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Fusion Device Family Overview
Specifying I/O States During Programming
You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for
PDB files generated from Designer v8.5 or greater. See the FlashPro User Guide for more information.

Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have
limited display of Pin Numbers only.

The I/Os are controlled by the JTAG Boundary Scan register during programming, except for the analog
pins (AC, AT and AV). The Boundary Scan register of the AG pin can be used to enable/disable the gate
driver in software v9.0.

1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during
programming.

2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator
window appears.

3. Click the Specify I/O States During Programming button to display the Specify I/O States
During Programming dialog box.

4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.
Select the I/Os you wish to modify (Figure 1-3).

5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings
for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state
settings: 

1 – I/O is set to drive out logic High

0 – I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated 

6. Click OK to return to the FlashPoint – Programming File Generator window.

I/O States During programming are saved to the ADB and resulting programming files after completing
programming file generation.

Figure 1-3 • I/O States During Programming Window
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Device Architecture
Global Resources (VersaNets)
Fusion devices offer powerful and flexible control of circuit timing through the use of analog circuitry.
Each chip has six CCCs. The west CCC also contains a PLL core. In the two larger devices (AFS600 and
AFS1500), the west and the east CCCs each contain a PLL. The PLLs include delay lines, a phase
shifter (0°, 90°, 180°, 270°), and clock multipliers/dividers. Each CCC has all the circuitry needed for the
selection and interconnection of inputs to the VersaNet global network. The east and west CCCs each
have access to three VersaNet global lines on each side of the chip (six lines total). The CCCs at the four
corners each have access to three quadrant global lines on each quadrant of the chip.

Advantages of the VersaNet Approach
One of the architectural benefits of Fusion is the set of powerful and low-delay VersaNet global networks.
Fusion offers six chip (main) global networks that are distributed from the center of the FPGA array
(Figure 2-11). In addition, Fusion devices have three regional globals (quadrant globals) in each of the
four chip quadrants. Each core VersaTile has access to nine global network resources: three quadrant
and six chip (main) global networks. There are a total of 18 global networks on the device. Each of these
networks contains spines and ribs that reach all VersaTiles in all quadrants (Figure 2-12 on page 2-12).
This flexible VersaNet global network architecture allows users to map up to 180 different
internal/external clocks in a Fusion device. Details on the VersaNet networks are given in Table 2-4 on
page 2-12. The flexibility of the Fusion VersaNet global network allows the designer to address several
design requirements. User applications that are clock-resource-intensive can easily route external or
gated internal clocks using VersaNet global routing networks. Designers can also drastically reduce
delay penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global
network.

Figure 2-11 • Overview of Fusion VersaNet Global Network 
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Device Architecture
When TRST is 1 or PUB is 0, the 1.5 V voltage regulator is always ON, putting the Fusion device in
normal operation at all times. Therefore, when the JTAG port is not in reset, the Fusion device cannot
enter sleep mode or standby mode. 

To enter standby mode, the Fusion device must first power-up into normal operation. The RTC is enabled
through the RTC Control/Status Register described in the "Real-Time Counter (part of AB macro)"
section on page 2-33. A match value corresponding to the wake-up time is loaded into the Match
Register. The 1.5 V voltage regulator is disabled by setting VRPU to 0 to allow the Fusion device to enter
standby mode, when the 1.5 V supply is off but the RTC remains on.

Note: * To enter and exit standby mode without any external stimulus on PUB or TRST, the vr_en_mat in the
CTRL_STAT register must also be set to 1, so that RTCPSMMATCH will assert when a match occurs; hence the
device exits standby mode.

Figure 2-31 • State Diagram for All Different Power Modes
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or PUB = 0
or TRST = 1
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Device Architecture
The following signals are used to configure the FIFO4K18 memory element.

WW and RW
These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 2-33).

WBLK and RBLK
These signals are active low and will enable the respective ports when Low. When the RBLK signal is
High, the corresponding port’s outputs hold the previous value.

