.8 V	1.2 V	VREF					
3.3 V GTL+	1.0 V	1.5 V	VREF					
2.5 V GTL+	1.0 V	1.5 V	VREF					
HSTL (I)	0.75 V	0.75 V	VREF					
HSTL (II)	0.75 V	0.75 V	VREF					
SSTL2 (I)	1.25 V	1.25 V	VREF					
SSTL2 (II)	1.25 V	1.25 V	VREF					
SSTL3 (I)	1.5 V	1.485 V	VREF					
SSTL3 (II)	1.5 V	1.485 V	VREF					
LVDS	-	-	Cross point					
LVPECL	_	-	Cross point					

Table 2-91 • I/O AC Parameter Definitions

Parameter	Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer with Schmitt trigger disabled
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{PYS}	Pad to Data delay through the Input Buffer with Schmitt trigger enabled
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

Table 2-122 • 1.8 V LVCMOS Low Slew

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.66	15.53	0.04	1.31	0.43	14.11	15.53	2.78	1.60	16.35	17.77	ns
	-1	0.56	13.21	0.04	1.11	0.36	12.01	13.21	2.36	1.36	13.91	15.11	ns
	-2 ²	0.49	11.60	0.03	0.98	0.32	10.54	11.60	2.07	1.19	12.21	13.27	ns
4 mA	Std.	0.66	10.48	0.04	1.31	0.43	10.41	10.48	3.23	2.73	12.65	12.71	ns
	-1	0.56	8.91	0.04	1.11	0.36	8.86	8.91	2.75	2.33	10.76	10.81	ns
	-2	0.49	7.82	0.03	0.98	0.32	7.77	7.82	2.41	2.04	9.44	9.49	ns
8 mA	Std.	0.66	8.05	0.04	1.31	0.43	8.20	7.84	3.54	3.27	10.43	10.08	ns
	-1	0.56	6.85	0.04	1.11	0.36	6.97	6.67	3.01	2.78	8.88	8.57	ns
	-2	0.49	6.01	0.03	0.98	0.32	6.12	5.86	2.64	2.44	7.79	7.53	ns
12 mA	Std.	0.66	7.50	0.04	1.31	0.43	7.64	7.30	3.61	3.41	9.88	9.53	ns
	-1	0.56	6.38	0.04	1.11	0.36	6.50	6.21	3.07	2.90	8.40	8.11	ns
	-2	0.49	5.60	0.03	0.98	0.32	5.71	5.45	2.69	2.55	7.38	7.12	ns
16 mA	Std.	0.66	7.29	0.04	1.31	0.43	7.23	7.29	3.71	3.95	9.47	9.53	ns
	-1	0.56	6.20	0.04	1.11	0.36	6.15	6.20	3.15	3.36	8.06	8.11	ns
	-2	0.49	5.45	0.03	0.98	0.32	5.40	5.45	2.77	2.95	7.07	7.12	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

The 1.76 W power is less than the required 3.00 W. The design therefore requires a heat sink, or the airflow where the device is mounted should be increased. The design's total junction-to-air thermal resistance requirement can be estimated by EQ 7:

$$\theta_{ja(total)} = \frac{T_J - T_A}{P} = \frac{100^{\circ}C - 70^{\circ}C}{3.00 \text{ W}} = 10.00^{\circ}\text{C/W}$$

Determining the heat sink's thermal performance proceeds as follows:

$$\theta_{\mathsf{JA}(\mathsf{TOTAL})} = \theta_{\mathsf{JC}} + \theta_{\mathsf{CS}} + \theta_{\mathsf{SA}}$$

EQ 8

EQ 7

where

- $\theta_{JA} = 0.37^{\circ}C/W$
 - Thermal resistance of the interface material between the case and the heat sink, usually provided by the thermal interface manufacturer

 θ_{SA} = Thermal resistance of the heat sink in °C/W

$$\theta_{SA} = \theta_{JA(TOTAL)} - \theta_{JC} - \theta_{CS}$$

EQ 9

$$\theta_{SA} = 13.33^{\circ}C/W - 8.28^{\circ}C/W - 0.37^{\circ}C/W = 5.01^{\circ}C/W$$

A heat sink with a thermal resistance of 5.01°C/W or better should be used. Thermal resistance of heat sinks is a function of airflow. The heat sink performance can be significantly improved with increased airflow.

Carefully estimating thermal resistance is important in the long-term reliability of an Microsemi FPGA. Design engineers should always correlate the power consumption of the device with the maximum allowable power dissipation of the package selected for that device.

