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Fusion Device Family Overview
Instant On
Flash-based Fusion devices are Level 0 Instant On. Instant On Fusion devices greatly simplify total
system design and reduce total system cost by eliminating the need for CPLDs. The Fusion Instant On
clocking (PLLs) replaces off-chip clocking resources. The Fusion mix of Instant On clocking and analog
resources makes these devices an excellent choice for both system supervisor and system management
functions. Instant On from a single 3.3 V source enables Fusion devices to initiate, control, and monitor
multiple voltage supplies while also providing system clocks. In addition, glitches and brownouts in
system power will not corrupt the Fusion device flash configuration. Unlike SRAM-based FPGAs, the
device will not have to be reloaded when system power is restored. This enables reduction or complete
removal of expensive voltage monitor and brownout detection devices from the PCB design. 
Flash-based Fusion devices simplify total system design and reduce cost and design risk, while
increasing system reliability. 

Firm Errors
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. Another
source of radiation-induced firm errors is alpha particles. For an alpha to cause a soft or firm error, its
source must be in very close proximity to the affected circuit. The alpha source must be in the package
molding compound or in the die itself. While low-alpha molding compounds are being used increasingly,
this helps reduce but does not entirely eliminate alpha-induced firm errors.

Firm errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not occur in Fusion flash-based FPGAs. Once it is programmed,
the flash cell configuration element of Fusion FPGAs cannot be altered by high-energy neutrons and is
therefore immune to errors from them. 

Recoverable (or soft) errors occur in the user data SRAMs of all FPGA devices. These can easily be
mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Low Power
Flash-based Fusion devices exhibit power characteristics similar to those of an ASIC, making them an
ideal choice for power-sensitive applications. With Fusion devices, there is no power-on current surge
and no high current transition, both of which occur on many FPGAs.

Fusion devices also have low dynamic power consumption and support both low power standby mode
and very low power sleep mode, offering further power savings.

Advanced Flash Technology
The Fusion family offers many benefits, including nonvolatility and reprogrammability through an
advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design
techniques are used to implement logic and control functions. The combination of fine granularity,
enhanced flexible routing resources, and abundant flash switches allows very high logic utilization (much
higher than competing SRAM technologies) without compromising device routability or performance.
Logic functions within the device are interconnected through a four-level routing hierarchy.
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Fusion Device Family Overview
Specifying I/O States During Programming
You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for
PDB files generated from Designer v8.5 or greater. See the FlashPro User Guide for more information.

Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have
limited display of Pin Numbers only.

The I/Os are controlled by the JTAG Boundary Scan register during programming, except for the analog
pins (AC, AT and AV). The Boundary Scan register of the AG pin can be used to enable/disable the gate
driver in software v9.0.

1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during
programming.

2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator
window appears.

3. Click the Specify I/O States During Programming button to display the Specify I/O States
During Programming dialog box.

4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.
Select the I/Os you wish to modify (Figure 1-3).

5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings
for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state
settings: 

1 – I/O is set to drive out logic High

0 – I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated 

6. Click OK to return to the FlashPoint – Programming File Generator window.

I/O States During programming are saved to the ADB and resulting programming files after completing
programming file generation.

Figure 1-3 • I/O States During Programming Window
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Device Architecture
Array Coordinates
During many place-and-route operations in the Microsemi Designer software tool, it is possible to set
constraints that require array coordinates. Table 2-3 is provided as a reference. The array coordinates
are measured from the lower left (0, 0). They can be used in region constraints for specific logic
groups/blocks, designated by a wildcard, and can contain core cells, memories, and I/Os.

Table 2-3 provides array coordinates of core cells and memory blocks.

I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed
because there is not a one-to-one correspondence between I/O cells and edge core cells. In addition, the
I/O coordinate system changes depending on the die/package combination. It is not listed in Table 2-3.
The Designer ChipPlanner tool provides array coordinates of all I/O locations. I/O and cell coordinates
are used for placement constraints. However, I/O placement is easier by package pin assignment. 

Figure 2-7 illustrates the array coordinates of an AFS600 device. For more information on how to use
array coordinates for region/placement constraints, see the Designer User's Guide or online help
(available in the software) for Fusion software tools.