WEN and REN
Read and write enables. WEN is active low and REN is active high by default. These signals can be
configured as active high or low.

WCLK and RCLK
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver.

RPIPE
This signal is used to specify pipelined read on the output. A Low on RPIPE indicates a nonpipelined
read, and the data appears on the output in the same clock cycle. A High indicates a pipelined read, and
data appears on the output in the next clock cycle.

RESET
This active low signal resets the output to zero when asserted. It resets the FIFO counters. It also sets all
the RD pins Low, the FULL and AFULL pins Low, and the EMPTY and AEMPTY pins High (Table 2-34). 

WD
This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data
width less than 18 is specified, unused higher-order signals must be grounded (Table 2-34). 

RD
This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD
bus, high-order bits become unusable if the data width is less than 18. The output data on unused pins is
undefined (Table 2-34).

Table 2-33 • Aspect Ratio Settings for WW[2:0]

WW2, WW1, WW0 RW2, RW1, RW0 D×W

000 000 4k×1

001 001 2k×2

010 010 1k×4 

011 011 512×9

100 100 256×18

101, 110, 111 101, 110, 111 Reserved

Table 2-34 • Input Data Signal Usage for Different Aspect Ratios

D×W WD/RD Unused

4k×1 WD[17:1], RD[17:1]

2k×2 WD[17:2], RD[17:2]

1k×4 WD[17:4], RD[17:4]

512×9 WD[17:9], RD[17:9]

256×18 –
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Device Architecture
Figure 2-64 • Analog Block Macro
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Fusion Family of Mixed Signal FPGAs
Intra-Conversion
Performing a conversion during power-up calibration is possible but should be avoided, since the
performance is not guaranteed, as shown in Table 2-49 on page 2-117. This is described as 
intra-conversion. Figure 2-92 on page 2-113 shows intra-conversion, (conversion that starts during
power-up calibration).

Injected Conversion
A conversion can be interrupted by another conversion. Before the current conversion is finished, a
second conversion can be started by issuing a pulse on signal ADCSTART. When a second conversion
is issued before the current conversion is completed, the current conversion would be dropped and the
ADC would start the second conversion on the rising edge of the SYSCLK. This is known as injected
conversion. Since the ADC is synchronous, the minimum time to issue a second conversion is two clock
cycles of SYSCLK after the previous one. Figure 2-93 on page 2-113 shows injected conversion,
(conversion that starts before a previously started conversion is finished). The total time for calibration
still remains 3,840 ADCCLK cycles.

ADC Example
This example shows how to choose the correct settings to achieve the fastest sample time in 10-bit mode
for a system that runs at 66 MHz. Assume the acquisition times defined in Table 2-44 on page 2-108 for
10-bit mode, which gives 0.549 µs as a minimum hold time.

The period of SYSCLK: tSYSCLK = 1/66 MHz = 0.015 µs

Choosing TVC between 1 and 33 will meet the maximum and minimum period for the ADCCLK
requirement. A higher TVC leads to a higher ADCCLK period. 

The minimum TVC is chosen so that tdistrib and tpost-cal can be run faster. The period of ADCCLK with a
TVC of 1 can be computed by EQ 24.

EQ 24

The STC value can now be computed by using the minimum sample/hold time from Table 2-44 on
page 2-108, as shown in EQ 25. 

EQ 25

You must round up to 3 to accommodate the minimum sample time requirement. The actual sample time,
tsample, with an STC of 3, is now equal to 0.6 µs, as shown in EQ 26

EQ 26

Microsemi recommends post-calibration for temperature drift over time, so post-calibration is enabled.

The post-calibration time, tpost-cal, can be computed by EQ 27. The post-calibration time is 0.24 µs.

EQ 27

The distribution time, tdistrib, is equal to 1.2 µs and can be computed as shown in EQ 28 (N is number of
bits, referring back to EQ 8 on page 2-94).

