

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	172
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1afs600-fg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Fusion Device Family Overview

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User Guide* for more information.

Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.

The I/Os are controlled by the JTAG Boundary Scan register during programming, except for the analog pins (AC, AT and AV). The Boundary Scan register of the AG pin can be used to enable/disable the gate driver in software v9.0.

- 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
- 2. From the FlashPro GUI, click **PDB Configuration**. A FlashPoint Programming File Generator window appears.
- Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
- 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-3).
- Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:

1 - I/O is set to drive out logic High

0 – I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

Port Name	Macro Cell	Pin Number	1/O State (Output Only)
BIST	ADLIB:INBUF	T2	1
BYPASS_IO	ADLIB:INBUF	К1	1
CLK	ADLIB:INBUF	B1	1
ENOUT	ADLIB:INBUF	J16	1
LED	ADLIB:OUTBUF	M3	0
MONITOR[0]	ADLIB:OUTBUF	B5	0
MONITOR[1]	ADLIB:OUTBUF	C7	Z
MONITOR[2]	ADLIB:OUTBUF	D9	Z
MONITOR[3]	ADLIB:OUTBUF	D7	Z
MONITOR[4]	ADLIB:OUTBUF	A11	Z
OEa	ADLIB:INBUF	E4	Z
OEb	ADLIB:INBUF	F1	Z
OSC_EN	ADLIB:INBUF	К3	Z
PAD[10]	ADLIB:BIBUF_LVCMOS33U	M8	Z
PAD[11]	ADLIB:BIBUF_LVCMOS33D	B7	Z
PAD[12]	ADLIB:BIBUF_LVCMOS33U	D11	Z
PAD[13]	ADLIB:BIBUF_LVCMOS33D	C12	Z
PAD[14]	ADLIB:BIBUF LVCMOS33U	B6	7

Figure 1-3 • I/O States During Programming Window

6. Click **OK** to return to the FlashPoint – Programming File Generator window.

I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

Global Resources (VersaNets)

Fusion devices offer powerful and flexible control of circuit timing through the use of analog circuitry. Each chip has six CCCs. The west CCC also contains a PLL core. In the two larger devices (AFS600 and AFS1500), the west and the east CCCs each contain a PLL. The PLLs include delay lines, a phase shifter (0°, 90°, 180°, 270°), and clock multipliers/dividers. Each CCC has all the circuitry needed for the selection and interconnection of inputs to the VersaNet global network. The east and west CCCs each have access to three VersaNet global lines on each side of the chip (six lines total). The CCCs at the four corners each have access to three quadrant global lines on each quadrant of the chip.

Advantages of the VersaNet Approach

One of the architectural benefits of Fusion is the set of powerful and low-delay VersaNet global networks. Fusion offers six chip (main) global networks that are distributed from the center of the FPGA array (Figure 2-11). In addition, Fusion devices have three regional globals (quadrant globals) in each of the four chip quadrants. Each core VersaTile has access to nine global networks on the device. Each of these networks contains spines and ribs that reach all VersaTiles in all quadrants (Figure 2-12 on page 2-12). This flexible VersaNet global network architecture allows users to map up to 180 different internal/external clocks in a Fusion device. Details on the VersaNet networks are given in Table 2-4 on page 2-12. The flexibility of the Fusion VersaNet global network allows the designer to address several design requirements. User applications that are clock-resource-intensive can easily route external or gated internal clocks using VersaNet global routing networks. Designers can also drastically reduce delay penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global network.

Figure 2-11 • Overview of Fusion VersaNet Global Network

Figure 2-31 • State Diagram for All Different Power Modes

When TRST is 1 or PUB is 0, the 1.5 V voltage regulator is always ON, putting the Fusion device in normal operation at all times. Therefore, when the JTAG port is not in reset, the Fusion device cannot enter sleep mode or standby mode.