Note: The junction-to-air and junction-to-board thermal resistances are based on JEDEC standard (JESD-51) and assumptions made in building the model. It may not be realized in actual application and therefore should be used with a degree of caution. Junction-to-case thermal resistance assumes that all power is dissipated through the case.

Temperature and Voltage Derating Factors

Table 3-7 • Temperature and Voltage Derating Factors for Timing Delays
(normalized to $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V)

Array Voltage	Junction Temperature (°C)								
VCC (V)	–40°C	0°C	25°C	70°C	85°C	100°C			
1.425	0.88	0.93	0.95	1.00	1.02	1.05			
1.500	0.83	0.88	0.90	0.95	0.96	0.99			
1.575	0.80	0.85	0.87	0.91	0.93	0.96			

RC Oscillator Dynamic Contribution—**P**_{RC-OSC}

Operating Mode

P_{RC-OSC} = PAC19

Standby Mode and Sleep Mode

 $P_{RC-OSC} = 0 W$

Analog System Dynamic Contribution—P_{AB}

Operating Mode

P_{AB} = PAC20

Standby Mode and Sleep Mode

 $P_{AB} = 0 W$

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that the net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100%, as all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
 - Bit 0 (LSB) = 100%
 - Bit 1 = 50%
 - Bit 2 = 25%
 - ...
 - Bit 7 (MSB) = 0.78125%
 - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . 0.78125%) / 8.

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When non-tristate output buffers are used, the enable rate should be 100%.

Table 3-16 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
α_1	Toggle rate of VersaTile outputs	10%
α ₂	I/O buffer toggle rate	10%

Table 3-17 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β ₁	I/O output buffer enable rate	100%
β ₂	RAM enable rate for read operations	12.5%
β_3	RAM enable rate for write operations	12.5%
β ₄	NVM enable rate for read operations	0%

 $P_{S-CELL} = 0 W$ $P_{C-CELL} = 0 W$ $P_{NET} = 0 W$ $P_{LOGIC} = 0 W$

I/O Input and Output Buffer Contribution—P_{I/O}

This example uses LVTTL 3.3 V I/O cells. The output buffers are 12 mA-capable, configured with high output slew and driving a 35 pF output load.

 $F_{CLK} = 50 \text{ MHz}$ Number of input pins used: N_{INPUTS} = 30 Number of output pins used: N_{OUTPUTS} = 40 Estimated I/O buffer toggle rate: α_2 = 0.1 (10%) Estimated IO buffer enable rate: β_1 = 1 (100%)

Operating Mode

$$\begin{split} \mathsf{P}_{\mathsf{INPUTS}} &= \mathsf{N}_{\mathsf{INPUTS}} * (\alpha_2 \,/\, 2) * \mathsf{PAC9} * \mathsf{F}_{\mathsf{CLK}} \\ \mathsf{P}_{\mathsf{INPUTS}} &= 30 * (0.1 \,/\, 2) * 0.01739 * 50 \\ \mathsf{P}_{\mathsf{INPUTS}} &= 1.30 \text{ mW} \end{split}$$

$$\begin{split} \mathsf{P}_{\text{OUTPUTS}} &= \mathsf{N}_{\text{OUTPUTS}} * (\alpha_2 / 2) * \beta_1 * \mathsf{PAC10} * \mathsf{F}_{\text{CLK}} \\ \mathsf{P}_{\text{OUTPUTS}} &= 40 * (0.1 / 2) * 1 * 0.4747 * 50 \\ \mathsf{P}_{\text{OUTPUTS}} &= 47.47 \text{ mW} \end{split}$$

 $P_{I/O} = P_{INPUTS} + P_{OUTPUTS}$ $P_{I/O} = 1.30 \text{ mW} + 47.47 \text{ mW}$

P_{I/O} = 48.77 mW

Standby Mode and Sleep Mode

 $P_{INPUTS} = 0 W$

 $P_{OUTPUTS} = 0 W$ $P_{I/O} = 0 W$

RAM Contribution—P_{MEMORY}

Frequency of Read Clock: $F_{READ-CLOCK} = 10 \text{ MHz}$ Frequency of Write Clock: $F_{WRITE-CLOCK} = 10 \text{ MHz}$ Number of RAM blocks: $N_{BLOCKS} = 20$ Estimated RAM Read Enable Rate: $\beta_2 = 0.125 (12.5\%)$ Estimated RAM Write Enable Rate: $\beta_3 = 0.125 (12.5\%)$