EQ 28

The total conversion time can now be summated, as shown in EQ 29 (referring to EQ 23 on page 2-109).

tsync_read + tsample + tdistrib + tpost-cal + tsync_write = (0.015 + 0.60 + 1.2 + 0.24 + 0.015) µs = 2.07 µs

EQ 29

tADCCLK 4 1 TVC+  tSYSCLK 4 1 1+  0.015 µs 0.12 µs= = =

STC
tsample

tADCCLK
-------------------- 2–

0.549 µs
0.12 µs
----------------------- 2– 4.575 2– 2.575= = = =

tsample 2 STC+  tADCCLK 2 3+  tADCCLK 5 0.12 µs 0.6 µs= = = =

tpost-cal 2 tADCCLK 0.24 µs= =

tdistrib N tADCCLK 10 0.12 1.2 µs= = =
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Device Architecture
Figure 2-99 • Fusion Pro I/O Bank Detail Showing VREF Minibanks (north side ofAFS600 and AFS1500)

Table 2-67 • I/O Standards Supported by Bank Type

I/O Bank Single-Ended I/O Standards
Differential I/O

Standards Voltage-Referenced
Hot-

Swap

Standard I/O LVTTL/LVCMOS 3.3 V, LVCMOS 
2.5 V / 1.8 V / 1.5 V, LVCMOS 
2.5/5.0 V

– – Yes

Advanced I/O LVTTL/LVCMOS 3.3 V, LVCMOS 
2.5 V / 1.8 V / 1.5 V, LVCMOS 
2.5/5.0 V, 3.3 V PCI / 3.3 V PCI-X

LVPECL and 
LVDS

– –

Pro I/O LVTTL/LVCMOS 3.3 V, LVCMOS 
2.5 V / 1.8 V / 1.5 V, LVCMOS 
2.5/5.0 V, 3.3 V PCI / 3.3  V PCI-X

LVPECL and 
LVDS

GTL+ 2.5 V / 3.3 V, GTL 2.5 V / 3.3 V, 
HSTL Class I and II, SSTL2 Class I 
and II, SSTL3 Class I and II
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Fusion Family of Mixed Signal FPGAs
Figure 2-102 • DDR Output Support in Fusion Devices
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Fusion Family of Mixed Signal FPGAs
Figure 2-117 • Output Buffer Model and Delays (example)
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Device Architecture
Applicable to Standard I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS 2 mA 100 300

4 mA 100 300

6 mA 50 150

8 mA 50 150

2.5 V LVCMOS 2 mA 100 200

4 mA 100 200

6 mA 50 100

8 mA 50 100

1.8 V LVCMOS 2 mA 200 225

4 mA 100 112

1.5 V LVCMOS 2 mA 200 224

Table 2-97 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values 

VCCI

R(WEAK PULL-UP)
1

(ohms)
R(WEAK PULL-DOWN)

2

(ohms)

Min. Max. Min. Max.

3.3 V 10 k 45 k 10 k 45 k

2.5 V 11 k 55 k 12 k 74 k

1.8 V 18 k 70 k 17 k 110 k

1.5 V 19 k 90 k 19 k 140 k

Notes:

1. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / IWEAK PULL-UP-MIN
2. R(WEAK PULL-DOWN-MAX) = VOLspec / IWEAK PULL-DOWN-MIN

Table 2-96 • I/O Output Buffer Maximum Resistances 1  (continued)

Standard Drive Strength
RPULL-DOWN

(ohms) 2
RPULL-UP
(ohms) 3

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend
on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer
resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website:
http://www.microsemi.com/soc/techdocs/models/ibis.html.

2. R(PULL-DOWN-MAX) = VOLspec / IOLspec

3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec 
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Device Architecture
Differential I/O Characteristics
Configuration of the I/O modules as a differential pair is handled by the Microsemi Designer
software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no
support for bidirectional I/Os or tristates with these standards.

LVDS
Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a high-speed differential I/O standard. It requires
that one data bit be carried through two signal lines, so two pins are needed. It also requires external
resistor termination. 