To enter standby mode, the Fusion device must first power-up into normal operation. The RTC is enabled through the RTC Control/Status Register described in the "Real-Time Counter (part of AB macro)" section on page 2-33. A match value corresponding to the wake-up time is loaded into the Match Register. The 1.5 V voltage regulator is disabled by setting VRPU to 0 to allow the Fusion device to enter standby mode, when the 1.5 V supply is off but the RTC remains on.

Device Architecture

The following signals are used to configure the FIFO4K18 memory element.

WW and RW

These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 2-33).

TADIE 2-33 · ASDECLINALIO SELLINUS IOI WWWIZ.VI

WW2, WW1, WW0	RW2, RW1, RW0	D×W	
000 000		4k×1	
001	001	2k×2	
010	010	1k×4	
011	011	512×9	
100	100	256×18	
101, 110, 111	101, 110, 111	Reserved	

WBLK and RBLK

These signals are active low and will enable the respective ports when Low. When the RBLK signal is High, the corresponding port's outputs hold the previous value.

WEN and REN

Read and write enables. WEN is active low and REN is active high by default. These signals can be configured as active high or low.

WCLK and RCLK

These are the clock signals for the synchronous read and write operations. These can be driven independently or with the same driver.

RPIPE

This signal is used to specify pipelined read on the output. A Low on RPIPE indicates a nonpipelined read, and the data appears on the output in the same clock cycle. A High indicates a pipelined read, and data appears on the output in the next clock cycle.

RESET

This active low signal resets the output to zero when asserted. It resets the FIFO counters. It also sets all the RD pins Low, the FULL and AFULL pins Low, and the EMPTY and AEMPTY pins High (Table 2-34).

Table 2-34 • Input Data Signal Usage for Different Aspect Ratios

D×W	WD/RD Unused
4k×1	WD[17:1], RD[17:1]
2k×2	WD[17:2], RD[17:2]
1k×4	WD[17:4], RD[17:4]
512×9	WD[17:9], RD[17:9]
256×18	-

WD

This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data width less than 18 is specified, unused higher-order signals must be grounded (Table 2-34).

RD

This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD bus, high-order bits become unusable if the data width is less than 18. The output data on unused pins is undefined (Table 2-34).

	VAREF		
	ADCGNDREF		
	AV0	DAVOUT0	
	AC0	DACOUT0	
	ΔΤΟ		
	•	DAIOUIU	
	• • •		
	AV9	DAVOUT9	
	AC9	DACOU19	
	AT9	DATOUT9	
	ATRETURN01		
	•	AG0	
	Å TRETURN9	AG1	
	DENAV0	•	
		<u>م</u>	
		A09	
	DEINATU		
	•		
	DENAV0		
	DENAC0		
	DENAT0		
	CMSTB0		
	•		
	ĊSMTB9		
	GDONO		
	CDON0		
	GDON9		
	IMSTBO		
	•		
	TMSTB9		
	MODE[3:0]	BUSY	
	TVC[7:0]	CALIBRATE	
	STC[7:0]	DATAVALID	
	CHNUMBER[4:0]	SAMPLE	
	TMSTINT	RESULTI11:01	
	ADCSTART	RTCMATCH	
	PWRDWN	RICXILSEL	
	ADCRESET	RTCPSMMATCH	
	RTCCLK		
	SYSCLK		
	ACMIVEN	ACMRDATA[7:0]	
<u> </u>	ACMRESET		
	ACMWDATA		
	ACMADDR		
	ACMCLK		
	AE	3	

Figure 2-64 • Analog Block Macro

Intra-Conversion

Performing a conversion during power-up calibration is possible but should be avoided, since the performance is not guaranteed, as shown in Table 2-49 on page 2-117. This is described as intra-conversion. Figure 2-92 on page 2-113 shows intra-conversion, (conversion that starts during power-up calibration).

