

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	172
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1afs600-fgg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

VersaNet Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are dependent upon I/O standard, and the clock may be driven and conditioned internally by the CCC module. Table 2-5, Table 2-6, Table 2-7, and Table 2-8 on page 2-17 present minimum and maximum global clock delays within the device Minimum and maximum delays are measured with minimum and maximum loading, respectively.

Timing Characteristics

 Table 2-5 • AFS1500 Global Resource Timing

 Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description		2	_	1	S	Unito	
	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.53	1.75	1.74	1.99	2.05	2.34	ns
t _{RCKH}	Input High Delay for Global Clock	1.53	1.79	1.75	2.04	2.05	2.40	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-6 • AFS600 Global Resource Timing

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Paramotor	Description		-2		-1	S	Unite	
Falailletei	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.27	1.49	1.44	1.70	1.69	2.00	ns
t _{RCKH}	Input High Delay for Global Clock	1.26	1.54	1.44	1.75	1.69	2.06	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.27		0.31		0.36	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Clocking Resources

The Fusion family has a robust collection of clocking peripherals, as shown in the block diagram in Figure 2-16. These on-chip resources enable the creation, manipulation, and distribution of many clock signals. The Fusion integrated RC oscillator produces a 100 MHz clock source with no external components. For systems requiring more precise clock signals, the Fusion family supports an on-chip crystal oscillator circuit. The integrated PLLs in each Fusion device can use the RC oscillator, crystal oscillator, or another on-chip clock signal as a source. These PLLs offer a variety of capabilities to modify the clock source (multiply, divide, synchronize, advance, or delay). Utilizing the CCC found in the popular ProASIC3 family, Fusion incorporates six CCC blocks. The CCCs allow access to Fusion global and local clock distribution nets, as described in the "Global Resources (VersaNets)" section on page 2-11.

Figure 2-16 • Fusion Clocking Options

PLL Macro

The PLL functionality of the clock conditioning block is supported by the PLL macro. Note that the PLL macro reference clock uses the CLKA input of the CCC block, which is only accessible from the global A[2:0] package pins. Refer to Figure 2-22 on page 2-25 for more information.

The PLL macro provides five derived clocks (three independent) from a single reference clock. The PLL feedback loop can be driven either internally or externally. The PLL macro also provides power-down input and lock output signals. During power-up, POWERDOWN should be asserted Low until VCC is up. See Figure 2-19 on page 2-23 for more information.

Inputs:

- · CLKA: selected clock input
- POWERDOWN (active low): disables PLLs. The default state is power-down on (active low).

Outputs:

- LOCK (active high): indicates that PLL output has locked on the input reference signal
- GLA, GLB, GLC: outputs to respective global networks
- YB, YC: allows output from the CCC to be routed back to the FPGA core

As previously described, the PLL allows up to five flexible and independently configurable clock outputs. Figure 2-23 on page 2-26 illustrates the various clock output options and delay elements.

As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these (GLB and GLC) can be routed to the B and C global networks, respectively, and/or routed to the device core (YB and YC).

There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).

There is also a delay element in the feedback loop that can be used to advance the clock relative to the reference clock.

The PLL macro reference clock can be driven by an INBUF macro to create a composite macro, where the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the I/O must be placed in one of the dedicated global I/O locations.

The PLL macro reference clock can be driven directly from the FPGA core.

The PLL macro reference clock can also be driven from an I/O routed through the FPGA regular routing fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate it from the hardwired I/O connection described earlier.

The visual PLL configuration in SmartGen, available with the Libero SoC and Designer tools, will derive the necessary internal divider ratios based on the input frequency and desired output frequencies selected by the user. SmartGen allows the user to select the various delays and phase shift values necessary to adjust the phases between the reference clock (CLKA) and the derived clocks (GLA, GLB, GLC, YB, and YC). SmartGen also allows the user to select where the input clock is coming from. SmartGen automatically instantiates the special macro, PLLINT, when needed.

Data operations are performed in widths of 1 to 4 bytes. A write to a location in a page that is not already in the Page Buffer will cause the page to be read from the FB Array and stored in the Page Buffer. The block that was addressed during the write will be put into the Block Buffer, and the data written by WD will overwrite the data in the Block Buffer. After the data is written to the Block Buffer, the Block Buffer is then written to the Page Buffer to keep both buffers in sync. Subsequent writes to the same block will overwrite the Block Buffer and the Page Buffer. A write to another block in the page will cause the addressed block to be loaded from the Page Buffer, and the write will be performed as described previously.