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-134.
The building blocks of the LVDS transmitter–receiver are one transmitter macro, one receiver macro,
three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three
driver resistors are different from those used in the LVPECL implementation because the output standard
specifications are different.    

Figure 2-134 • LVDS Circuit Diagram and Board-Level Implementation

Table 2-168 • Minimum and Maximum DC Input and Output Levels

DC Parameter Description Min. Typ. Max. Units

VCCI Supply Voltage 2.375  2.5  2.625 V

VOL Output Low Voltage  0.9  1.075  1.25 V

VOH Input High Voltage  1.25  1.425  1.6 V

IOL 1 Output Low Voltage 0.65 0.91 1.16 mA

IOH 1 Output High Voltage 0.65 0.91 1.16 mA

VI Input Voltage  0   2.925 V

IIL 2,3 Input Low Voltage 10 A

IIH 2,4 Input High Voltage 10 A

VODIFF Differential Output Voltage  250  350  450 mV

VOCM Output Common Mode Voltage  1.125  1.25  1.375 V

VICM Input Common Mode Voltage  0.05  1.25  2.35 V

VIDIFF Input Differential Voltage  100  350  mV

Notes:

1. IOL/IOH defined by VODIFF/(Resistor Network)
2. Currents are measured at 85°C junction temperature.  

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
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Device Architecture
ISP
Fusion devices support IEEE 1532 ISP via JTAG and require a single VPUMP voltage of 3.3 V during
programming. In addition, programming via a microcontroller in a target system can be achieved. Refer to
the standard or the "In-System Programming (ISP) of Microsemi's Low Power Flash Devices Using
FlashPro4/3/3X" chapter of the Fusion FPGA Fabric User’s Guide for more details.

JTAG IEEE 1532
Programming with IEEE 1532
Fusion devices support the JTAG-based IEEE1532 standard for ISP. As part of this support, when a
Fusion device is in an unprogrammed state, all user I/O pins are disabled. This is achieved by keeping
the global IO_EN signal deactivated, which also has the effect of disabling the input buffers.
Consequently, the SAMPLE instruction will have no effect while the Fusion device is in this
unprogrammed state—different behavior from that of the ProASICPLUS® device family. This is done
because SAMPLE is defined in the IEEE1532 specification as a noninvasive instruction. If the input
buffers were to be enabled by SAMPLE temporarily turning on the I/Os, then it would not truly be a
noninvasive instruction. Refer to the standard or the "In-System Programming (ISP) of Microsemi's Low
Power Flash Devices Using FlashPro4/3/3X" chapter of the Fusion FPGA Fabric User’s Guide for more
details.

Boundary Scan
Fusion devices are compatible with IEEE Standard 1149.1, which defines a hardware architecture and
the set of mechanisms for boundary scan testing. The basic Fusion boundary scan logic circuit is
composed of the test access port (TAP) controller, test data registers, and instruction register (Figure 2-
146 on page 2-230). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST,
SAMPLE/PRELOAD, and BYPASS) and the optional IDCODE instruction (Table 2-185 on page 2-230).

Each test section is accessed through the TAP, which has five associated pins: TCK (test clock input),
TDI, TDO (test data input and output), TMS (test mode selector), and TRST (test reset input). TMS, TDI,
and TRST are equipped with pull-up resistors to ensure proper operation when no input data is supplied
to them. These pins are dedicated for boundary scan test usage. Refer to the "JTAG Pins" section on
page 2-226 for pull-up/-down recommendations for TDO and TCK pins. The TAP controller is a 4-bit state
machine (16 states) that operates as shown in Figure 2-146 on page 2-230. The 1s and 0s represent the
values that must be present on TMS at a rising edge of TCK for the given state transition to occur. IR and
DR indicate that the instruction register or the data register is operating in that state.

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain High for
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-
Logic-Reset state.