Injected Conversion

A conversion can be interrupted by another conversion. Before the current conversion is finished, a second conversion can be started by issuing a pulse on signal ADCSTART. When a second conversion is issued before the current conversion is completed, the current conversion would be dropped and the ADC would start the second conversion on the rising edge of the SYSCLK. This is known as injected conversion. Since the ADC is synchronous, the minimum time to issue a second conversion is two clock cycles of SYSCLK after the previous one. Figure 2-93 on page 2-113 shows injected conversion, (conversion that starts before a previously started conversion is finished). The total time for calibration still remains 3,840 ADCCLK cycles.

ADC Example

This example shows how to choose the correct settings to achieve the fastest sample time in 10-bit mode for a system that runs at 66 MHz. Assume the acquisition times defined in Table 2-44 on page 2-108 for 10-bit mode, which gives 0.549 µs as a minimum hold time.

The period of SYSCLK: $t_{SYSCLK} = 1/66$ MHz = 0.015 μ s

Choosing TVC between 1 and 33 will meet the maximum and minimum period for the ADCCLK requirement. A higher TVC leads to a higher ADCCLK period.

The minimum TVC is chosen so that $t_{distrib}$ and $t_{post-cal}$ can be run faster. The period of ADCCLK with a TVC of 1 can be computed by EQ 24.

$$t_{ADCCLK} = 4 \times (1 + TVC) \times t_{SYSCLK} = 4 \times (1 + 1) \times 0.015 \ \mu s = 0.12 \ \mu s$$

EQ 24

The STC value can now be computed by using the minimum sample/hold time from Table 2-44 on page 2-108, as shown in EQ 25.

STC =
$$\frac{t_{sample}}{t_{ADCCLK}} - 2 = \frac{0.549 \ \mu s}{0.12 \ \mu s} - 2 = 4.575 - 2 = 2.575$$

EQ 25

You must round up to 3 to accommodate the minimum sample time requirement. The actual sample time, t_{sample} , with an STC of 3, is now equal to 0.6 μ s, as shown in EQ 26

$$t_{sample} = (2 + STC) \times t_{ADCCLK} = (2 + 3) \times t_{ADCCLK} = 5 \times 0.12 \ \mu s = 0.6 \ \mu s$$

EQ 26

Microsemi recommends post-calibration for temperature drift over time, so post-calibration is enabled. The post-calibration time, $t_{post-cal}$, can be computed by EQ 27. The post-calibration time is 0.24 µs.

$$t_{post-cal} = 2 \times t_{ADCCLK} = 0.24 \ \mu s$$

EQ 27

The distribution time, $t_{distrib}$, is equal to 1.2 µs and can be computed as shown in EQ 28 (N is number of bits, referring back to EQ 8 on page 2-94).

$$_{\text{distrib}} = N \times t_{\text{ADCCLK}} = 10 \times 0.12 = 1.2 \, \mu \text{s}$$

t

EQ 28

The total conversion time can now be summated, as shown in EQ 29 (referring to EQ 23 on page 2-109).

 $t_{sync_read} + t_{sample} + t_{distrib} + t_{post-cal} + t_{sync_write} = (0.015 + 0.60 + 1.2 + 0.24 + 0.015) \ \mu s = 2.07 \ \mu s = EQ \ 29$

Figure 2-99 • Fusion Pro I/O Bank Detail Showing VREF Minibanks (north side of AFS600 and AFS1500)

Table 2-67 • I/O Standards	Supported by	Bank Type
----------------------------	--------------	-----------

I/O Bank	Single-Ended I/O Standards	Differential I/O Standards	Voltage-Referenced	Hot- Swap
Standard I/O	LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V / 1.8 V / 1.5 V, LVCMOS 2.5/5.0 V	-	_	Yes
Advanced I/O	LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V / 1.8 V / 1.5 V, LVCMOS 2.5/5.0 V, 3.3 V PCI / 3.3 V PCI-X	LVPECL and LVDS	-	-
Pro I/O	LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V / 1.8 V / 1.5 V, LVCMOS 2.5/5.0 V, 3.3 V PCI / 3.3 V PCI-X	LVPECL and LVDS	GTL+2.5 V / 3.3 V, GTL 2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3 Class I and II	Yes

Figure 2-102 • DDR Output Support in Fusion Devices

Fusion Family of Mixed Signal FPGAs

Figure 2-117 • Output Buffer Model and Delays (example)

Device Architecture

Table 2-96 • I/O Output Buffer Maximum Resistances ¹ (continued)

andard Drive Strength		R _{PULL-DOWN} (ohms) ²	R _{PULL-UP} (ohms) ³
Applicable to Standard I/O Bank	s		
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
1.5 V LVCMOS	2 mA	200	224

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/soc/techdocs/models/ibis.html.