The data width can be selected dynamically via the DATAWIDTH input bus. The truth table for the data width settings is detailed in Table 2-21. The minimum resolvable address is one 8-bit byte. For data widths greater than 8 bits, the corresponding address bits are ignored—when DATAWIDTH = 0 (2 bytes), ADDR[0] is ignored, and when DATAWIDTH = '10' or '11' (4 bytes), ADDR[1:0] are ignored. Data pins are LSB-oriented and unused WD data pins must be grounded.

Table 2-21 • Data Width Settings

DATAWIDTH[1:0]	Data Width
00	1 byte [7:0]
01	2 byte [15:0]
10, 11	4 bytes [31:0]

Flash Memory Block Protection

Page Loss Protection

When the PAGELOSSPROTECT pin is set to logic 1, it prevents writes to any page other than the current page in the Page Buffer until the page is either discarded or programmed.

A write to another page while the current page is Page Loss Protected will return a STATUS of '11'.

Overwrite Protection

Any page that is Overwrite Protected will result in the STATUS being set to '01' when an attempt is made to either write, program, or erase it. To set the Overwrite Protection state for a page, set the OVERWRITEPROTECT pin when a Program operation is undertaken. To clear the Overwrite Protect state for a given page, an Unprotect Page operation must be performed on the page, and then the page must be programmed with the OVERWRITEPROTECT pin cleared to save the new page.

LOCKREQUEST

The LOCKREQUEST signal is used to give the user interface control over simultaneous access of the FB from both the User and JTAG interfaces. When LOCKREQUEST is asserted, the JTAG interface will hold off any access attempts until LOCKREQUEST is deasserted.

Flash Memory Block Operations

FB Operation Priority

The FB provides for priority of operations when multiple actions are requested simultaneously. Table 2-22 shows the priority order (priority 0 is the highest).

Table 2-22 • FB Operation

Operation	Priority
System Initialization	0
FB Reset	1
Read	2
Write	3
Erase Page	4
Program	5
Unprotect Page	6
Discard Page	7

Figure 2-60 • FIFO EMPTY Flag and AEMPTY Flag Assertion

Fusion Family of Mixed Signal FPGAs

ADC Input Multiplexer

At the input to the Fusion ADC is a 32:1 multiplexer. Of the 32 input channels, up to 30 are user definable. Two of these channels are hardwired internally. Channel 31 connects to an internal temperature diode so the temperature of the Fusion device itself can be monitored. Channel 0 is wired to the FPGA's 1.5 V VCC supply, enabling the Fusion device to monitor its own power supply. Doing this internally makes it unnecessary to use an analog I/O to support these functions. The balance of the MUX inputs are connected to Analog Quads (see the "Analog Quad" section on page 2-80). Table 2-40 defines which Analog Quad inputs are associated with which specific analog MUX channels. The number of Analog Quads present is device-dependent; refer to the family list in the "Fusion Family" table on page I of this datasheet for the number of quads per device. Regardless of the number of quads populated in a device, the internal connections to both VCC and the internal temperature diode remain on Channels 0 and 31, respectively. To sample the internal temperature monitor, it must be strobed (similar to the AT pads). The TMSTBINT pin on the Analog Block macro is the control for strobing the internal temperature measurement diode.

To determine which channel is selected for conversion, there is a five-pin interface on the Analog Block, CHNUMBER[4:0], defined in Table 2-39.

Channel Number	CHNUMBER[4:0]
0	00000
1	00001
2	00010
3	00011
•	•
30	11110
31	11111

Table 2-39 • Channel Selection

Table 2-40 shows the correlation between the analog MUX input channels and the analog input pins.