Fusion devices support three types of test data registers: bypass, device identification, and boundary
scan. The bypass register is selected when no other register needs to be accessed in a device. This
speeds up test data transfer to other devices in a test data path. The 32-bit device identification register
is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan register
observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register cells,
each with a serial-in, serial-out, parallel-in, and parallel-out pin.

The serial pins are used to serially connect all the boundary scan register cells in a device into a
boundary scan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are

Table 2-184 • TRST and TCK Pull-Down Recommendations

VJTAG Tie-Off Resistance*

VJTAG at 3.3 V 200  to 1 k 

VJTAG at 2.5 V 200  to 1 k

VJTAG at 1.8 V 500  to 1 k

VJTAG at 1.5 V 500  to 1 k

Note: *Equivalent parallel resistance if more than one device is on JTAG chain.
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Fusion Family of Mixed Signal FPGAs
connected to the internal core logic I/O tile and the input, output, and control ports of an I/O buffer to
capture and load data into the register to control or observe the logic state of each I/O.

Figure 2-146 • Boundary Scan Chain in Fusion

Table 2-185 • Boundary Scan Opcodes
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Device Architecture
IEEE 1532 Characteristics
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to
the corresponding standard selected; refer to the I/O timing characteristics in the "User I/Os" section on
page 2-132 for more details.

Timing Characteristics 

Table 2-186 • JTAG 1532
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tDISU Test Data Input Setup Time 0.50 0.57 0.67 ns

tDIHD Test Data Input Hold Time 1.00 1.13 1.33 ns

tTMSSU Test Mode Select Setup Time 0.50 0.57 0.67 ns

tTMDHD Test Mode Select Hold Time 1.00 1.13 1.33 ns

tTCK2Q Clock to Q (data out) 6.00 6.80 8.00 ns

tRSTB2Q Reset to Q (data out) 20.00 22.67 26.67 ns

FTCKMAX TCK Maximum Frequency 25.00 22.00 19.00 MHz

tTRSTREM ResetB Removal Time 0.00 0.00 0.00 ns

tTRSTREC ResetB Recovery Time 0.20 0.23 0.27 ns

tTRSTMPW ResetB Minimum Pulse TBD TBD TBD ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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3 – DC and Power Characteristics

General Specifications

Operating Conditions
Stresses beyond those listed in Table 3-1 may cause permanent damage to the device.

Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
Devices should not be operated outside the recommended operating ranges specified in Table 3-2 on
page 3-3.

Table 3-1 • Absolute Maximum Ratings 

Symbol Parameter Commercial Industrial Units

VCC DC core supply voltage –0.3 to 1.65 –0.3 to 1.65 V

VJTAG JTAG DC voltage –0.3 to 3.75 –0.3 to 3.75 V

VPUMP Programming voltage –0.3 to 3.75 –0.3 to 3.75 V

VCCPLL Analog power supply (PLL) –0.3 to 1.65 –0.3 to 1.65 V

VCCI DC I/O output buffer supply voltage –0.3 to 3.75 –0.3 to 3.75 V

VI I/O input voltage 1 –0.3 V to 3.6 V (when I/O hot insertion mode is
enabled)
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever
voltage is lower (when I/O hot-insertion mode is
disabled)

V

VCC33A +3.3 V power supply –0.3 to 3.75 2 –0.3 to 3.75 2 V

VCC33PMP +3.3 V power supply –0.3 to 3.75 2 –0.3 to 3.75 2 V

VAREF Voltage reference for ADC –0.3 to 3.75 –0.3 to 3.75 V

VCC15A Digital power supply for the analog system –0.3 to 1.65 –0.3 to 1.65 V

VCCNVM Embedded flash power supply –0.3 to 1.65 –0.3 to 1.65 V

VCCOSC Oscillator power supply –0.3 to 3.75 –0.3 to 3.75 V

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may
undershoot or overshoot according to the limits shown in Table 3-4 on page 3-4.

2. Analog data not valid beyond 3.65 V.

3. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on
voltage on the pad.