2. R_(PULL-DOWN-MAX) = VOLspec / I_{OLspec}

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

Table 2-97 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

R _(WEAK PULL-UP) 1 (ohms)		PULL-UP) ms)	R _{(WEAK PUI} (ohr	PULL-DOWN) ² hms)	
VCCI	Min.	Max.	Min.	Max.	
3.3 V	10 k	45 k	10 k	45 k	
2.5 V	11 k	55 k	12 k	74 k	
1.8 V	18 k	70 k	17 k	110 k	
1.5 V	19 k	90 k	19 k	140 k	

Notes:

R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_{WEAK PULL-UP-MIN}
 R_(WEAK PULL-DOWN-MAX) = VOLspec / I_{WEAK PULL-DOWN-MIN}

Differential I/O Characteristics

Configuration of the I/O modules as a differential pair is handled by the Microsemi Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with these standards.

LVDS

Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a high-speed differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-134. The building blocks of the LVDS transmitter–receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Figure 2-134 • LVDS	Circuit Diagram and	I Board-Level Implementat	ion
---------------------	----------------------------	---------------------------	-----

Table 2-168 • I	Minimum and	Maximum	DC Input a	and Output Levels
-----------------	-------------	---------	------------	-------------------

DC Parameter	Description	Min.	Тур.	Max.	Units
VCCI	Supply Voltage	2.375	2.5	2.625	V
VOL	Output Low Voltage	0.9	1.075	1.25	V
VOH	Input High Voltage	1.25	1.425	1.6	V
IOL ¹	Output Low Voltage	0.65	0.91	1.16	mA
IOH ¹	Output High Voltage	0.65	0.91	1.16	mA
VI	Input Voltage	0		2.925	V
IIL ^{2,3}	Input Low Voltage			10	μA
IIH ^{2,4}	Input High Voltage			10	μA
VODIFF	Differential Output Voltage	250	350	450	mV
VOCM	Output Common Mode Voltage	1.125	1.25	1.375	V
VICM	Input Common Mode Voltage	0.05	1.25	2.35	V
VIDIFF	Input Differential Voltage	100	350		mV

Notes:

- 1. IOL/IOH defined by VODIFF/(Resistor Network)
- 2. Currents are measured at 85°C junction temperature.
- 3. ILL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

ISP

Fusion devices support IEEE 1532 ISP via JTAG and require a single VPUMP voltage of 3.3 V during programming. In addition, programming via a microcontroller in a target system can be achieved. Refer to the standard or the "In-System Programming (ISP) of Microsemi's Low Power Flash Devices Using FlashPro4/3/3X" chapter of the *Fusion FPGA Fabric User's Guide* for more details.

JTAG IEEE 1532

Programming with IEEE 1532

Fusion devices support the JTAG-based IEEE1532 standard for ISP. As part of this support, when a Fusion device is in an unprogrammed state, all user I/O pins are disabled. This is achieved by keeping the global IO_EN signal deactivated, which also has the effect of disabling the input buffers. Consequently, the SAMPLE instruction will have no effect while the Fusion device is in this unprogrammed state—different behavior from that of the ProASICPLUS® device family. This is done because SAMPLE is defined in the IEEE1532 specification as a noninvasive instruction. If the input buffers were to be enabled by SAMPLE temporarily turning on the I/Os, then it would not truly be a noninvasive instruction. Refer to the standard or the "In-System Programming (ISP) of Microsemi's Low Power Flash Devices Using FlashPro4/3/3X" chapter of the *Fusion FPGA Fabric User's Guide* for more details.