Operating Mode

$$\begin{split} \mathsf{P}_{\mathsf{MEMORY}} &= (\mathsf{N}_{\mathsf{BLOCKS}} * \mathsf{PAC11} * \beta_2 * \mathsf{F}_{\mathsf{READ-CLOCK}}) + (\mathsf{N}_{\mathsf{BLOCKS}} * \mathsf{PAC12} * \beta_3 * \mathsf{F}_{\mathsf{WRITE-CLOCK}}) \\ \mathsf{P}_{\mathsf{MEMORY}} &= (20 * 0.025 * 0.125 * 10) + (20 * 0.030 * 0.125 * 10) \\ \mathsf{P}_{\mathsf{MEMORY}} &= 1.38 \text{ mW} \end{split}$$

Standby Mode and Sleep Mode

P_{MEMORY} = 0 W

Package Pin Assignments

QN108			QN108		QN108
Pin Number	AFS090 Function	Pin Number AFS090 Function		Pin Number	AFS090 Function
A1	NC	A39	GND	B21	AC2
A2	GNDQ	A40	GCB1/IO35PDB1V0	B22	ATRTN1
A3	GAA2/IO52PDB3V0	A41	GCB2/IO33PDB1V0	B23	AG3
A4	GND	A42	GBA2/IO31PDB1V0	B24	AV3
A5	GFA1/IO47PDB3V0	A43	NC	B25	VCC33A
A6	GEB1/IO45PDB3V0	A44	GBA1/IO30RSB0V0	B26	VAREF
A7	VCCOSC	A45	GBB1/IO28RSB0V0	B27	PUB
A8	XTAL2	A46	GND	B28	VCC33A
A9	GEA1/IO44PPB3V0	A47	VCC	B29	PTBASE
A10	GEA0/IO44NPB3V0	A48	GBC1/IO26RSB0V0	B30	VCCNVM
A11	GEB2/IO42PDB3V0	A49	IO21RSB0V0	B31	VCC
A12	VCCNVM	A50	IO19RSB0V0	B32	TDI
A13	VCC15A	A51	IO09RSB0V0	B33	TDO
A14	PCAP	A52	GAC0/IO04RSB0V0	B34	VJTAG
A15	NC	A53	VCCIB0	B35	GDC0/IO38NDB1V
A16	GNDA	A54	GND		0
A17	AV0	A55	GAB0/IO02RSB0V0	B36	VCCIB1
A18	AG0	A56	GAA0/IO00RSB0V0	B37	GCB0/IO35NDB1V0
A19	ATRTN0	B1	VCOMPLA	B38	GCC2/IO33NDB1V 0
A20	AT1	B2	VCCIB3	B39	GBB2/IO31NDB1V0
A21	AC1	B3	GAB2/IO52NDB3V0	B39 B40	VCCIB1
A22	AV2	B4	VCCIB3	B40 B41	GNDQ
A23	AG2	B5	GFA0/IO47NDB3V0	B41 B42	GNDQ GBA0/IO29RSB0V0
A24	AT2	B6	GEB0/IO45NDB3V0	B42 B43	VCCIB0
A25	AT3	B7	XTAL1	B43 B44	GBB0/IO27RSB0V0
A26	AC3	B8	GNDOSC	B44 B45	
A27	GNDAQ	B9	GEC2/IO43PSB3V0	-	GBC0/IO25RSB0V0
A28	ADCGNDREF	B10	GEA2/IO42NDB3V0	B46	IO20RSB0V0
A29	NC	B11	VCC	B47	IO10RSB0V0
A30	GNDA	B12	GNDNVM	B48	GAC1/IO05RSB0V0
A31	PTEM	B13	NCAP	B49	GAB1/IO03RSB0V0
A32	GNDNVM	B14	VCC33PMP	B50	
A33	VPUMP	B15	VCC33N	B51	GAA1/IO01RSB0V0
A34	ТСК	B16	GNDAQ	B52	VCCPLA
A35	TMS	B17	AC0		
A36	TRST	B18	AT0		
A37	GDB1/IO39PSB1V0	B19	AG1		
A38	GDC1/IO38PDB1V0	B20	AV1		