Table 2-3 • Array Coordinates 

Device

VersaTiles Memory Rows All

Min. Max. Bottom Top Min. Max.

x y x y (x, y) (x, y) (x, y) (x, y)

AFS090 3 2 98 25 None (3, 26) (0, 0) (101, 29)

AFS250 3 2 130 49 None (3, 50) (0, 0) (133, 53)

AFS600 3 4 194 75 (3, 2) (3, 76) (0, 0) (197, 79)

AFS1500 3 4 322 123 (3, 2) (3, 124) (0, 0) (325, 129)

Note: The vertical I/O tile coordinates are not shown. West side coordinates are {(0, 2) to (2, 2)} to {(0, 77) to (2, 77)};
east side coordinates are {(195, 2) to (197, 2)} to {(195, 77) to (197, 77)}.

Figure 2-7 • Array Coordinates for AFS600
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Fusion Family of Mixed Signal FPGAs
Routing Architecture
The routing structure of Fusion devices is designed to provide high performance through a flexible 
four-level hierarchy of routing resources: ultra-fast local resources; efficient long-line resources; high-
speed very-long-line resources; and the high-performance VersaNet networks.

The ultra-fast local resources are dedicated lines that allow the output of each VersaTile to connect
directly to every input of the eight surrounding VersaTiles (Figure 2-8). The exception to this is that the
SET/CLR input of a VersaTile configured as a D-flip-flop is driven only by the VersaNet global network.

The efficient long-line resources provide routing for longer distances and higher-fanout connections.
These resources vary in length (spanning one, two, or four VersaTiles), run both vertically and
horizontally, and cover the entire Fusion device (Figure 2-9 on page 2-9). Each VersaTile can drive
signals onto the efficient long-line resources, which can access every input of every VersaTile. Active
buffers are inserted automatically by routing software to limit loading effects.

The high-speed very-long-line resources, which span the entire device with minimal delay, are used to
route very long or high-fanout nets: length ±12 VersaTiles in the vertical direction and length ±16 in the
horizontal direction from a given core VersaTile (Figure 2-10 on page 2-10). Very long lines in Fusion
devices, like those in ProASIC3 devices, have been enhanced. This provides a significant performance
boost for long-reach signals.

The high-performance VersaNet global networks are low-skew, high-fanout nets that are accessible from
external pins or from internal logic (Figure 2-11 on page 2-11). These nets are typically used to distribute
clocks, reset signals, and other high-fanout nets requiring minimum skew. The VersaNet networks are
implemented as clock trees, and signals can be introduced at any junction. These can be employed
hierarchically, with signals accessing every input on all VersaTiles.

Note: Input to the core cell for the D-flip-flop set and reset is only available via the VersaNet global network connection.

Figure 2-8 • Ultra-Fast Local Lines Connected to the Eight Nearest Neighbors
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Fusion Family of Mixed Signal FPGAs
VersaNet Timing Characteristics
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not
include I/O input buffer clock delays, as these are dependent upon I/O standard, and the clock may be
driven and conditioned internally by the CCC module. Table 2-5, Table 2-6, Table 2-7, and Table 2-8 on
page 2-17 present minimum and maximum global clock delays within the device Minimum and maximum
delays are measured with minimum and maximum loading, respectively.

Timing Characteristics  

Table 2-5 • AFS1500 Global Resource Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description
–2 –1 Std. 

Units
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2

tRCKL Input Low Delay for Global Clock 1.53 1.75 1.74 1.99 2.05 2.34 ns

tRCKH Input High Delay for Global Clock 1.53 1.79 1.75 2.04 2.05 2.40 ns

tRCKMPWH Minimum Pulse Width High for Global Clock ns

tRCKMPWL Minimum Pulse Width Low for Global Clock ns

tRCKSW Maximum Skew for Global Clock 0.26 0.29 0.34 ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element
located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a
fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-6 • AFS600 Global Resource Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description
–2 –1 Std. 

Units
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2

tRCKL Input Low Delay for Global Clock 1.27 1.49 1.44 1.70 1.69 2.00  ns 

tRCKH Input High Delay for Global Clock 1.26 1.54 1.44 1.75 1.69 2.06  ns 

tRCKMPWH Minimum Pulse Width High for Global Clock  ns 

tRCKMPWL Minimum Pulse Width Low for Global Clock  ns 

tRCKSW Maximum Skew for Global Clock 0.27 0.31 0.36  ns 

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element
located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a
fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.
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Device Architecture
Embedded Memories
Fusion devices include four types of embedded memory: flash block, FlashROM, SRAM, and FIFO.