Boundary Scan

Fusion devices are compatible with IEEE Standard 1149.1, which defines a hardware architecture and the set of mechanisms for boundary scan testing. The basic Fusion boundary scan logic circuit is composed of the test access port (TAP) controller, test data registers, and instruction register (Figure 2-146 on page 2-230). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS) and the optional IDCODE instruction (Table 2-185 on page 2-230).

Each test section is accessed through the TAP, which has five associated pins: TCK (test clock input), TDI, TDO (test data input and output), TMS (test mode selector), and TRST (test reset input). TMS, TDI, and TRST are equipped with pull-up resistors to ensure proper operation when no input data is supplied to them. These pins are dedicated for boundary scan test usage. Refer to the "JTAG Pins" section on page 2-226 for pull-up/-down recommendations for TDO and TCK pins. The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 2-146 on page 2-230. The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state.

VJTAG	Tie-Off Resistance*
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Table 2-184 • TRST and TCK Pull-Down Recommendations

Note: **Equivalent parallel resistance if more than one device is on JTAG chain.*

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain High for five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-Logic-Reset state.

Fusion devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register cells, each with a serial-in, serial-out, parallel-in, and parallel-out pin.

The serial pins are used to serially connect all the boundary scan register cells in a device into a boundary scan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are

connected to the internal core logic I/O tile and the input, output, and control ports of an I/O buffer to capture and load data into the register to control or observe the logic state of each I/O.

Figure 2-146 • Boundary Scan Chain in Fusion

Table 2-185 • Boundary Scan Opcodes

	Hex Opcode
EXTEST	00
HIGHZ	07
USERCODE	0E
SAMPLE/PRELOAD	01
IDCODE	0F
CLAMP	05
BYPASS	FF

Device Architecture

IEEE 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/Os" section on page 2-132 for more details.

Timing Characteristics

Table 2-186 • JTAG 1532

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{DISU}	Test Data Input Setup Time	0.50	0.57	0.67	ns
t _{DIHD}	Test Data Input Hold Time	1.00	1.13	1.33	ns
t _{TMSSU}	Test Mode Select Setup Time	0.50	0.57	0.67	ns
t _{TMDHD}	Test Mode Select Hold Time	1.00	1.13	1.33	ns
t _{TCK2Q}	Clock to Q (data out)	6.00	6.80	8.00	ns
t _{RSTB2Q}	Reset to Q (data out)	20.00	22.67	26.67	ns
F _{TCKMAX}	TCK Maximum Frequency	25.00	22.00	19.00	MHz
t _{TRSTREM}	ResetB Removal Time	0.00	0.00	0.00	ns
t _{TRSTREC}	ResetB Recovery Time	0.20	0.23	0.27	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	TBD	TBD	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

3 – DC and Power Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 3-1 may cause permanent damage to the device.

Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating ranges specified in Table 3-2 on page 3-3.

Symbol	Parameter	Commercial	Industrial	Units	
VCC	DC core supply voltage	-0.3 to 1.65	–0.3 to 1.65	V	
VJTAG	JTAG DC voltage	-0.3 to 3.75	-0.3 to 3.75	V	
VPUMP	Programming voltage	-0.3 to 3.75	-0.3 to 3.75	V	
VCCPLL	Analog power supply (PLL)	-0.3 to 1.65	-0.3 to 1.65	V	
VCCI	DC I/O output buffer supply voltage	-0.3 to 3.75	-0.3 to 3.75	V	
VI	I/O input voltage ¹	 -0.3 V to 3.6 V (when I/O hot insertion mode is enabled) -0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled) 			
VCC33A	+3.3 V power supply	–0.3 to 3.75 ²	–0.3 to 3.75 ²	V	
VCC33PMP	+3.3 V power supply	-0.3 to 3.75 ²	-0.3 to 3.75 ²	V	
VAREF	Voltage reference for ADC	-0.3 to 3.75	-0.3 to 3.75	V	
VCC15A	Digital power supply for the analog system	-0.3 to 1.65	–0.3 to 1.65	V	
VCCNVM	Embedded flash power supply	-0.3 to 1.65	-0.3 to 1.65	V	
VCCOSC	Oscillator power supply	-0.3 to 3.75	-0.3 to 3.75	V	

Table 3-1 • Absolute Maximum Ratings

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 3-4 on page 3-4.

