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Device Architecture
Timing Characteristics

Sample VersaTile Specifications—Sequential Module
The Fusion library offers a wide variety of sequential cells, including flip-flops and latches. Each has a
data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a
representative sample from the library (Figure 2-5). For more details, refer to the IGLOO, ProASIC3,
SmartFusion and Fusion Macro Library Guide. 

Table 2-1 • Combinatorial Cell Propagation Delays
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell Equation Parameter –2 –1 Std. Units

INV Y = !A tPD 0.40 0.46 0.54 ns

AND2 Y = A · B tPD 0.47 0.54 0.63 ns

NAND2 Y = !(A · B) tPD 0.47 0.54 0.63 ns

OR2 Y = A + B tPD 0.49 0.55 0.65 ns

NOR2 Y = !(A + B) tPD 0.49 0.55 0.65 ns

XOR2 Y = A B tPD 0.74 0.84 0.99 ns

MAJ3 Y = MAJ(A, B, C) tPD 0.70 0.79 0.93 ns

XOR3 Y = A  B C tPD 0.87 1.00 1.17 ns

MUX2 Y = A !S + B S tPD 0.51 0.58 0.68 ns

AND3 Y = A · B · C tPD 0.56 0.64 0.75 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Figure 2-5 • Sample of Sequential Cells
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Device Architecture
VersaNet Global Networks and Spine Access 
The Fusion architecture contains a total of 18 segmented global networks that can access the
VersaTiles, SRAM, and I/O tiles on the Fusion device. There are 6 chip (main) global networks that
access the entire device and 12 quadrant networks (3 in each quadrant). Each device has a total of 18
globals. These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets,
including clock signals. In addition, these highly segmented global networks offer users the flexibility to
create low-skew local networks using spines for up to 180 internal/external clocks (in an AFS1500
device) or other high-fanout nets in Fusion devices. Optimal usage of these low-skew networks can
result in significant improvement in design performance on Fusion devices. 

The nine spines available in a vertical column reside in global networks with two separate regions of
scope: the quadrant global network, which has three spines, and the chip (main) global network, which
has six spines. Note that there are three quadrant spines in each quadrant of the device. There are four
quadrant global network regions per device (Figure 2-12 on page 2-12). 

The spines are the vertical branches of the global network tree, shown in Figure 2-11 on page 2-11. Each
spine in a vertical column of a chip (main) global network is further divided into two equal-length spine
segments: one in the top and one in the bottom half of the die. 

Each spine and its associated ribs cover a certain area of the Fusion device (the "scope" of the spine;
see Figure 2-11 on page 2-11). Each spine is accessed by the dedicated global network MUX tree
architecture, which defines how a particular spine is driven—either by the signal on the global network
from a CCC, for example, or another net defined by the user (Figure 2-13). Quadrant spines can be
driven from user I/Os on the north and south sides of the die, via analog I/Os configured as direct digital
inputs. The ability to drive spines in the quadrant global networks can have a significant effect on system
performance for high-fanout inputs to a design. 

Details of the chip (main) global network spine-selection MUX are presented in Figure 2-13. The spine
drivers for each spine are located in the middle of the die. 

Quadrant spines are driven from a north or south rib. Access to the top and bottom ribs is from the corner
CCC or from the I/Os on the north and south sides of the device. For details on using spines in Fusion
devices, see the application note Using Global Resources in Actel Fusion Devices.

Figure 2-13 • Spine-Selection MUX of Global Tree
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Device Architecture
Table 2-7 • AFS250 Global Resource Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description
–2 –1 Std. 

Units
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2

tRCKL Input Low Delay for Global Clock 0.89 1.12 1.02 1.27 1.20 1.50  ns 

tRCKH Input High Delay for Global Clock 0.88 1.14 1.00 1.30 1.17 1.53  ns 

tRCKMPWH Minimum Pulse Width High for Global Clock  ns 

tRCKMPWL Minimum Pulse Width Low for Global Clock  ns 

tRCKSW Maximum Skew for Global Clock 0.26 0.30 0.35  ns 

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element
located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully
loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-8 • AFS090 Global Resource Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description
–2 –1 Std. 

Units
Min.1 Max.2 Min.1 Max.2 Min.1 Max.2

tRCKL Input Low Delay for Global Clock 0.84 1.07 0.96 1.21 1.13 1.43  ns 

tRCKH Input High Delay for Global Clock 0.83 1.10 0.95 1.25 1.12 1.47  ns 

tRCKMPWH Minimum Pulse Width High for Global Clock  ns 

tRCKMPWL Minimum Pulse Width Low for Global Clock  ns 

tRCKSW Maximum Skew for Global Clock 0.27 0.30 0.36  ns 

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element
located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a
fully loaded row (all available flip-flops are connected to the global net in the row).