Flash Memory Block
Fusion is the first FPGA that offers a flash memory block (FB). Each FB block stores 2 Mbits of data. The
flash memory block macro is illustrated in Figure 2-32. The port pin name and descriptions are detailed
on Table 2-19 on page 2-40. All flash memory block signals are active high, except for CLK and active
low RESET. All flash memory operations are synchronous to the rising edge of CLK.

Figure 2-32 • Flash Memory Block
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Fusion Family of Mixed Signal FPGAs
Program Operation
A Program operation is initiated by asserting the PROGRAM signal on the interface. Program operations
save the contents of the Page Buffer to the FB Array. Due to the technologies inherent in the FB, the total
programming (including erase) time per page of the eNVM is 6.8 ms. While the FB is writing the data to
the array, the BUSY signal will be asserted. 

During a Program operation, the sector and page addresses on ADDR are compared with the stored
address for the page (and sector) in the Page Buffer. If there is a mismatch between the two addresses,
the Program operation will be aborted and an error will be reported on the STATUS output.

It is possible to write the Page Buffer to a different page in memory. When asserting the PROGRAM pin,
if OVERWRITEPAGE is asserted as well, the FB will write the contents of the Page Buffer to the sector
and page designated on the ADDR inputs if the destination page is not Overwrite Protected.

A Program operation can be utilized to either modify the contents of the page in the flash memory block or
change the protections for the page. Setting the OVERWRITEPROTECT bit on the interface while
asserting the PROGRAM pin will put the page addressed into Overwrite Protect Mode. Overwrite Protect
Mode safeguards a page from being inadvertently overwritten during subsequent Program or Erase
operations. 

Program operations that result in a STATUS value of '01' do not modify the addressed page. For all other
values of STATUS, the addressed page is modified. Program errors include the following:

1. Attempting to program a page that is Overwrite Protected (STATUS = '01')

2. Attempting to program a page that is not in the Page Buffer when the Page Buffer has entered
Page Loss Protection Mode (STATUS = '01')

3. Attempting to perform a program with OVERWRITEPAGE set when the page addressed has
been Overwrite Protected (STATUS = '01')

4. The Write Count of the page programmed exceeding the Write Threshold defined in the part
specification (STATUS = '11')

5. The ECC Logic determining that there is an uncorrectable error within the programmed page
(STATUS = '10')

6. Attempting to program a page that is not in the Page Buffer when OVERWRITEPAGE is not set
and the page in the Page Buffer is modified (STATUS = '01')

7. Attempting to program the page in the Page Buffer when the Page Buffer is not modified

The waveform for a Program operation is shown in Figure 2-36.

Note: OVERWRITEPAGE is only sampled when the PROGRAM or ERASEPAGE pins are asserted.
OVERWRITEPAGE is ignored in all other operations.

Figure 2-36 • FB Program Waveform
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Device Architecture
Unprotect Page Operation
An Unprotect Page operation will clear the protection for a page addressed on the ADDR input. It is
initiated by setting the UNPROTECTPAGE signal on the interface along with the page address on
ADDR. 

If the page is not in the Page Buffer, the Unprotect Page operation will copy the page into the Page
Buffer. The Copy Page operation occurs only if the current page in the Page Buffer is not Page Loss
Protected.

The waveform for an Unprotect Page operation is shown in Figure 2-42.

The Unprotect Page operation can incur the following error conditions:

1. If the copy of the page to the Page Buffer determines that the page has a single-bit correctable
error in the data, it will report a STATUS = '01'.

2. If the address on ADDR does not match the address of the Page Buffer, PAGELOSSPROTECT is
asserted, and the Page Buffer has been modified, then STATUS = '11' and the addressed page is
not loaded into the Page Buffer.

3. If the copy of the page to the Page Buffer determines that at least one block in the page has a
double-bit uncorrectable error, STATUS = '10' and the Page Buffer will contain the corrupted data.

Discard Page Operation
If the contents of the modified Page Buffer have to be discarded, the DISCARDPAGE signal should be
asserted. This command results in the Page Buffer being marked as unmodified.