2. Analog data not valid beyond 3.65 V.

3. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.

4. For flash programming and retention maximum limits, refer to Table 3-5 on page 3-5. For recommended operating limits refer to Table 3-2 on page 3-3.

Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings¹ (continued)

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC8 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Differential				•
LVDS	-	2.5	7.74	88.92
LVPECL	_	3.3	19.54	166.52
Applicable to Standard I/O Bank	S			
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	431.08
2.5 V LVCMOS	35	2.5	-	247.36
1.8 V LVCMOS	35	1.8	-	128.46
1.5 V LVCMOS (JESD8-11)	35	1.5	-	89.46

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.

2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

Dynamic Power Consumption of Various Internal Resources

Table 3-14 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices

		Power Supply Dyn			Device-S mamic Co			
Parameter	Definition	Name	Setting	AFS1500	AFS600	AFS250	AFS090	Units
PAC1	Clock contribution of a Global Rib	VCC	1.5 V	14.5	12.8	11	11	µW/MHz
PAC2	Clock contribution of a Global Spine	VCC	1.5 V	2.5	1.9	1.6	0.8	µW/MHz
PAC3	Clock contribution of a VersaTile row	VCC	1.5 V		0.8	1		µW/MHz
PAC4	Clock contribution of a VersaTile used as a sequential module	VCC	1.5 V		0.1	1		µW/MHz
PAC5	First contribution of a VersaTile used as a sequential module	VCC	1.5 V		0.0	7		µW/MHz
PAC6	Second contribution of a VersaTile used as a sequential module	VCC	1.5 V		0.2	9		µW/MHz
PAC7	Contribution of a VersaTile used as a combinatorial module	VCC	1.5 V		0.2	9		µW/MHz
PAC8	Average contribution of a routing net	VCC	1.5 V	0.70			µW/MHz	
PAC9	Contribution of an I/O input pin (standard dependent)	VCCI	See Table 3-12 on page 3-18					
PAC10	Contribution of an I/O output pin (standard dependent)	VCCI		See	Table 3-13	on page 3	-20	
PAC11	Average contribution of a RAM block during a read operation	VCC	1.5 V		25	5		µW/MHz
PAC12	Average contribution of a RAM block during a write operation	VCC	1.5 V		30)		µW/MHz
PAC13	Dynamic Contribution for PLL	VCC	1.5 V		2.6	6		µW/MHz
PAC15	Contribution of NVM block during a read operation (F < $33MHz$)	VCC	1.5 V		35	8		µW/MHz
PAC16	1st contribution of NVM block during a read operation (F > 33 MHz)	VCC	1.5 V	12.88		mW		
PAC17	2nd contribution of NVM block during a read operation (F > 33 MHz)	VCC	1.5 V	1.5 V 4.8			µW/MHz	
PAC18	Crystal Oscillator contribution	VCC33A	3.3 V		0.6	3		mW
PAC19	RC Oscillator contribution	VCC33A	3.3 V		3.3	3		mW
PAC20	Analog Block dynamic power contribution of ADC	VCC	1.5 V		3			mW