3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.
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Device Architecture
PLL Macro
The PLL functionality of the clock conditioning block is supported by the PLL macro. Note that the PLL
macro reference clock uses the CLKA input of the CCC block, which is only accessible from the global
A[2:0] package pins. Refer to Figure 2-22 on page 2-25 for more information.

The PLL macro provides five derived clocks (three independent) from a single reference clock. The PLL
feedback loop can be driven either internally or externally. The PLL macro also provides power-down
input and lock output signals. During power-up, POWERDOWN should be asserted Low until VCC is up.
See Figure 2-19 on page 2-23 for more information.

Inputs:

• CLKA: selected clock input

• POWERDOWN (active low): disables PLLs. The default state is power-down on (active low). 

Outputs:

• LOCK (active high): indicates that PLL output has locked on the input reference signal

• GLA, GLB, GLC: outputs to respective global networks

• YB, YC: allows output from the CCC to be routed back to the FPGA core

As previously described, the PLL allows up to five flexible and independently configurable clock outputs.
Figure 2-23 on page 2-26 illustrates the various clock output options and delay elements.

As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these
(GLB and GLC) can be routed to the B and C global networks, respectively, and/or routed to the device
core (YB and YC).

There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).

There is also a delay element in the feedback loop that can be used to advance the clock relative to the
reference clock.

The PLL macro reference clock can be driven by an INBUF macro to create a composite macro, where
the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this
case, the I/O must be placed in one of the dedicated global I/O locations.

The PLL macro reference clock can be driven directly from the FPGA core.

The PLL macro reference clock can also be driven from an I/O routed through the FPGA regular routing
fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate it from the hardwired
I/O connection described earlier.

The visual PLL configuration in SmartGen, available with the Libero SoC and Designer tools, will derive
the necessary internal divider ratios based on the input frequency and desired output frequencies
selected by the user. SmartGen allows the user to select the various delays and phase shift values
necessary to adjust the phases between the reference clock (CLKA) and the derived clocks (GLA, GLB,
GLC, YB, and YC). SmartGen also allows the user to select where the input clock is coming from.
SmartGen automatically instantiates the special macro, PLLINT, when needed.
2-27 Revision 6



Device Architecture
FlashROM
Fusion devices have 1 kbit of on-chip nonvolatile flash memory that can be read from the FPGA core
fabric. The FlashROM is arranged in eight banks of 128 bits during programming. The 128 bits in each
bank are addressable as 16 bytes during the read-back of the FlashROM from the FPGA core (Figure 2-
45). 

The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly
from the FPGA core. When programming, each of the eight 128-bit banks can be selectively
reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves
an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports a
synchronous read and can be read on byte boundaries. The upper three bits of the FlashROM address
from the FPGA core define the bank that is being accessed. The lower four bits of the FlashROM
address from the FPGA core define which of the 16 bytes in the bank is being accessed.

The maximum FlashROM access clock is given in Table 2-26 on page 2-54. Figure 2-46 shows the
timing behavior of the FlashROM access cycle—the address has to be set up on the rising edge of the
clock for DOUT to be valid on the next falling edge of the clock.

If the address is unchanged for two cycles:

• D0 becomes invalid tCK2Q ns after the second rising edge of the clock.

• D0 becomes valid again tCK2Q ns after the second falling edge.

If the address unchanged for three cycles:

• D0 becomes invalid tCK2Q ns after the second rising edge of the clock.

• D0 becomes valid again tCK2Q ns after the second falling edge.

• D0 becomes invalid tCK2Q ns after the third rising edge of the clock.

• D0 becomes valid again tCK2Q ns after the third falling edge.

tSUPGLOSSPRO Page Loss Protect Setup Time for the Control Logic 1.69 1.93 2.27  ns 

tHDPGLOSSPRO Page Loss Protect Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUPGSTAT Page Status Setup Time for the Control Logic 2.49 2.83 3.33  ns 

tHDPGSTAT Page Status Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUOVERWRPG Over Write Page Setup Time for the Control Logic 1.88 2.14 2.52  ns 

tHDOVERWRPG Over Write Page Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSULOCKREQUEST Lock Request Setup Time for the Control Logic 0.87 0.99 1.16  ns 

tHDLOCKREQUEST Lock Request Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tRECARNVM Reset Recovery Time 0.94 1.07 1.25 ns

tREMARNVM Reset Removal Time 0.00 0.00 0.00 ns

tMPWARNVM 
Asynchronous Reset Minimum Pulse Width for the
Control Logic 

10.00 12.50 12.50  ns 

tMPWCLKNVM Clock Minimum Pulse Width for the Control Logic 4.00 5.00 5.00  ns 

tFMAXCLKNVM

Maximum Frequency for Clock for the Control Logic – for
AFS1500/AFS600

80.00 80.00 80.00 MHz

Maximum Frequency for Clock for the Control Logic – for
AFS250/AFS090

100.00 80.00 80.00 MHz

Table 2-25 • Flash Memory Block Timing (continued)
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

 Parameter  Description –2 –1 Std. 
 