Table 2-40 • Analog MUX Channels

Analog MUX Channel	Signal	Analog Quad Number
0	Vcc_analog	
1	AV0	
2	AC0	Analog Quad 0
3	AT0	
4	AV1	
5	AC1	Analog Quad 1
6	AT1	
7	AV2	
8	AC2	Analog Quad 2
9	AT2	
10	AV3	
11	AC3	Analog Quad 3
12	AT3	
13	AV4	
14	AC4	Analog Quad 4
15	AT4	7

Figure 2-90 • Input Setup Time

Standard Conversion

Notes:

1. Refer to EQ 20 on page 2-109 for the calculation on the sample time, t_{SAMPLE} .

2. See EQ 23 on page 2-109 for calculation of the conversion time, t_{CONV} .

3. Minimum time to issue an ADCSTART after DATAVALID is 1 SYSCLK period

Figure 2-91 • Standard Conversion Status Signal Timing Diagram

Typical Performance Characteristics

Temperature Errror vs. Die Temperature

Figure 2-95 • Effect of External Sensor Capacitance

Figure 2-96 • Temperature Reading Noise When Averaging is Used

Table 2-88 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions

			VIL		VIH		VOL	VOH	IOL	IOH
I/O Standard	Drive Strength	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	High	-0.3	0.8	2	3.6	0.4	2.4	8	8
2.5 V LVCMOS	8 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	8	8
1.8 V LVCMOS	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	4	4
1.5 V LVCMOS	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2

Applicable to Standard I/Os

Note: Currents are measured at 85°C junction temperature.

Table 2-89 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions

Applicable to All I/O Bank Types

	Comm	nercial ¹	Industrial ²			
	IIL ³	IIH ⁴	IIL ³	IIH ⁴		
DC I/O Standards	μA	μA	μΑ	μA		
3.3 V LVTTL / 3.3 V LVCMOS	10	10	15	15		
2.5 V LVCMOS	10	10	15	15		
1.8 V LVCMOS	10	10	15	15		
1.5 V LVCMOS	10	10	15	15		
3.3 V PCI	10	10	15	15		
3.3 V PCI-X	10	10	15	15		
3.3 V GTL	10	10	15	15		
2.5 V GTL	10	10	15	15		
3.3 V GTL+	10	10	15	15		
2.5 V GTL+	10	10	15	15		
HSTL (I)	10	10	15	15		
HSTL (II)	10	10	15	15		
SSTL2 (I)	10	10	15	15		
SSTL2 (II)	10	10	15	15		
SSTL3 (I)	10	10	15	15		
SSTL3 (II)	10	10	15	15		

Notes:

1. Commercial range ($0^{\circ}C < T_J < 85^{\circ}C$)

2. Industrial range $(-40^{\circ}C < T_{J} < 100^{\circ}C)$

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

Fusion Family of Mixed Signal FPGAs

Table 2-98 • I/O Short Currents IOSH/IOSL

	Drive Strength	IOSH (mA)*	IOSL (mA)*
Applicable to Pro I/O Banks			
3.3 V LVTTL / 3.3 V LVCMOS	4 mA	25	27
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181
2.5 V LVCMOS	4 mA	16	18
	8 mA	32	37
	12 mA	65	74
	16 mA	83	87
	24 mA	169	124
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
	6 mA	35	44
	8 mA	45	51
	12 mA	91	74
	16 mA	91	74
1.5 V LVCMOS	2 mA	13	16
	4 mA	25	33
	6 mA	32	39
	8 mA	66	55
	12 mA	66	55
Applicable to Advanced I/O Banks			
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27
	4 mA	25	27
	6 mA	51	54
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181
3.3 V LVCMOS	2 mA	25	27
	4 mA	25	27
	6 mA	51	54
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181

Note: $^{*}T_{J} = 100^{\circ}C$

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	v	IL	v	н	VOL	VОН	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Applicable to	Applicable to Pro I/O Banks											
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	18	16	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	3.6	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	3.6	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	3.6	0.7	1.7	24	24	124	169	10	10
Applicable to	Advanced	I/O Bank	s		•					-		
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	2.7	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	2.7	0.7	1.7	24	24	124	169	10	10
Applicable to	Standard	I/O Banks			•					-		
2 mA	-0.3	0.7	1.7	3.6	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	3.6	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	37	32	10	10

Table 2-110 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-120 • AC Loading

Table 2-111 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)	
0	2.5	1.2	_	35	

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

HSTL Class II

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). Fusion devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-153	Minimum	and Maximum	DC Inpu	t and Out	out Levels
1 4 10 1 1 0 0					041 - 01010

HSTL Class II		VIL VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ¹	IIH ²	
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
15 mA ³	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI – 0.4	15	15	55	66	10	10

Note:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Output drive strength is below JEDEC specification.