Microsemi

Package Pin Assignments

FG676			FG676	FG676		
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	
A1	NC	AA11	AV2	AB21	PTBASE	
A2	GND	AA12	GNDA	AB22	GNDNVM	
A3	NC	AA13	AV3	AB23	VCCNVM	
A4	NC	AA14	AV6	AB24	VPUMP	
A5	GND	AA15	GNDA	AB25	NC	
A6	NC	AA16	AV7	AB26	GND	
A7	NC	AA17	AV8	AC1	NC	
A8	GND	AA18	GNDA	AC2	NC	
A9	IO17NDB0V2	AA19	AV9	AC3	NC	
A10	IO17PDB0V2	AA20	VCCIB2	AC4	GND	
A11	GND	AA21	IO68PPB2V0	AC5	VCCIB4	
A12	IO18NDB0V2	AA22	ТСК	AC6	VCCIB4	
A13	IO18PDB0V2	AA23	GND	AC7	PCAP	
A14	IO20NDB0V2	AA24	IO76PPB2V0	AC8	AG0	
A15	IO20PDB0V2	AA25	VCCIB2	AC9	GNDA	
A16	GND	AA26	NC	AC10	AG1	
A17	IO21PDB0V2	AB1	GND	AC11	AG2	
A18	IO21NDB0V2	AB2	NC	AC12	GNDA	
A19	GND	AB3	GEC2/IO87PDB4V0	AC13	AG3	
A20	IO39NDB1V2	AB4	IO87NDB4V0	AC14	AG6	
A21	IO39PDB1V2	AB5	GEA2/IO85PDB4V0	AC15	GNDA	
A22	GND	AB6	IO85NDB4V0	AC16	AG7	
A23	NC	AB7	NCAP	AC17	AG8	
A24	NC	AB8	AC0	AC18	GNDA	
A25	GND	AB9	VCC33A	AC19	AG9	
A26	NC	AB10	AC1	AC20	VAREF	
AA1	NC	AB11	AC2	AC21	VCCIB2	
AA2	VCCIB4	AB12	VCC33A	AC22	PTEM	
AA3	IO93PDB4V0	AB13	AC3	AC23	GND	
AA4	GND	AB14	AC6	AC24	NC	
AA5	IO93NDB4V0	AB15	VCC33A	AC25	NC	
AA6	GEB2/IO86PDB4V0	AB16	AC7	AC26	NC	
AA7	IO86NDB4V0	AB17	AC8	AD1	NC	
AA8	AV0	AB18	VCC33A	AD2	NC	
AA9	GNDA	AB19	AC9	AD3	GND	
AA10	AV1	AB20	ADCGNDREF	AD4	NC	

Fusion Family of Mixed Signal FPGAs

	FG676		FG676	FG676	
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function
G13	IO22NDB1V0	H23	IO50NDB2V0	K7	IO114PDB4V0
G14	IO22PDB1V0	H24	IO51PDB2V0	K8	IO117NDB4V0
G15	GND	H25	NC	K9	GND
G16	IO32PPB1V1	H26	GND	K10	VCC
G17	IO36NPB1V2	J1	NC	K11	VCCIB0
G18	VCCIB1	J2	VCCIB4	K12	GND
G19	GND	J3	IO115PDB4V0	K13	VCCIB0
G20	IO47NPB2V0	J4	GND	K14	VCCIB1
G21	IO49PDB2V0	J5	IO116NDB4V0	K15	GND
G22	VCCIB2	J6	IO116PDB4V0	K16	VCCIB1
G23	IO46NDB2V0	J7	VCCIB4	K17	GND
G24	GBC2/IO46PDB2V0	J8	IO117PDB4V0	K18	GND
G25	IO48NPB2V0	J9	VCCIB4	K19	IO53NDB2V0
G26	NC	J10	GND	K20	IO57PDB2V0
H1	GND	J11	IO06NDB0V1	K21	GCA2/IO59PDB2V0
H2	NC	J12	IO06PDB0V1	K22	VCCIB2
H3	IO118NDB4V0	J13	IO16NDB0V2	K23	IO54NDB2V0
H4	IO118PDB4V0	J14	IO16PDB0V2	K24	IO54PDB2V0
H5	IO119NPB4V0	J15	IO28NDB1V1	K25	NC
H6	IO124NDB4V0	J16	IO28PDB1V1	K26	NC
H7	GND	J17	GND	L1	GND
H8	VCOMPLA	J18	IO38PPB1V2	L2	NC
H9	VCCPLA	J19	IO53PDB2V0	L3	IO112PPB4V0
H10	VCCIB0	J20	VCCIB2	L4	IO113NDB4V0
H11	IO12NDB0V1	J21	IO52PDB2V0	L5	GFB2/IO109PDB4V0
H12	IO12PDB0V1	J22	IO52NDB2V0	L6	GFA2/IO110PDB4V0
H13	VCCIB0	J23	GND	L7	IO112NPB4V0
H14	VCCIB1	J24	IO51NDB2V0	L8	IO104PDB4V0
H15	IO30NDB1V1	J25	VCCIB2	L9	IO111PDB4V0
H16	IO30PDB1V1	J26	NC	L10	VCCIB4
H17	VCCIB1	K1	NC	L11	GND
H18	IO36PPB1V2	K2	NC	L12	VCC
H19	IO38NPB1V2	К3	IO115NDB4V0	L13	GND
H20	GND	K4	IO113PDB4V0	L14	VCC
H21	IO49NDB2V0	K5	VCCIB4	L15	GND
H22	IO50PDB2V0	K6	IO114NDB4V0	L16	VCC