Units 
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Fusion Family of Mixed Signal FPGAs
The following signals are used to configure the RAM4K9 memory element.

WIDTHA and WIDTHB
These signals enable the RAM to be configured in one of four allowable aspect ratios (Table 2-27).

BLKA and BLKB
These signals are active low and will enable the respective ports when asserted. When a BLKx signal is
deasserted, the corresponding port’s outputs hold the previous value.

WENA and WENB
These signals switch the RAM between read and write mode for the respective ports. A Low on these
signals indicates a write operation, and a High indicates a read.

CLKA and CLKB
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver.

PIPEA and PIPEB 
These signals are used to specify pipelined read on the output. A Low on PIPEA or PIPEB indicates a
nonpipelined read, and the data appears on the corresponding output in the same clock cycle. A High
indicates a pipelined, read and data appears on the corresponding output in the next clock cycle.

WMODEA and WMODEB
These signals are used to configure the behavior of the output when the RAM is in write mode. A Low on
these signals makes the output retain data from the previous read. A High indicates pass-through
behavior, wherein the data being written will appear immediately on the output. This signal is overridden
when the RAM is being read.

RESET
This active low signal resets the output to zero, disables reads and writes from the SRAM block, and
clears the data hold registers when asserted. It does not reset the contents of the memory.

ADDRA and ADDRB
These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is
specified, the unused high-order bits must be grounded (Table 2-28).

Table 2-27 • Allowable Aspect Ratio Settings for WIDTHA[1:0]

WIDTHA1, WIDTHA0 WIDTHB1, WIDTHB0 D×W

00 00 4k×1

01 01 2k×2

10 10 1k×4

11 11 512×9

Note: The aspect ratio settings are constant and cannot be changed on the fly.

Table 2-28 • Address Pins Unused/Used for Various Supported Bus Widths

D×W
ADDRx

Unused Used

4k×1 None [11:0]

2k×2 [11] [10:0]

1k×4 [11:10] [9:0]

512×9 [11:9] [8:0]

Note: The "x" in ADDRx implies A or B.
Revision 6 2-58



Fusion Family of Mixed Signal FPGAs
Analog Quad
With the Fusion family, Microsemi introduces the Analog Quad, shown in Figure 2-65 on page 2-81, as
the basic analog I/O structure. The Analog Quad is a four-channel system used to precondition a set of
analog signals before sending it to the ADC for conversion into a digital signal. To maximize the
usefulness of the Analog Quad, the analog input signals can also be configured as LVTTL digital input
signals. The Analog Quad is divided into four sections. 

The first section is called the Voltage Monitor Block, and its input pin is named AV. It contains a two-
channel analog multiplexer that allows an incoming analog signal to be routed directly to the ADC or
allows the signal to be routed to a prescaler circuit before being sent to the ADC. The prescaler can be
configured to accept analog signals between –12 V and 0 or between 0 and +12 V. The prescaler circuit
scales the voltage applied to the ADC input pad such that it is compatible with the ADC input voltage
range. The AV pin can also be used as a digital input pin. 

The second section of the Analog Quad is called the Current Monitor Block. Its input pin is named AC.
The Current Monitor Block contains all the same functions as the Voltage Monitor Block with one
addition, which is a current monitoring function. A small external current sensing resistor (typically less
than 1 ) is connected between the AV and AC pins and is in series with a power source. The Current
Monitor Block contains a current monitor circuit that converts the current through the external resistor to
a voltage that can then be read using the ADC. 

AG6 1 Output Analog Quad

AT6 1 Input Analog Quad

ATRETURN67 1 Input Temperature monitor return shared by
Analog Quads 6 and 7

Analog Quad

AV7 1 Input Analog Quad 7 Analog Quad

AC7 1 Input Analog Quad

AG7 1 Output Analog Quad

AT7 1 Input Analog Quad

AV8 1 Input Analog Quad 8 Analog Quad

AC8 1 Input Analog Quad

AG8 1 Output Analog Quad

AT8 1 Input Analog Quad

ATRETURN89 1 Input Temperature monitor return shared by
Analog Quads 8 and 9

Analog Quad

AV9 1 Input Analog Quad 9 Analog Quad

AC9 1 Input Analog Quad

AG9 1 Output Analog Quad

AT9 1 Input Analog Quad

RTCMATCH 1 Output MATCH RTC

RTCPSMMATCH 1 Output MATCH connected to VRPSM RTC

RTCXTLMODE[1:0] 2 Output Drives XTLOSC RTCMODE[1:0] pins RTC

RTCXTLSEL 1 Output Drives XTLOSC MODESEL pin RTC

RTCCLK 1 Input RTC clock input RTC

Table 2-36 • Analog Block Pin Description (continued)