Figure 2-129 • AC Loading

Table 2-154 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Timing Characteristics

Table 2-155 • HSTL Class II

```
Commercial Temperature Range Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V, VREF = 0.75 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	3.02	0.04	2.12	0.43	3.08	2.71			5.32	4.95	ns
-1	0.56	2.57	0.04	1.81	0.36	2.62	2.31			4.52	4.21	ns
-2	0.49	2.26	0.03	1.59	0.32	2.30	2.03			3.97	3.70	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

SSTL2 Class II

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Fusion devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL2 Class II		/IL VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL¹	IIH ²	
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
18 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI – 0.43	18	18	124	169	10	10

Table 2-159 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-131 • AC Loading

Table 2-160 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Timing Characteristics

Table 2-161 • SSTL 2 Class II Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.17	0.04	1.33	0.43	2.21	1.77			4.44	4.01	ns
-1	0.56	1.84	0.04	1.14	0.36	1.88	1.51			3.78	3.41	ns
-2	0.49	1.62	0.03	1.00	0.32	1.65	1.32			3.32	2.99	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-175 • Parameter Definitions and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
t _{OSUD}	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
t _{OSUE}	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
t _{OESUE}	Enable Setup Time for the Output Enable Register	КК, НН
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
tIRECCLR	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Note: *See Figure 2-138 on page 2-214 for more information.

Parameter	Description	Conditions	Temp.	Min	Тур	Мах	Unit
ICC ¹	1.5 V quiescent current	Operational standby ⁴ ,	T _J = 25°C		5	7.5	mA
		VCC = 1.575 V	T _J = 85°C		6.5	20	mA
			T _J = 100°C		14	48	mA
		Standby mode ⁵ or Sleep mode ⁶ , V _{CC} = 0 V			0	0	μA
ICC33 ²	3.3 V analog supplies current	Operational standby ⁴ ,	T _J = 25°C		9.8	12	mA
		VCC33 = 3.63 V	T _J = 85°C		9.8	12	mA
			T _J = 100°C		10.7	15	mA
		Operational standby, only	T _J = 25°C		0.30	2	mA
		output ON, VCC33 = 3.63 V	T _J = 85°C		0.30	2	mA
			T _J = 100°C		0.45	2	mA
		Standby mode ⁵ ,	T _J = 25°C		2.9	2.9	mA
		VCC33 = 3.63 V	T _J = 85°C		2.9	3.0	mA
			T _J = 100°C		3.5	6	mA
		Sleep mode ⁶ , VCC33 = 3.63 V	T _J = 25°C		17	18	μΑ
			T _J = 85°C		18	20	μA
			T _J = 100°C		24	25	μA
ICCI ³	I/O quiescent current	Operational standby ⁶ ,	T _J = 25°C		260	437	μΑ
		VCCIX = 3.63 V	T _J = 85°C		260	437	μΑ
			T _J = 100°C		260	437	μA
IJTAG	JTAG I/O quiescent current	Operational standby ⁴ ,	T _J = 25°C		80	100	μΑ
		VJTAG = 3.63 V	T _J = 85°C		80	100	μA
			T _J = 100°C		80	100	μA