The timing for the operation is shown in Figure 2-43. The BUSY signal will remain asserted until the
operation has completed.

Figure 2-42 • FB Unprotected Page Waveform
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Fusion Family of Mixed Signal FPGAs
Channel Input Offset Error

Channel Offset error is measured as the input voltage that causes the transition from zero to a count of
one. An Ideal Prescaler will have offset equal to ½ of LSB voltage. Offset error is a positive or negative
when the first transition point is higher or lower than ideal. Offset error is expressed in LSB or input
voltage.

Total Channel Error

Total Channel Error is defined as the total error measured compared to the ideal value. Total Channel
Error is the sum of gain error and offset error combined. Figure 2-68 shows how Total Channel Error is
measured.

Total Channel Error is defined as the difference between the actual ADC output and ideal ADC output. In
the example shown in Figure 2-68, the Total Channel Error would be a negative number.

Figure 2-68 • Total Channel Error Example

A
D

C
 O

ut
pu

t C
od

e

Id
ea

l O
ut

pu
t

Input Voltage to Prescaler

Total C hannel Error

C hannel Gain

Actual Output

Channel Input
Offset Error

}

Revision 6 2-84



Device Architecture
Gain Error 
The gain error of an ADC indicates how well the slope of an actual transfer function matches the slope of
the ideal transfer function. Gain error is usually expressed in LSB or as a percent of full-scale (%FSR).
Gain error is the full-scale error minus the offset error (Figure 2-84).

Gain Error Drift
Gain-error drift is the variation in gain error due to a change in ambient temperature, typically expressed
in ppm/°C.

Figure 2-84 • Gain Error
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Fusion Family of Mixed Signal FPGAs
EQ 16 through EQ 18 can be used to calculate the acquisition time required for a given input. The STC
signal gives the number of sample periods in ADCCLK for the acquisition time of the desired signal. If the
actual acquisition time is higher than the STC value, the settling time error can affect the accuracy of the
ADC, because the sampling capacitor is only partially charged within the given sampling cycle. Example
acquisition times are given in Table 2-44 and Table 2-45. When controlling the sample time for the ADC
along with the use of the active bipolar prescaler, current monitor, or temperature monitor, the minimum
sample time(s) for each must be obeyed. EQ 19 can be used to determine the appropriate value of STC.

You can calculate the minimum actual acquisition time by using EQ 16:

VOUT = VIN(1 – e–t/RC)

EQ 16

For 0.5 LSB gain error, VOUT should be replaced with (VIN –(0.5 × LSB Value)):

(VIN – 0.5 × LSB Value) = VIN(1 – e–t/RC)

EQ 17

where VIN is the ADC reference voltage (VREF)

Solving EQ 17:

t = RC x ln (VIN / (0.5 x LSB Value))

EQ 18

where R = ZINAD + RSOURCE and C = CINAD.

Calculate the value of STC by using EQ 19.

tSAMPLE = (2 + STC) x (1 / ADCCLK) or tSAMPLE = (2 + STC) x (ADC Clock Period)

EQ 19

where ADCCLK = ADC clock frequency in MHz.

tSAMPLE = 0.449 µs from bit resolution in Table 2-44.

ADC Clock frequency = 10 MHz or a 100 ns period.

STC = (tSAMPLE / (1 / 10 MHz)) – 2 = 4.49 – 2 = 2.49. 

You must round up to 3 to accommodate the minimum sample time.

Sample Phase
A conversion is performed in three phases. In the first phase, the analog input voltage is sampled on the
input capacitor. This phase is called sample phase. During the sample phase, the output signals BUSY
and SAMPLE change from '0' to '1', indicating the ADC is busy and sampling the analog signal. The
sample time can be controlled by input signals STC[7:0]. The sample time can be calculated by EQ 20.
When controlling the sample time for the ADC along with the use of Prescaler or Current Monitor or
Temperature Monitor, the minimum sample time for each must be obeyed.