Signal Name
Number 
of Bits Direction Function

Location of 
Details
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Fusion Family of Mixed Signal FPGAs
Channel Input Offset Error

Channel Offset error is measured as the input voltage that causes the transition from zero to a count of
one. An Ideal Prescaler will have offset equal to ½ of LSB voltage. Offset error is a positive or negative
when the first transition point is higher or lower than ideal. Offset error is expressed in LSB or input
voltage.

Total Channel Error

Total Channel Error is defined as the total error measured compared to the ideal value. Total Channel
Error is the sum of gain error and offset error combined. Figure 2-68 shows how Total Channel Error is
measured.

Total Channel Error is defined as the difference between the actual ADC output and ideal ADC output. In
the example shown in Figure 2-68, the Total Channel Error would be a negative number.

Figure 2-68 • Total Channel Error Example

A
D

C
 O

ut
pu

t C
od

e

Id
ea

l O
ut

pu
t

Input Voltage to Prescaler

Total C hannel Error

C hannel Gain

Actual Output

Channel Input
Offset Error

}

Revision 6 2-84



Fusion Family of Mixed Signal FPGAs
There are several popular ADC architectures, each with advantages and limitations. 
The analog-to-digital converter in Fusion devices is a switched-capacitor Successive Approximation
Register (SAR) ADC. It supports 8-, 10-, and 12-bit modes of operation with a cumulative sample rate up
to 600 k samples per second (ksps). Built-in bandgap circuitry offers 1% internal voltage reference
accuracy or an external reference voltage can be used.

As shown in Figure 2-81, a SAR ADC contains N capacitors with binary-weighted values.

To begin a conversion, all of the capacitors are quickly discharged. Then VIN is applied to all the
capacitors for a period of time (acquisition time) during which the capacitors are charged to a value very
close to VIN. Then all of the capacitors are switched to ground, and thus –VIN is applied across the
comparator. Now the conversion process begins. First, C is switched to VREF. Because of the binary
weighting of the capacitors, the voltage at the input of the comparator is then shown by EQ 11.

Voltage at input of comparator = –VIN + VREF / 2

EQ 11

If VIN is greater than VREF / 2, the output of the comparator is 1; otherwise, the comparator output is 0.
A register is clocked to retain this value as the MSB of the result. Next, if the MSB is 0, C is switched
back to ground; otherwise, it remains connected to VREF, and C / 2 is connected to VREF. The result at
the comparator input is now either –VIN + VREF / 4 or –VIN + 3 VREF / 4 (depending on the state of the
MSB), and the comparator output now indicates the value of the next most significant bit. This bit is
likewise registered, and the process continues for each subsequent bit until a conversion is completed.
The conversion process requires some acquisition time plus N + 1 ADC clock cycles to complete.

Figure 2-81 • Example SAR ADC Architecture
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Device Architecture
Table 2-92 • Summary of I/O Timing Characteristics – Software Default Settings 
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = I/O Standard Dependent
Applicable to Pro I/Os
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3.3 V LVTTL/
3.3 V LVCMOS

12 mA High 35 – 0.49 2.74 0.03 0.90 1.17 0.32 2.79 2.14 2.45 2.70 4.46 3.81 ns 

2.5 V LVCMOS 12 mA High 35 – 0.49 2.80 0.03 1.13 1.24 0.32 2.85 2.61 2.51 2.61 4.52 4.28 ns 

1.8 V LVCMOS 12 mA High 35  – 0.49 2.83 0.03 1.08 1.42 0.32 2.89 2.31 2.79 3.16 4.56 3.98 ns 

1.5 V LVCMOS 12 mA High 35  – 0.49 3.30 0.03 1.27 1.60 0.32 3.36 2.70 2.96 3.27 5.03 4.37 ns 

3.3 V PCI Per 
PCI 
spec

High 10 25 2 0.49 2.09 0.03 0.78 1.25 0.32 2.13 1.49 2.45 2.70 3.80 3.16 ns 

3.3 V PCI-X Per 
PCI-X 
spec

High 10 25 2 0.49 2.09 0.03 0.77 1.17 0.32 2.13 1.49 2.45 2.70 3.80 3.16 ns 

3.3 V GTL 20 mA High 10  25 0.49 1.55 0.03 2.19 – 0.32 1.52 1.55 0.00 0.00 3.19 3.22 ns 

2.5 V GTL 20 mA High 10  25 0.49 1.59 0.03 1.83 – 0.32 1.61 1.59 0.00 0.00 3.28 3.26 ns 

3.3 V GTL+ 35 mA High 10  25 0.49 1.53 0.03 1.19 – 0.32 1.56 1.53 0.00 0.00 3.23 3.20 ns 

2.5 V GTL+ 33 mA High 10  25 0.49 1.65 0.03 1.13 – 0.32 1.68 1.57 0.00 0.00 3.35 3.24 ns 

HSTL (I) 8 mA High 20  50 0.49 2.37 0.03 1.59 – 0.32 2.42 2.35 0.00 0.00 4.09 4.02 ns 