4. For flash programming and retention maximum limits, refer to Table 3-5 on page 3-5. For recommended operating limits
refer to Table 3-2 on page 3-3.
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DC and Power Characteristics
Differential 

LVDS – 2.5 7.74 88.92

LVPECL – 3.3 19.54 166.52

Applicable to Standard I/O Banks

Single-Ended 

3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 431.08

2.5 V LVCMOS 35 2.5 – 247.36

1.8 V LVCMOS 35 1.8 – 128.46

1.5 V LVCMOS (JESD8-11) 35 1.5 – 89.46

Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings1  (continued)

CLOAD (pF) VCCI (V) 
Static Power
PDC8 (mW)2 

Dynamic Power
PAC10 (µW/MHz)3

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.
2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.
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Fusion Family of Mixed Signal FPGAs
Dynamic Power Consumption of Various Internal Resources

Table 3-14 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices

Parameter Definition

Power Supply
Device-Specific 

Dynamic Contributions

UnitsName Setting AFS1500 AFS600 AFS250 AFS090

PAC1 Clock contribution of a Global
Rib

VCC 1.5 V 14.5 12.8 11 11 µW/MHz

PAC2 Clock contribution of a Global
Spine

VCC 1.5 V 2.5 1.9 1.6 0.8 µW/MHz

PAC3 Clock contribution of a VersaTile
row

VCC 1.5 V 0.81 µW/MHz

PAC4 Clock contribution of a VersaTile
used as a sequential module

VCC 1.5 V 0.11 µW/MHz

PAC5 First contribution of a VersaTile
used as a sequential module

VCC 1.5 V 0.07 µW/MHz

PAC6 Second contribution of a
VersaTile used as a sequential
module

VCC 1.5 V 0.29 µW/MHz

PAC7 Contribution of a VersaTile used
as a combinatorial module

VCC 1.5 V 0.29 µW/MHz

PAC8 Average contribution of a routing
net

VCC 1.5 V 0.70 µW/MHz

PAC9 Contribution of an I/O input pin
(standard dependent)

VCCI See Table 3-12 on page 3-18

PAC10 Contribution of an I/O output pin
(standard dependent)

VCCI See Table 3-13 on page 3-20

PAC11 Average contribution of a RAM
block during a read operation

VCC 1.5 V 25 µW/MHz

PAC12 Average contribution of a RAM
block during a write operation

VCC 1.5 V 30 µW/MHz

PAC13 Dynamic Contribution for PLL VCC 1.5 V 2.6 µW/MHz

PAC15 Contribution of NVM block during
a read operation (F < 33MHz)

VCC 1.5 V 358 µW/MHz

PAC16 1st contribution of NVM block
during a read operation (F > 33
MHz)

VCC 1.5 V 12.88 mW

PAC17 2nd contribution of NVM block
during a read operation (F > 33
MHz)

VCC 1.5 V 4.8 µW/MHz

PAC18 Crystal Oscillator contribution VCC33A 3.3 V 0.63 mW

PAC19 RC Oscillator contribution VCC33A 3.3 V 3.3 mW

PAC20 Analog Block dynamic power
contribution of ADC

VCC 1.5 V 3 mW
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Package Pin Assignments
FG676