		Standby mode ⁵ or Sleep mode ⁶ , VJTAG = 0 V			0	0	μA
IPP	Programming supply current	Non-programming mode, VPUMP = 3.63 V	T _J = 25°C		37	80	μA
			T _J = 85°C		37	80	μA
			T _J = 100°C		80	100	μA
		Standby mode ⁵ or Sleep mode ⁶ , VPUMP = 0 V			0	0	μA

Notes:

1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.

2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, and ICCI2.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.

Package Pin Assignments

	FG484			FG484	
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function
L17	VCCIB2	VCCIB2	N8	GND	GND
L18	IO46PDB2V0	IO69PDB2V0	N9	GND	GND
L19	GCA1/IO45PDB2V0	GCA1/IO64PDB2V0	N10	VCC	VCC
L20	VCCIB2	VCCIB2	N11	GND	GND
L21	GCC0/IO43NDB2V0	GCC0/IO62NDB2V0	N12	VCC	VCC
L22	GCC1/IO43PDB2V0	GCC1/IO62PDB2V0	N13	GND	GND
M1	NC	IO103PDB4V0	N14	VCC	VCC
M2	XTAL1	XTAL1	N15	GND	GND
M3	VCCIB4	VCCIB4	N16	GDB2/IO56PDB2V0	GDB2/IO83PDB2V0
M4	GNDOSC	GNDOSC	N17	NC	IO78PDB2V0
M5	GFC0/IO72NDB4V0	GFC0/IO107NDB4V0	N18	GND	GND
M6	VCCIB4	VCCIB4	N19	IO47NDB2V0	IO72NDB2V0
M7	GFB0/IO71NDB4V0	GFB0/IO106NDB4V0	N20	IO47PDB2V0	IO72PDB2V0
M8	VCCIB4	VCCIB4	N21	GND	GND
M9	VCC	VCC	N22	IO49PDB2V0	IO71PDB2V0
M10	GND	GND	P1	GFA1/IO70PDB4V0	GFA1/IO105PDB4V0
M11	VCC	VCC	P2	GFA0/IO70NDB4V0	GFA0/IO105NDB4V0
M12	GND	GND	P3	IO68NDB4V0	IO101NDB4V0
M13	VCC	VCC	P4	IO65PDB4V0	IO96PDB4V0
M14	GND	GND	P5	IO65NDB4V0	IO96NDB4V0
M15	VCCIB2	VCCIB2	P6	NC	IO99NDB4V0
M16	IO48NDB2V0	IO70NDB2V0	P7	NC	IO97NDB4V0
M17	VCCIB2	VCCIB2	P8	VCCIB4	VCCIB4
M18	IO46NDB2V0	IO69NDB2V0	P9	VCC	VCC
M19	GCA0/IO45NDB2V0	GCA0/IO64NDB2V0	P10	GND	GND
M20	VCCIB2	VCCIB2	P11	VCC	VCC
M21	GCB0/IO44NDB2V0	GCB0/IO63NDB2V0	P12	GND	GND
M22	GCB1/IO44PDB2V0	GCB1/IO63PDB2V0	P13	VCC	VCC
N1	NC	IO103NDB4V0	P14	GND	GND
N2	GND	GND	P15	VCCIB2	VCCIB2
N3	IO68PDB4V0	IO101PDB4V0	P16	IO56NDB2V0	IO83NDB2V0
N4	NC	IO100NPB4V0	P17	NC	IO78NDB2V0
N5	GND	GND	P18	GDA1/IO54PDB2V0	GDA1/IO81PDB2V0
N6	NC	IO99PDB4V0	P19	GDB1/IO53PDB2V0	GDB1/IO80PDB2V0
N7	NC	IO97PDB4V0	P20	IO51NDB2V0	IO73NDB2V0

🌜 Microsemi.

Package Pin Assignments

	FG676		FG676		FG676
Pin Number	AFS1500 Function	Pin Number	AFS1500 Function	Pin Number	AFS1500 Function
C9	IO07PDB0V1	D19	GBC1/IO40PDB1V2	F3	IO121NDB4V0
C10	IO09PDB0V1	D20	GBA1/IO42PDB1V2	F4	GND
C11	IO13NDB0V2	D21	GND	F5	IO123NDB4V0
C12	IO13PDB0V2	D22	VCCPLB	F6	GAC2/IO123PDB4V0
C13	IO24PDB1V0	D23	GND	F7	GAA2/IO125PDB4V0
C14	IO26PDB1V0	D24	NC	F8	GAC0/IO03NDB0V0
C15	IO27NDB1V1	D25	NC	F9	GAC1/IO03PDB0V0
C16	IO27PDB1V1	D26	NC	F10	IO10NDB0V1
C17	IO35NDB1V2	E1	GND	F11	IO10PDB0V1
C18	IO35PDB1V2	E2	IO122NPB4V0	F12	IO14NDB0V2
C19	GBC0/IO40NDB1V2	E3	IO121PDB4V0	F13	IO23NDB1V0
C20	GBA0/IO42NDB1V2	E4	IO122PPB4V0	F14	IO23PDB1V0
C21	IO43NDB1V2	E5	IO00NDB0V0	F15	IO32NPB1V1
C22	IO43PDB1V2	E6	IO00PDB0V0	F16	IO34NDB1V1
C23	NC	E7	VCCIB0	F17	IO34PDB1V1
C24	GND	E8	IO05NDB0V1	F18	IO37PDB1V2
C25	NC	E9	IO05PDB0V1	F19	GBB1/IO41PDB1V2