HSTL (II) 15 mA High 20  25 0.49 2.26 0.03 1.59 – 0.32 2.30 2.03 0.00 0.00 3.97 3.70 ns 

SSTL2 (I) 17 mA High 30  50 0.49 1.59 0.03 1.00 – 0.32 1.62 1.38 0.00 0.00 3.29 3.05 ns 

SSTL2 (II) 21 mA High 30  25 0.49 1.62 0.03 1.00 – 0.32 1.65 1.32 0.00 0.00 3.32 2.99 ns 

SSTL3 (I) 16 mA High 30  50 0.49 1.72 0.03 0.93 – 0.32 1.75 1.37 0.00 0.00 3.42 3.04 ns 

SSTL3 (II) 24 mA High 30  25 0.49 1.54 0.03 0.93 – 0.32 1.57 1.25 0.00 0.00 3.24 2.92 ns 

LVDS 24 mA High  –  – 0.49 1.57 0.03 1.36  –  –  –  –  –  –  –  – ns 

LVPECL 24 mA High  –  – 0.49 1.60 0.03 1.22  –  –  –  –  –  –  –  – ns 

Notes:

1. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values. 
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-123 on page 2-197

for connectivity. This resistor is not required during normal operation. 
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Fusion Family of Mixed Signal FPGAs
Table 2-114 • 2.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

4 mA  Std. 0.66 11.40 0.04 1.31 0.43 11.22 11.40 2.68 2.20 13.45 13.63  ns 

 –1 0.56 9.69 0.04 1.11 0.36 9.54 9.69 2.28 1.88 11.44 11.60  ns 

 –2 0.49 8.51 0.03 0.98 0.32 8.38 8.51 2.00 1.65 10.05 10.18  ns 

8 mA  Std. 0.66 7.96 0.04 1.31 0.43 8.11 7.81 3.05 2.89 10.34 10.05  ns 

 –1 0.56 6.77 0.04 1.11 0.36 6.90 6.65 2.59 2.46 8.80 8.55  ns 

 –2 0.49 5.94 0.03 0.98 0.32 6.05 5.84 2.28 2.16 7.72 7.50  ns 

12 mA  Std. 0.66 6.18 0.04 1.31 0.43 6.29 5.92 3.30 3.32 8.53 8.15  ns 

 –1 0.56 5.26 0.04 1.11 0.36 5.35 5.03 2.81 2.83 7.26 6.94  ns 

 –2 0.49 4.61 0.03 0.98 0.32 4.70 4.42 2.47 2.48 6.37 6.09  ns 

16 mA  Std. 0.66 6.18 0.04 1.31 0.43 6.29 5.92 3.30 3.32 8.53 8.15  ns 

 –1 0.56 5.26 0.04 1.11 0.36 5.35 5.03 2.81 2.83 7.26 6.94  ns 

 –2 0.49 4.61 0.03 0.98 0.32 4.70 4.42 2.47 2.48 6.37 6.09  ns 

24 mA  Std. 0.66 6.18 0.04 1.31 0.43 6.29 5.92 3.30 3.32 8.53 8.15  ns 

 –1 0.56 5.26 0.04 1.11 0.36 5.35 5.03 2.81 2.83 7.26 6.94  ns 

 –2 0.49 4.61 0.03 0.98 0.32 4.70 4.42 2.47 2.48 6.37 6.09  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
1.5 V LVCMOS (JESD8-11)
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 1.5 V applications. It uses a 1.5 V input buffer and push-pull output buffer.  

Table 2-126 • Minimum and Maximum DC Input and Output Levels

1.5 V 
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

Applicable to Pro I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 4 4 33 25 10 10

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 6 6 39 32 10 10

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 8 8 55 66 10 10

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12 12 55 66 10 10

Applicable to Advanced I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 33 25 10 10

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 6 6 39 32 10 10

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 8 8 55 66 10 10

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12 55 66 10 10

Applicable to Pro I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-122 • AC Loading

Table 2-127 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 1.5 0.75 – 35

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point
Test Point

Enable PathData Path 35 pF

R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
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3 – DC and Power Characteristics

General Specifications

Operating Conditions
Stresses beyond those listed in Table 3-1 may cause permanent damage to the device.

Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
Devices should not be operated outside the recommended operating ranges specified in Table 3-2 on
page 3-3.

Table 3-1 • Absolute Maximum Ratings 

Symbol Parameter Commercial Industrial Units

VCC DC core supply voltage –0.3 to 1.65 –0.3 to 1.65 V

VJTAG JTAG DC voltage –0.3 to 3.75 –0.3 to 3.75 V

VPUMP Programming voltage –0.3 to 3.75 –0.3 to 3.75 V

VCCPLL Analog power supply (PLL) –0.3 to 1.65 –0.3 to 1.65 V

VCCI DC I/O output buffer supply voltage –0.3 to 3.75 –0.3 to 3.75 V

VI I/O input voltage 1 –0.3 V to 3.6 V (when I/O hot insertion mode is
enabled)
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever
voltage is lower (when I/O hot-insertion mode is
disabled)

V

VCC33A +3.3 V power supply –0.3 to 3.75 2 –0.3 to 3.75 2 V

VCC33PMP +3.3 V power supply –0.3 to 3.75 2 –0.3 to 3.75 2 V

VAREF Voltage reference for ADC –0.3 to 3.75 –0.3 to 3.75 V

VCC15A Digital power supply for the analog system –0.3 to 1.65 –0.3 to 1.65 V

VCCNVM Embedded flash power supply –0.3 to 1.65 –0.3 to 1.65 V

VCCOSC Oscillator power supply –0.3 to 3.75 –0.3 to 3.75 V

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may
undershoot or overshoot according to the limits shown in Table 3-4 on page 3-4.

2. Analog data not valid beyond 3.65 V.

3. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on
voltage on the pad.

4. For flash programming and retention maximum limits, refer to Table 3-5 on page 3-5. For recommended operating limits
refer to Table 3-2 on page 3-3.
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Fusion Family of Mixed Signal FPGAs
Table 3-11 • AFS090 Quiescent Supply Current Characteristics

Parameter Description Conditions Temp. Min Typ Max Unit

ICC1 1.5 V quiescent current Operational standby4, 
VCC = 1.575 V

TJ = 25°C 5 7.5 mA

TJ = 85°C 6.5 20 mA

TJ = 100°C 14 48 mA

Standby mode5 or Sleep
mode6, VCC = 0 V

0 0 µA

ICC332 3.3 V analog supplies
current

Operational standby4, 
VCC33 = 3.63 V

TJ = 25°C 9.8 12 mA

TJ = 85°C 9.8 12 mA

TJ = 100°C 10.7 15 mA

Operational standby, only
Analog Quad and –3.3 V
output ON, VCC33 = 3.63 V

TJ = 25°C 0.30 2 mA

TJ = 85°C 0.30 2 mA

TJ = 100°C 0.45 2 mA

Standby mode5, 
VCC33 = 3.63 V

TJ = 25°C 2.9 2.9 mA

TJ = 85°C 2.9 3.0 mA

TJ = 100°C 3.5 6 mA

Sleep mode6, VCC33 = 3.63 V TJ = 25°C 17 18 µA

TJ = 85°C 18 20 µA

TJ = 100°C 24 25 µA

ICCI3 I/O quiescent current Operational standby6, 
VCCIx = 3.63 V

TJ = 25°C 260 437 µA

TJ = 85°C 260 437 µA

TJ = 100°C 260 437 µA

IJTAG JTAG I/O quiescent current Operational standby4, 
VJTAG = 3.63 V

TJ = 25°C 80 100 µA

TJ = 85°C 80 100 µA

TJ = 100°C 80 100 µA

Standby mode5 or Sleep
mode6, VJTAG = 0 V

0 0 µA

IPP Programming supply
current

Non-programming mode,
VPUMP = 3.63 V

TJ = 25°C 37 80 µA

TJ = 85°C 37 80 µA

TJ = 100°C 80 100 µA

Standby mode5 or Sleep
mode6, VPUMP = 0 V

0 0 µA

Notes:

1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, and ICCI2.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.
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Fusion Family of Mixed Signal FPGAs
B9 XTAL2 XTAL2