Table 2-44 • Acquisition Time Example with VAREF = 2.56 V

VIN = 2.56V, R = 4K (RSOURCE ~ 0), C = 18 pF

Resolution LSB Value (mV) Min. Sample/Hold Time for 0.5 LSB (µs)

8 10 0.449

10 2.5 0.549

12 0.625 0.649

Table 2-45 • Acquisition Time Example with VAREF = 3.3 V

VIN = 3.3V, R = 4K (RSOURCE ~ 0), C = 18 pF

Resolution LSB Value (mV) Min. Sample/Hold time for 0.5 LSB (µs)

8 12.891 0.449

10 3.223 0.549

12 0.806 0.649
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Device Architecture
Digital Input using Analog Pads AV, AC and AT

VIND2,3 Input Voltage Refer to Table 3-2 on page 3-3

VHYSDIN Hysteresis 0.3 V

VIHDIN Input High 1.2 V

VILDIN Input Low 0.9 V

VMPWDIN Minimum Pulse With 50 ns

FDIN Maximum Frequency 10 MHz

ISTBDIN Input Leakage Current 2 µA

IDYNDIN Dynamic Current 20 µA

tINDIN Input Delay 10 ns

Gate Driver Output Using Analog Pad AG

VG Voltage Range Refer to Table 3-2 on page 3-3

IG Output Current Drive High Current Mode6 at 1.0 V ±20 mA

Low Current Mode: ±1 µA 0.8 1.0 1.3 µA

Low Current Mode: ±3 µA 2.0 2.7 3.3 µA

Low Current Mode: ± 10 µA 7.4 9.0 11.5 µA

Low Current Mode: ± 30 µA 21.0 27.0 32.0 µA

IOFFG Maximum Off Current 100 nA

FG Maximum switching rate High Current Mode6 at 1.0 V, 1 
k resistive load

1.3 MHz

Low Current Mode: 
±1 µA, 3 M resistive load

3 KHz

Low Current Mode: 
±3 µA, 1 M resistive load

7 KHz

Low Current Mode: 
±10 µA, 300 k resistive load

25 KHz

Low Current Mode: 
±30 µA, 105 k resistive load

78 KHz

Table 2-49 • Analog Channel Specifications  (continued)
Commercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise), 
Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter Description Condition Min. Typ. Max. Units

Notes:

1. VRSM is the maximum voltage drop across the current sense resistor.
2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no

reliability concern on digital inputs as long as VIND does not exceed these limits.

3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.

4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance
allowed across the AT pins is 500 pF.

5. The temperature offset is a fixed positive value.

6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on
voltage on the pad.

7. When using SmartGen Analog System Builder, CalibIP is required to obtain specified offset. For further details on
CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA
Fabric User Guide.
2-119 Revision 6



Fusion Family of Mixed Signal FPGAs
Analog Configuration MUX
The ACM is the interface between the FPGA, the Analog Block configurations, and the real-time counter.
Microsemi Libero SoC will generate IP that will load and configure the Analog Block via the ACM.
However, users are not limited to using the Libero SoC IP. This section provides a detailed description of
the ACM's register map, truth tables for proper configuration of the Analog Block and RTC, as well as
timing waveforms so users can access and control the ACM directly from their designs. 

The Analog Block contains four 8-bit latches per Analog Quad that are initialized through the ACM.
These latches act as configuration bits for Analog Quads. The ACM block runs from the core voltage
supply (1.5 V).

Access to the ACM is achieved via 8-bit address and data busses with enables. The pin list is provided in
Table 2-36 on page 2-78. The ACM clock speed is limited to a maximum of 10 MHz, more than sufficient
to handle the low-bandwidth requirements of configuring the Analog Block and the RTC (sub-block of the
Analog Block).

Table 2-54 decodes the ACM address space and maps it to the corresponding Analog Quad and
configuration byte for that quad.

Table 2-54 • ACM Address Decode Table for Analog Quad

ACMADDR [7:0] in 
Decimal Name Description

Associated 
Peripheral

0 – – Analog Quad

1 AQ0 Byte 0 Analog Quad

2 AQ0 Byte 1 Analog Quad

3 AQ0 Byte 2 Analog Quad

4 AQ0 Byte 3 Analog Quad

5 AQ1 Byte 0 Analog Quad

.

.

.

.

.

.

.

.

.

Analog Quad

36 AQ8 Byte 3 Analog Quad

37 AQ9 Byte 0 Analog Quad

38 AQ9 Byte 1 Analog Quad

39 AQ9 Byte 2 Analog Quad

40 AQ9 Byte 3 Analog Quad

41 Undefined Analog Quad

.

.