C26	NC	E10	VCCIB0	F20	VCCIB2
D1	NC	E11	IO11NDB0V1	F21	IO47PPB2V0
D2	NC	E12	IO14PDB0V2	F22	IO44NDB2V0
D3	NC	E13	VCCIB0	F23	GND
D4	GND	E14	VCCIB1	F24	IO45NDB2V0
D5	GAA0/IO01NDB0V0	E15	IO29NDB1V1	F25	VCCIB2
D6	GND	E16	IO29PDB1V1	F26	NC
D7	IO04NDB0V0	E17	VCCIB1	G1	NC
D8	IO04PDB0V0	E18	IO37NDB1V2	G2	IO119PPB4V0
D9	GND	E19	GBB0/IO41NDB1V2	G3	IO120NDB4V0
D10	IO09NDB0V1	E20	VCCIB1	G4	IO120PDB4V0
D11	IO11PDB0V1	E21	VCOMPLB	G5	VCCIB4
D12	GND	E22	GBA2/IO44PDB2V0	G6	GAB2/IO124PDB4V0
D13	IO24NDB1V0	E23	IO48PPB2V0	G7	IO125NDB4V0
D14	IO26NDB1V0	E24	GBB2/IO45PDB2V0	G8	GND
D15	GND	E25	NC	G9	VCCIB0
D16	IO31NDB1V1	E26	GND	G10	IO08NDB0V1
D17	IO31PDB1V1	F1	NC	G11	IO08PDB0V1
D18	GND	F2	VCCIB4	G12	GND

Datasheet Information

Revision	Changes	Page	
Advance v0.5	The low power modes of operation were updated and clarified.		
(June 2006)	The AFS1500 digital I/O count was updated in Table 1 • Fusion Family.		
	The AFS1500 digital I/O count was updated in the "Package I/Os: Single-/Double- Ended (Analog)" table.		
	The "Voltage Regulator Power Supply Monitor (VRPSM)" was updated.		
	Figure 2-45 • FlashROM Timing Diagram was updated.		
	The "256-Pin FBGA" table for the AFS1500 is new.		
Advance v0.4 (April 2006)	The G was moved in the "Product Ordering Codes" section.	III	
Advance v0.3	The "Features and Benefits" section was updated.		
(April 2006)	The "Fusion Family" table was updated.		
	The "Package I/Os: Single-/Double-Ended (Analog)" table was updated.		
	The "Product Ordering Codes" table was updated.	Ш	
	The "Temperature Grade Offerings" table was updated.	IV	
	The "General Description" section was updated to include ARM information.	1-1	
	Figure 2-46 • FlashROM Timing Diagram was updated.	2-58	
	The "FlashROM" section was updated.	2-57	
	The "RESET" section was updated.	2-61	
	The "RESET" section was updated.	2-64	
	Figure 2-27 · Real-Time Counter System was updated.	2-35	
	Table 2-19 • Flash Memory Block Pin Names was updated.	2-43	
	Figure 2-33 • Flash Memory Block Diagram was updated to include AUX block information.	2-45	
	Figure 2-34 • Flash Memory Block Organization was updated to include AUX block information.	2-46	
	The note in the "Program Operation" section was updated.	2-48	
	Figure 2-76 • Gate Driver Example was updated.	2-95	
	The "Analog Quad ACM Description" section was updated.	2-130	
	Information about the maximum pad input frequency was added to the "Gate Driver" section.	2-94	
	Figure 2-65 • Analog Block Macro was updated.	2-81	
	Figure 2-65 • Analog Block Macro was updated.	2-81	
	The "Analog Quad" section was updated.	2-84	
	The "Voltage Monitor" section was updated.	2-86	
	The "Direct Digital Input" section was updated.	2-89	
	The "Current Monitor" section was updated.	2-90	
	Information about the maximum pad input frequency was added to the "Gate Driver" section.	2-94	