Pin Number AFS1500 Function

A1 NC

A2 GND

A3 NC

A4 NC

A5 GND

A6 NC

A7 NC

A8 GND

A9 IO17NDB0V2

A10 IO17PDB0V2

A11 GND

A12 IO18NDB0V2

A13 IO18PDB0V2

A14 IO20NDB0V2

A15 IO20PDB0V2

A16 GND

A17 IO21PDB0V2

A18 IO21NDB0V2

A19 GND

A20 IO39NDB1V2

A21 IO39PDB1V2

A22 GND

A23 NC

A24 NC

A25 GND

A26 NC

AA1 NC

AA2 VCCIB4

AA3 IO93PDB4V0

AA4 GND

AA5 IO93NDB4V0

AA6 GEB2/IO86PDB4V0

AA7 IO86NDB4V0

AA8 AV0

AA9 GNDA

AA10 AV1

AA11 AV2

AA12 GNDA

AA13 AV3

AA14 AV6

AA15 GNDA

AA16 AV7

AA17 AV8

AA18 GNDA

AA19 AV9

AA20 VCCIB2

AA21 IO68PPB2V0

AA22 TCK

AA23 GND

AA24 IO76PPB2V0

AA25 VCCIB2

AA26 NC

AB1 GND

AB2 NC

AB3 GEC2/IO87PDB4V0

AB4 IO87NDB4V0

AB5 GEA2/IO85PDB4V0

AB6 IO85NDB4V0

AB7 NCAP

AB8 AC0

AB9 VCC33A

AB10 AC1

AB11 AC2

AB12 VCC33A

AB13 AC3

AB14 AC6

AB15 VCC33A

AB16 AC7

AB17 AC8

AB18 VCC33A

AB19 AC9

AB20 ADCGNDREF

FG676

Pin Number AFS1500 Function

AB21 PTBASE

AB22 GNDNVM

AB23 VCCNVM

AB24 VPUMP

AB25 NC

AB26 GND

AC1 NC

AC2 NC

AC3 NC

AC4 GND

AC5 VCCIB4

AC6 VCCIB4

AC7 PCAP

AC8 AG0

AC9 GNDA

AC10 AG1

AC11 AG2

AC12 GNDA

AC13 AG3

AC14 AG6

AC15 GNDA

AC16 AG7

AC17 AG8

AC18 GNDA

AC19 AG9

AC20 VAREF

AC21 VCCIB2

AC22 PTEM

AC23 GND

AC24 NC

AC25 NC

AC26 NC

AD1 NC

AD2 NC

AD3 GND

AD4 NC

FG676

Pin Number AFS1500 Function
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Fusion Family of Mixed Signal FPGAs
G13 IO22NDB1V0