Package Pin Assignments

QN180							
Pin Number	AFS090 Function	AFS250 Function					
C21	AG2	AG2					
C22	NC	NC					
C23	NC	NC					
C24	NC	NC					
C25	NC	AT5					
C26	GNDAQ	GNDAQ					
C27	NC	NC					
C28	NC	NC					
C29	NC	NC					
C30	NC	NC					
C31	GND	GND					
C32	NC	NC					
C33	NC	NC					
C34	NC	NC					
C35	GND	GND					
C36	GDB0/IO39NPB1V0	GDA0/IO54NPB1V					
C37	GDA1/IO37NSB1V0	GDC0/IO52NSB1V0					
C38	GCA0/IO36NDB1V0	GCA0/IO49NDB1V0					
C39	GCB1/IO35PPB1V0	GCB1/IO48PPB1V0					
C40	GND	GND					
C41	GCA2/IO32NPB1V0	IO41NPB1V0					
C42	GBB2/IO31NDB1V0	IO40NDB1V0					
C43	NC	NC					
C44	NC	GBA1/IO39RSB0V0					
C45	NC	GBB0/IO36RSB0V0					
C46	GND	GND					
C47	NC	IO30RSB0V0					
C48	IO22RSB0V0	IO27RSB0V0					
C49	GND	GND					
C50	IO13RSB0V0	IO16RSB0V0					
C51	IO09RSB0V0	IO12RSB0V0					
C52	IO06RSB0V0	IO09RSB0V0					
C53	GND	GND					
C54	NC	GAB1/IO03RSB0V0					
C55	NC	GAA0/IO00RSB0V0					
C56	NC	NC					

QN180							
Pin Number	AFS090 Function	AFS250 Function					
D1	NC	NC					
D2	NC	NC					
D3	NC	NC					
D4	NC	NC					

FG484			FG484		
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function
P21	IO51PDB2V0	IO73PDB2V0	T12	AV5	AV5
P22	IO49NDB2V0	IO71NDB2V0	T13	AC5	AC5
R1	IO69PDB4V0	IO102PDB4V0	T14	NC	NC
R2	IO69NDB4V0	IO102NDB4V0	T15	GNDA	GNDA
R3	VCCIB4	VCCIB4	T16	NC	IO77PPB2V0
R4	IO64PDB4V0	IO91PDB4V0	T17	NC	IO74PDB2V0
R5	IO64NDB4V0	IO91NDB4V0	T18	VCCIB2	VCCIB2
R6	NC	IO92PDB4V0	T19	IO55NDB2V0	IO82NDB2V0
R7	GND	GND	T20	GDA2/IO55PDB2V0	GDA2/IO82PDB2V0
R8	GND	GND	T21	GND	GND
R9	VCC33A	VCC33A	T22	GDC1/IO52PDB2V0	GDC1/IO79PDB2V0
R10	GNDA	GNDA	U1	IO67PDB4V0	IO98PDB4V0
R11	VCC33A	VCC33A	U2	IO67NDB4V0	IO98NDB4V0
R12	GNDA	GNDA	U3	GEC1/IO63PDB4V0	GEC1/IO90PDB4V0
R13	VCC33A	VCC33A	U4	GEC0/IO63NDB4V0	GEC0/IO90NDB4V0
R14	GNDA	GNDA	U5	GND	GND
R15	VCC	VCC	U6	VCCNVM	VCCNVM
R16	GND	GND	U7	VCCIB4	VCCIB4
R17	NC	IO74NDB2V0	U8	VCC15A	VCC15A
R18	GDA0/IO54NDB2V0	GDA0/IO81NDB2V0	U9	GNDA	GNDA
R19	GDB0/IO53NDB2V0	GDB0/IO80NDB2V0	U10	AC4	AC4
R20	VCCIB2	VCCIB2	U11	VCC33A	VCC33A
R21	IO50NDB2V0	IO75NDB2V0	U12	GNDA	GNDA
R22	IO50PDB2V0	IO75PDB2V0	U13	AG5	AG5
T1	NC	IO100PPB4V0	U14	GNDA	GNDA
T2	GND	GND	U15	PUB	PUB
Т3	IO66PDB4V0	IO95PDB4V0	U16	VCCIB2	VCCIB2
T4	IO66NDB4V0	IO95NDB4V0	U17	TDI	TDI
T5	VCCIB4	VCCIB4	U18	GND	GND
T6	NC	IO92NDB4V0	U19	IO57NDB2V0	IO84NDB2V0
T7	GNDNVM	GNDNVM	U20	GDC2/IO57PDB2V0	GDC2/IO84PDB2V0
Т8	GNDA	GNDA	U21	NC	IO77NPB2V0
Т9	NC	NC	U22	GDC0/IO52NDB2V0	GDC0/IO79NDB2V0
T10	AV4	AV4	V1	GEB1/IO62PDB4V0	GEB1/IO89PDB4V0
T11	NC	NC	V2	GEB0/IO62NDB4V0	GEB0/IO89NDB4V0