.

.

.

.

Undefined Analog Quad

63 Undefined RTC

64 COUNTER0 Counter bits 7:0 RTC

65 COUNTER1 Counter bits 15:8 RTC

66 COUNTER2 Counter bits 23:16 RTC

67 COUNTER3 Counter bits 31:24 RTC

68 COUNTER4 Counter bits 39:32 RTC

72 MATCHREG0 Match register bits 7:0 RTC
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Fusion Family of Mixed Signal FPGAs
Table 2-68 • I/O Bank Support by Device

I/O Bank AFS090 AFS250 AFS600 AFS1500

Standard I/O N N – –

Advanced I/O E, W E, W E, W E, W

Pro I/O – – N N

Analog Quad S S S S

Note: E = East side of the device
W = West side of the device
N = North side of the device
S = South side of the device

Table 2-69 • Fusion VCCI Voltages and Compatible Standards

VCCI (typical) Compatible Standards

3.3 V LVTTL/LVCMOS 3.3, PCI 3.3, SSTL3 (Class I and II),* GTL+ 3.3, GTL 3.3,* LVPECL

2.5 V LVCMOS 2.5, LVCMOS 2.5/5.0, SSTL2 (Class I and II),* GTL+ 2.5,* GTL 2.5,* LVDS, BLVDS, M-
LVDS

1.8 V LVCMOS 1.8

1.5 V LVCMOS 1.5, HSTL (Class I),* HSTL (Class II)*

Note: *I/O standard supported by Pro I/O banks.

Table 2-70 • Fusion VREF Voltages and Compatible Standards*

VREF (typical)  Compatible Standards

1.5 V SSTL3 (Class I and II)

1.25 V SSTL2 (Class I and II)

1.0 V GTL+ 2.5, GTL+ 3.3

0.8 V GTL 2.5, GTL 3.3

0.75 V HSTL (Class I), HSTL (Class II)

Note: *I/O standards supported by Pro I/O banks.
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Fusion Family of Mixed Signal FPGAs
Table 2-82 • Advanced I/O Default Attributes

I/O Standards SLEW (output only) OUT_DRIVE (output only) S
K
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LVTTL/LVCMOS 3.3 V Refer to the following 
tables for more 
information:

Table 2-78 on page 2-152

Table 2-79 on page 2-152

Table 2-80 on page 2-152 

Refer to the following tables 
for more information:

Table 2-78 on page 2-152

Table 2-79 on page 2-152

Table 2-80 on page 2-152 

Off None 35 pF – 

LVCMOS 2.5 V Off None 35 pF –

LVCMOS 2.5/5.0 V Off None 35 pF –

LVCMOS 1.8 V Off None 35 pF –

LVCMOS 1.5 V Off None 35 pF –

PCI (3.3 V) Off None 10 pF –

PCI-X (3.3 V) Off None 10 pF –

LVDS, BLVDS, M-LVDS Off None – –

LVPECL Off None – –
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Device Architecture
1.5 V LVCMOS (JESD8-11)
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 1.5 V applications. It uses a 1.5 V input buffer and push-pull output buffer.  

Table 2-126 • Minimum and Maximum DC Input and Output Levels

1.5 V 
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

Applicable to Pro I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 4 4 33 25 10 10

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 6 6 39 32 10 10

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 8 8 55 66 10 10

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12 12 55 66 10 10

Applicable to Advanced I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 33 25 10 10

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 6 6 39 32 10 10

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 8 8 55 66 10 10

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12 55 66 10 10

Applicable to Pro I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-122 • AC Loading

Table 2-127 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 1.5 0.75 – 35

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point
Test Point

Enable PathData Path 35 pF

R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
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Device Architecture
User-Defined Supply Pins

VREF I/O Voltage Reference

Reference voltage for I/O minibanks. Both AFS600 and AFS1500 (north bank only) support Microsemi
Pro I/O. These I/O banks support voltage reference standard I/O. The VREF pins are configured by the
user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated as the voltage
reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and
(II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its
minibank.