Fusion Family of Mixed Signal FPGAs

Revision	Changes	Page		
Advance 1.0 (continued)	In Table 2-47 • ADC Characteristics in Direct Input Mode, the commercial conditions were updated and note 2 is new.	2-121		
	The V_{CC33ACAP} signal name was changed to "XTAL1 Crystal Oscillator Circuit Input".	2-228		
	Table 2-48 • Uncalibrated Analog Channel Accuracy* is new.	2-123		
	Table 2-49 • Calibrated Analog Channel Accuracy ^{1,2,3} is new.	2-124		
	Table 2-50 • Analog Channel Accuracy: Monitoring Standard Positive Voltages is new.	2-125		
	In Table 2-57 • Voltage Polarity Control Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$)*, the following I/O Bank names were changed:	2-131		
	Hot-Swap changed to Standard			
	LVDS changed to Advanced			
	In Table 2-58 • Prescaler Op Amp Power-Down Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$), the following I/O Bank names were changed:	2-132		
	Hot-Swap changed to Standard			
	In the title of Table 2.64 a V/O Standarda Supported by Bank Type, IV/DS V/O was	0 104		
	changed to Advanced I/O.	2-134		
	The title was changed from "Fusion Standard, LVDS, and Standard plus Hot-Swap I/O" to Table 2-68 • Fusion Standard and Advanced I/O Features. In addition, the table headings were all updated. The heading used to be Standard and LVDS I/O and was changed to Advanced I/O. Standard Hot-Swap was changed to just Standard.	2-136		
	 This sentence was deleted from the "Slew Rate Control and Drive Strength" section: The Standard hot-swap I/Os do not support slew rate control. In addition, these references were changed: From: Fusion hot-swap I/O (Table 2-69 on page 2-122) To: Fusion Standard I/O From: Fusion LVDS I/O (Table 2-70 on page 2-122) To: Fusion Advanced I/O 	2-152		
	The "Cold-Sparing Support" section was significantly updated.	2-143		
	In the title of Table 2-75 • Fusion Standard I/O Standards—OUT_DRIVE Settings, Hot-Swap was changed to Standard.	2-153		
	In the title of Table 2-76 • Fusion Advanced I/O Standards—SLEW and OUT_DRIVE Settings, LVDS was changed to Advanced.	2-153		
	In the title of Table 2-81 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications, LVDS was changed to Advanced.	2-157		
	In Figure 2-111 • Naming Conventions of Fusion Devices with Three Digital I/O Banks and Figure 2-112 • Naming Conventions of Fusion Devices with Four I/O Banks the following names were changed: Hot-Swap changed to Standard	2-160		
	LVDS changed to Advanced			
	The Figure 2-113 • Timing Model was updated.	2-161		
	In the notes for Table 2-86 \bullet Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions, T_J was changed to T_A.			