B10 GEA0/IO44NDB3V0 GFA0/IO66NDB3V0

B11 GEB2/IO42PDB3V0 IO60NDB3V0

B12 VCC VCC

B13 VCCNVM VCCNVM

B14 VCC15A VCC15A

B15 NCAP NCAP

B16 VCC33N VCC33N

B17 GNDAQ GNDAQ

B18 AC0 AC0

B19 AT0 AT0

B20 AT1 AT1

B21 AV1 AV1

B22 AC2 AC2

B23 ATRTN1 ATRTN1

B24 AG3 AG3

B25 AV3 AV3

B26 AG4 AG4

B27 ATRTN2 ATRTN2

B28 NC AC5

B29 VCC33A VCC33A

B30 VAREF VAREF

B31 PUB PUB

B32 PTEM PTEM

B33 GNDNVM GNDNVM

B34 VCC VCC

B35 TCK TCK

B36 TMS TMS

B37 TRST TRST

B38 GDB2/IO41PSB1V0 GDA2/IO55PSB1V0

B39 GDC0/IO38NDB1V0 GDB0/IO53NDB1V0

B40 VCCIB1 VCCIB1

B41 GCA1/IO36PDB1V0 GCA1/IO49PDB1V0

B42 GCC0/IO34NDB1V0 GCC0/IO47NDB1V0

B43 GCB2/IO33PSB1V0 GBC2/IO42PSB1V0

B44 VCC VCC

QN180

Pin Number AFS090 Function AFS250 Function

B45 GBA2/IO31PDB1V0 GBA2/IO40PDB1V0

B46 GNDQ GNDQ

B47 GBA1/IO30RSB0V0 GBA0/IO38RSB0V0

B48 GBB1/IO28RSB0V0 GBC1/IO35RSB0V0

B49 VCC VCC

B50 GBC0/IO25RSB0V0 IO31RSB0V0

B51 IO23RSB0V0 IO28RSB0V0

B52 IO20RSB0V0 IO25RSB0V0

B53 VCC VCC

B54 IO11RSB0V0 IO14RSB0V0

B55 IO08RSB0V0 IO11RSB0V0

B56 GAC1/IO05RSB0V0 IO08RSB0V0

B57 VCCIB0 VCCIB0

B58 GAB0/IO02RSB0V0 GAC0/IO04RSB0V0

B59 GAA0/IO00RSB0V0 GAA1/IO01RSB0V0

B60 VCCPLA VCCPLA

C1 NC NC

C2 NC VCCIB3

C3 GND GND

C4 NC GFC2/IO69PPB3V0

C5 GFC1/IO49PDB3V0 GFC1/IO68PDB3V0

C6 GFA0/IO47NPB3V0 GFB0/IO67NPB3V0

C7 VCCIB3 NC

C8 GND GND

C9 GEA1/IO44PDB3V0 GFA1/IO66PDB3V0

C10 GEA2/IO42NDB3V0 GEC2/IO60PDB3V0

C11 NC GEA2/IO58PSB3V0

C12 NC NC

C13 GND GND

C14 NC NC

C15 NC NC

C16 GNDA GNDA

C17 NC NC

C18 NC NC

C19 NC NC

C20 NC NC

QN180

Pin Number AFS090 Function AFS250 Function
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Package Pin Assignments
H3 XTAL2 XTAL2 XTAL2 XTAL2