VAREF Analog Reference Voltage

The Fusion device can be configured to generate a 2.56 V internal reference voltage that can be used by
the ADC. While using the internal reference, the reference voltage is output on the VAREF pin for use as
a system reference. If a different reference voltage is required, it can be supplied by an external source
and applied to this pin. The valid range of values that can be supplied to the ADC is 1.0 V to 3.3 V. When
VAREF is internally generated by the Fusion device, a bypass capacitor must be connected from this pin
to ground. The value of the bypass capacitor should be between 3.3 µF and 22 µF, which is based on the
needs of the individual designs. The choice of the capacitor value has an impact on the settling time it
takes the VAREF signal to reach the required specification of 2.56 V to initiate valid conversions by the
ADC. If the lower capacitor value is chosen, the settling time required for VAREF to achieve 2.56 V will
be shorter than when selecting the larger capacitor value. The above range of capacitor values supports
the accuracy specification of the ADC, which is detailed in the datasheet. Designers choosing the smaller
capacitor value will not obtain as much margin in the accuracy as that achieved with a larger capacitor
value. Depending on the capacitor value selected in the Analog System Builder, a tool in Libero SoC, an
automatic delay circuit will be generated using logic tiles available within the FPGA to ensure that VAREF
has achieved the 2.56 V value. Microsemi recommends customers use 10 µF as the value of the bypass
capacitor. Designers choosing to use an external VAREF need to ensure that a stable and clean VAREF
source is supplied to the VAREF pin before initiating conversions by the ADC. Designers should also
make sure that the ADCRESET signal is deasserted before initiating valid conversions.2 

If the user connects VAREF to external 3.3 V on their board, the internal VAREF driving OpAmp tries to
bring the pin down to the nominal 2.56 V until the device is programmed and up/functional. Under this
scenario, it is recommended to connect an external 3.3 V supply through a ~1 KOhm resistor to limit
current, along with placing a 10-100nF capacitor between VAREF and GNDA.

User Pins

I/O User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are
compatible with the I/O standard selected. Unused I/O pins are configured as inputs with pull-up
resistors.

During programming, I/Os become tristated and weakly pulled up to VCCI. With the VCCI and VCC
supplies continuously powered up, when the device transitions from programming to operating mode, the
I/Os get instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

• Output buffer is disabled (with tristate value of high impedance)

• Input buffer is disabled (with tristate value of high impedance)

• Weak pull-up is programmed

Axy Analog Input/Output

Analog I/O pin, where x is the analog pad type (C = current pad, G = Gate driver pad, T = Temperature
pad, V = Voltage pad) and y is the Analog Quad number (0 to 9). There is a minimum 1 M to ground on
AV, AC, and AT. This pin can be left floating when it is unused.

2. The ADC is functional with an external reference down to 1V, however to meet the performance parameters highlighted in the
datasheet refer to the VAREF specification in Table 3-2 on page 3-3.
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DC and Power Characteristics
Differential 

LVDS – 2.5 7.74 88.92

LVPECL – 3.3 19.54 166.52

Applicable to Standard I/O Banks

Single-Ended 

3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 431.08

2.5 V LVCMOS 35 2.5 – 247.36

1.8 V LVCMOS 35 1.8 – 128.46

1.5 V LVCMOS (JESD8-11) 35 1.5 – 89.46

Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings1  (continued)

CLOAD (pF) VCCI (V) 
Static Power
PDC8 (mW)2 

Dynamic Power
PAC10 (µW/MHz)3

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.
2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.
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Fusion Family of Mixed Signal FPGAs
74 AV2 AV4