G14 IO22PDB1V0

G15 GND

G16 IO32PPB1V1

G17 IO36NPB1V2

G18 VCCIB1

G19 GND

G20 IO47NPB2V0

G21 IO49PDB2V0

G22 VCCIB2

G23 IO46NDB2V0

G24 GBC2/IO46PDB2V0

G25 IO48NPB2V0

G26 NC

H1 GND

H2 NC

H3 IO118NDB4V0

H4 IO118PDB4V0

H5 IO119NPB4V0

H6 IO124NDB4V0

H7 GND

H8 VCOMPLA

H9 VCCPLA

H10 VCCIB0

H11 IO12NDB0V1

H12 IO12PDB0V1

H13 VCCIB0

H14 VCCIB1

H15 IO30NDB1V1

H16 IO30PDB1V1

H17 VCCIB1

H18 IO36PPB1V2

H19 IO38NPB1V2

H20 GND

H21 IO49NDB2V0

H22 IO50PDB2V0

FG676

Pin Number AFS1500 Function

H23 IO50NDB2V0

H24 IO51PDB2V0

H25 NC

H26 GND

J1 NC

J2 VCCIB4

J3 IO115PDB4V0

J4 GND

J5 IO116NDB4V0

J6 IO116PDB4V0

J7 VCCIB4

J8 IO117PDB4V0

J9 VCCIB4

J10 GND

J11 IO06NDB0V1

J12 IO06PDB0V1

J13 IO16NDB0V2

J14 IO16PDB0V2

J15 IO28NDB1V1

J16 IO28PDB1V1

J17 GND

J18 IO38PPB1V2

J19 IO53PDB2V0

J20 VCCIB2

J21 IO52PDB2V0

J22 IO52NDB2V0

J23 GND

J24 IO51NDB2V0

J25 VCCIB2

J26 NC

K1 NC

K2 NC

K3 IO115NDB4V0

K4 IO113PDB4V0

K5 VCCIB4

K6 IO114NDB4V0

FG676

Pin Number AFS1500 Function

K7 IO114PDB4V0

K8 IO117NDB4V0

K9 GND

K10 VCC

K11 VCCIB0

K12 GND

K13 VCCIB0

K14 VCCIB1

K15 GND

K16 VCCIB1

K17 GND

K18 GND

K19 IO53NDB2V0

K20 IO57PDB2V0

K21 GCA2/IO59PDB2V0

K22 VCCIB2

K23 IO54NDB2V0

K24 IO54PDB2V0

K25 NC

K26 NC

L1 GND

L2 NC

L3 IO112PPB4V0

L4 IO113NDB4V0

L5 GFB2/IO109PDB4V0

L6 GFA2/IO110PDB4V0

L7 IO112NPB4V0

L8 IO104PDB4V0

L9 IO111PDB4V0

L10 VCCIB4

L11 GND

L12 VCC

L13 GND

L14 VCC

L15 GND

L16 VCC

FG676

Pin Number AFS1500 Function
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Fusion Family of Mixed Signal FPGAs
Advance 1.0
(continued)

In Table 2-47 • ADC Characteristics in Direct Input Mode, the commercial conditions
were updated and note 2 is new.

2-121

The VCC33ACAP signal name was changed to "XTAL1 Crystal Oscillator Circuit
Input".

2-228

Table 2-48 • Uncalibrated Analog Channel Accuracy* is new. 2-123

Table 2-49 • Calibrated Analog Channel Accuracy 1,2,3 is new. 2-124

Table 2-50 • Analog Channel Accuracy: Monitoring Standard Positive Voltages is
new.

2-125

In Table 2-57 • Voltage Polarity Control Truth Table—AV (x = 0), AC (x = 1), and AT
(x = 3)*, the following I/O Bank names were changed:

Hot-Swap changed to Standard

LVDS changed to Advanced

2-131

In Table 2-58 • Prescaler Op Amp Power-Down Truth Table—AV (x = 0), AC (x = 1),
and AT (x = 3), the following I/O Bank names were changed:

Hot-Swap changed to Standard

LVDS changed to Advanced 

2-132

In the title of Table 2-64 • I/O Standards Supported by Bank Type, LVDS I/O was
changed to Advanced I/O.

2-134

The title was changed from "Fusion Standard, LVDS, and Standard plus Hot-Swap
I/O" to Table 2-68 • Fusion Standard and Advanced I/O Features. In addition, the
table headings were all updated. The heading used to be Standard and LVDS I/O
and was changed to Advanced I/O. Standard Hot-Swap was changed to just
Standard.

2-136

This sentence was deleted from the "Slew Rate Control and Drive Strength" section:

The Standard hot-swap I/Os do not support slew rate control. In addition, these
references were changed:

• From: Fusion hot-swap I/O (Table 2-69 on page 2-122) To: Fusion Standard I/O

• From: Fusion LVDS I/O (Table 2-70 on page 2-122) To: Fusion Advanced I/O

2-152

The "Cold-Sparing Support" section was significantly updated. 2-143

In the title of Table 2-75 • Fusion Standard I/O Standards—OUT_DRIVE Settings,
Hot-Swap was changed to Standard.

2-153

In the title of Table 2-76 • Fusion Advanced I/O Standards—SLEW and OUT_DRIVE
Settings, LVDS was changed to Advanced.

2-153

In the title of Table 2-81 • Fusion Standard and Advanced I/O Attributes vs. I/O
Standard Applications, LVDS was changed to Advanced.

2-157

In Figure 2-111 • Naming Conventions of Fusion Devices with Three Digital I/O
Banks and Figure 2-112 • Naming Conventions of Fusion Devices with Four I/O
Banks the following names were changed:

Hot-Swap changed to Standard

LVDS changed to Advanced

2-160

The Figure 2-113 • Timing Model was updated. 2-161

In the notes for Table 2-86 • Summary of Maximum and Minimum DC Input Levels
Applicable to Commercial and Industrial Conditions, TJ was changed to TA.

2-166
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