Revision	Changes	Page		
Advance v1.5 (continued)	This bullet was added to the "Integrated A/D Converter (ADC) and Analog I/O" section: ADC Accuracy is Better than 1%			
	In the "Integrated Analog Blocks and Analog I/Os" section, ±4 LSB was changed to 0.72. The following sentence was deleted:			
	The input range for voltage signals is from -12 V to $+12$ V with full-scale output values from 0.125 V to 16 V.			
	In addition, 2°C was changed to 3°C:			
	"One analog input in each quad can be connected to an external temperature monitor diode and achieves detection accuracy of ±3°C."			
	The following sentence was deleted:			
	The input range for voltage signals is from -12 V to $+12$ V with full-scale output values from 0.125 V to 16 V.			
	The title of the datasheet changed from Actel Programmable System Chips to Actel Fusion Mixed Signal FPGAs. In addition, all instances of programmable system chip were changed to mixed signal FPGA.	N/A		
Advance v1.4 (July 2008)	In Table 3-8 · Quiescent Supply Current Characteristics (IDDQ)1, footnote references were updated for I_{DC2} and I_{DC3} . Footnote 3 and 4 were updated and footnote 5 is new.	3-11		
Advance v1.3 (July 2008)	The "ADC Description" section was significantly updated. Please review carefully.	2-102		
Advance v1.2	Table 2-25 • Flash Memory Block Timing was significantly updated.	2-55		
(May 2008)	The "V _{AREF} Analog Reference Voltage" pin description section was significantly update. Please review it carefully.			
	Table 2-45 • ADC Interface Timing was significantly updated.	2-110		
	Table 2-56 • Direct Analog Input Switch Control Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$) was significantly updated.			
	The following sentence was deleted from the "Voltage Monitor" section:	2-86		
	The Analog Quad inputs are tolerant up to 12 V + 10%.			
	The "180-Pin QFN" figure was updated. D1 to D4 are new and the figure was changed to bottom view. The note below the figure is new.			
Advance v1.1	The following text was incorrect and therefore deleted:	2-204		
(May 2008)	VCC33A Analog Power Filter			
	Analog power pin for the analog power supply low-pass filter. An external 100 pF capacitor should be connected between this pin and ground.			
	There is still a description of V _{CC33A} on page 2-224.			

Revision	Changes	Page
Advance v0.5	The low power modes of operation were updated and clarified.	
(June 2006)	The AFS1500 digital I/O count was updated in Table 1 • Fusion Family.	i
	The AFS1500 digital I/O count was updated in the "Package I/Os: Single-/Double- Ended (Analog)" table.	ii
	The "Voltage Regulator Power Supply Monitor (VRPSM)" was updated.	
	Figure 2-45 • FlashROM Timing Diagram was updated.	2-53
	The "256-Pin FBGA" table for the AFS1500 is new.	
Advance v0.4 (April 2006)	The G was moved in the "Product Ordering Codes" section.	III
Advance v0.3	The "Features and Benefits" section was updated.	
April 2006)	The "Fusion Family" table was updated.	
	The "Package I/Os: Single-/Double-Ended (Analog)" table was updated.	
	The "Product Ordering Codes" table was updated.	
	The "Temperature Grade Offerings" table was updated.	
	The "General Description" section was updated to include ARM information.	
	Figure 2-46 • FlashROM Timing Diagram was updated.	
	The "FlashROM" section was updated.	
	The "RESET" section was updated.	
	The "RESET" section was updated.	
	Figure 2-27 · Real-Time Counter System was updated.	
	Table 2-19 • Flash Memory Block Pin Names was updated.	
	Figure 2-33 • Flash Memory Block Diagram was updated to include AUX block information.	2-45
	Figure 2-34 • Flash Memory Block Organization was updated to include AUX block information.	2-46
	The note in the "Program Operation" section was updated.	2-48
	Figure 2-76 • Gate Driver Example was updated.	2-95
	The "Analog Quad ACM Description" section was updated.	2-130
	Information about the maximum pad input frequency was added to the "Gate Driver" section.	
	Figure 2-65 • Analog Block Macro was updated.	2-81
	Figure 2-65 • Analog Block Macro was updated.	
	The "Analog Quad" section was updated.	
	The "Voltage Monitor" section was updated.	
	The "Direct Digital Input" section was updated.	
	The "Current Monitor" section was updated.	2-90
	Information about the maximum pad input frequency was added to the "Gate Driver" section.	2-94