75 AC2 AC4

76 AG2 AG4

77 AT2 AT4

78 ATRTN1 ATRTN2

79 AT3 AT5

80 AG3 AG5

81 AC3 AC5

82 AV3 AV5

83 AV4 AV6

84 AC4 AC6

85 AG4 AG6

86 AT4 AT6

87 ATRTN2 ATRTN3

88 AT5 AT7

89 AG5 AG7

90 AC5 AC7

91 AV5 AV7

92 NC AV8

93 NC AC8

94 NC AG8

95 NC AT8

96 NC ATRTN4

97 NC AT9

98 NC AG9

99 NC AC9

100 NC AV9

101 GNDAQ GNDAQ

102 VCC33A VCC33A

103 ADCGNDREF ADCGNDREF

104 VAREF VAREF

105 PUB PUB

106 VCC33A VCC33A

107 GNDA GNDA

108 PTEM PTEM

109 PTBASE PTBASE

110 GNDNVM GNDNVM

PQ208

Pin 
Number AFS250 Function AFS600 Function

111 VCCNVM VCCNVM

112 VCC VCC

112 VCC VCC

113 VPUMP VPUMP

114 GNDQ NC

115 VCCIB1 TCK

116 TCK TDI

117 TDI TMS

118 TMS TDO

119 TDO TRST

120 TRST VJTAG

121 VJTAG IO57NDB2V0

122 IO57NDB1V0 GDC2/IO57PDB2V0

123 GDC2/IO57PDB1V0 IO56NDB2V0

124 IO56NDB1V0 GDB2/IO56PDB2V0

125 GDB2/IO56PDB1V0 IO55NDB2V0

126 VCCIB1 GDA2/IO55PDB2V0

127 GND GDA0/IO54NDB2V0

128 IO55NDB1V0 GDA1/IO54PDB2V0

129 GDA2/IO55PDB1V0 VCCIB2

130 GDA0/IO54NDB1V0 GND

131 GDA1/IO54PDB1V0 VCC

132 GDB0/IO53NDB1V0 GCA0/IO45NDB2V0

133 GDB1/IO53PDB1V0 GCA1/IO45PDB2V0

134 GDC0/IO52NDB1V0 GCB0/IO44NDB2V0

135 GDC1/IO52PDB1V0 GCB1/IO44PDB2V0

136 IO51NSB1V0 GCC0/IO43NDB2V
0

137 VCCIB1 GCC1/IO43PDB2V0

138 GND IO42NDB2V0

139 VCC IO42PDB2V0

140 IO50NDB1V0 IO41NDB2V0

141 IO50PDB1V0 GCC2/IO41PDB2V0

142 GCA0/IO49NDB1V0 VCCIB2

143 GCA1/IO49PDB1V0 GND

144 GCB0/IO48NDB1V0 VCC

145 GCB1/IO48PDB1V0 IO40NDB2V0

146 GCC0/IO47NDB1V0 GCB2/IO40PDB2V0

PQ208

Pin 
Number AFS250 Function AFS600 Function
Revision 6 4-9



Datasheet Information
Advance v0.5
(June 2006)

The low power modes of operation were updated and clarified. N/A

The AFS1500 digital I/O count was updated in Table 1 • Fusion Family. i

The AFS1500 digital I/O count was updated in the "Package I/Os: Single-/Double-
Ended (Analog)" table.

ii

The "Voltage Regulator Power Supply Monitor (VRPSM)" was updated. 2-36

Figure 2-45 • FlashROM Timing Diagram was updated. 2-53

The "256-Pin FBGA" table for the AFS1500 is new. 3-12

Advance v0.4
(April 2006)

The G was moved in the "Product Ordering Codes" section. III

Advance v0.3
(April 2006)

The "Features and Benefits" section was updated. I

The "Fusion Family" table was updated. I

The "Package I/Os: Single-/Double-Ended (Analog)" table was updated. II

The "Product Ordering Codes" table was updated. III

The "Temperature Grade Offerings" table was updated. IV

The "General Description" section was updated to include ARM information. 1-1

Figure 2-46 • FlashROM Timing Diagram was updated. 2-58

The "FlashROM" section was updated. 2-57

The "RESET" section was updated. 2-61

The "RESET" section was updated. 2-64

Figure 2-27 · Real-Time Counter System was updated. 2-35

Table 2-19 • Flash Memory Block Pin Names was updated. 2-43

Figure 2-33 • Flash Memory Block Diagram was updated to include AUX block
information.

2-45

Figure 2-34 • Flash Memory Block Organization was updated to include AUX block
information.

2-46

The note in the "Program Operation" section was updated. 2-48

Figure 2-76 • Gate Driver Example was updated. 2-95

The "Analog Quad ACM Description" section was updated. 2-130

Information about the maximum pad input frequency was added to the "Gate Driver"
section.

2-94

Figure 2-65 • Analog Block Macro was updated. 2-81

Figure 2-65 • Analog Block Macro was updated. 2-81

The "Analog Quad" section was updated. 2-84

The "Voltage Monitor" section was updated. 2-86

The "Direct Digital Input" section was updated. 2-89

The "Current Monitor" section was updated. 2-90

Information about the maximum pad input frequency was added to the "Gate Driver"
section.

2-94
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