H4 XTAL1 XTAL1 XTAL1 XTAL1

H5 GNDOSC GNDOSC GNDOSC GNDOSC

H6 VCCOSC VCCOSC VCCOSC VCCOSC

H7 VCC VCC VCC VCC

H8 GND GND GND GND

H9 VCC VCC VCC VCC

H10 GND GND GND GND

H11 GDC0/IO38NDB1V0 IO51NDB1V0 IO47NDB2V0 IO69NDB2V0

H12 GDC1/IO38PDB1V0 IO51PDB1V0 IO47PDB2V0 IO69PDB2V0

H13 GDB1/IO39PDB1V0 GCA1/IO49PDB1V0 GCA1/IO45PDB2V0 GCA1/IO64PDB2V0

H14 GDB0/IO39NDB1V0 GCA0/IO49NDB1V0 GCA0/IO45NDB2V0 GCA0/IO64NDB2V0

H15 GCA0/IO36NDB1V0 GCB0/IO48NDB1V0 GCB0/IO44NDB2V0 GCB0/IO63NDB2V0

H16 GCA1/IO36PDB1V0 GCB1/IO48PDB1V0 GCB1/IO44PDB2V0 GCB1/IO63PDB2V0

J1 GEA0/IO44NDB3V0 GFA0/IO66NDB3V0 GFA0/IO70NDB4V0 GFA0/IO105NDB4V0

J2 GEA1/IO44PDB3V0 GFA1/IO66PDB3V0 GFA1/IO70PDB4V0 GFA1/IO105PDB4V0

J3 IO43NDB3V0 GFB0/IO67NDB3V0 GFB0/IO71NDB4V0 GFB0/IO106NDB4V0

J4 GEC2/IO43PDB3V0 GFB1/IO67PDB3V0 GFB1/IO71PDB4V0 GFB1/IO106PDB4V0

J5 NC GFC0/IO68NDB3V0 GFC0/IO72NDB4V0 GFC0/IO107NDB4V0

J6 NC GFC1/IO68PDB3V0 GFC1/IO72PDB4V0 GFC1/IO107PDB4V0

J7 GND GND GND GND

J8 VCC VCC VCC VCC

J9 GND GND GND GND

J10 VCC VCC VCC VCC

J11 GDC2/IO41NPB1V0 IO56NPB1V0 IO56NPB2V0 IO83NPB2V0

J12 NC GDB0/IO53NPB1V0 GDB0/IO53NPB2V0 GDB0/IO80NPB2V0

J13 NC GDA1/IO54PDB1V0 GDA1/IO54PDB2V0 GDA1/IO81PDB2V0

J14 GDA0/IO40PDB1V0 GDC1/IO52PPB1V0 GDC1/IO52PPB2V0 GDC1/IO79PPB2V0

J15 NC IO50NPB1V0 IO51NSB2V0 IO77NSB2V0

J16 GDA2/IO40NDB1V0 GDC0/IO52NPB1V0 GDC0/IO52NPB2V0 GDC0/IO79NPB2V0

K1 NC IO65NPB3V0 IO67NPB4V0 IO92NPB4V0

K2 VCCIB3 VCCIB3 VCCIB4 VCCIB4

K3 NC IO65PPB3V0 IO67PPB4V0 IO92PPB4V0

K4 NC IO64PDB3V0 IO65PDB4V0 IO96PDB4V0

K5 GND GND GND GND

K6 NC IO64NDB3V0 IO65NDB4V0 IO96NDB4V0

K7 VCC VCC VCC VCC

K8 GND GND GND GND

FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function
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Fusion Family of Mixed Signal FPGAs
K9 VCC VCC VCC VCC

K10 GND GND GND GND

K11 NC GDC2/IO57PPB1V0 GDC2/IO57PPB2V0 GDC2/IO84PPB2V0

K12 GND GND GND GND

K13 NC GDA0/IO54NDB1V0 GDA0/IO54NDB2V0 GDA0/IO81NDB2V0

K14 NC GDA2/IO55PPB1V0 GDA2/IO55PPB2V0 GDA2/IO82PPB2V0

K15 VCCIB1 VCCIB1 VCCIB2 VCCIB2

K16 NC GDB1/IO53PPB1V0 GDB1/IO53PPB2V0 GDB1/IO80PPB2V0

L1 NC GEC1/IO63PDB3V0 GEC1/IO63PDB4V0 GEC1/IO90PDB4V0

L2 NC GEC0/IO63NDB3V0 GEC0/IO63NDB4V0 GEC0/IO90NDB4V0

L3 NC GEB1/IO62PDB3V0 GEB1/IO62PDB4V0 GEB1/IO89PDB4V0

L4 NC GEB0/IO62NDB3V0 GEB0/IO62NDB4V0 GEB0/IO89NDB4V0

L5 NC IO60NDB3V0 IO60NDB4V0 IO87NDB4V0

L6 NC GEC2/IO60PDB3V0 GEC2/IO60PDB4V0 GEC2/IO87PDB4V0

L7 GNDA GNDA GNDA GNDA

L8 AC0 AC0 AC2 AC2

L9 AV2 AV2 AV4 AV4

L10 AC3 AC3 AC5 AC5

L11 PTEM PTEM PTEM PTEM

L12 TDO TDO TDO TDO

L13 VJTAG VJTAG VJTAG VJTAG

L14 NC IO57NPB1V0 IO57NPB2V0 IO84NPB2V0

L15 GDB2/IO41PPB1V0 GDB2/IO56PPB1V0 GDB2/IO56PPB2V0 GDB2/IO83PPB2V0

L16 NC IO55NPB1V0 IO55NPB2V0 IO82NPB2V0

M1 GND GND GND GND

M2 NC GEA1/IO61PDB3V0 GEA1/IO61PDB4V0 GEA1/IO88PDB4V0

M3 NC GEA0/IO61NDB3V0 GEA0/IO61NDB4V0 GEA0/IO88NDB4V0

M4 VCCIB3 VCCIB3 VCCIB4 VCCIB4

M5 NC IO58NPB3V0 IO58NPB4V0 IO85NPB4V0

M6 NC NC AV0 AV0

M7 NC NC AC1 AC1

M8 AG1 AG1 AG3 AG3

M9 AC2 AC2 AC4 AC4

M10 AC4 AC4 AC6 AC6

M11 NC AG5 AG7 AG7

M12 VPUMP VPUMP VPUMP VPUMP

M13 VCCIB1 VCCIB1 VCCIB2 VCCIB2

M14 TMS TMS TMS TMS

FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function
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Fusion Family of Mixed Signal FPGAs
H13 GND GND

H14 VCCIB1 VCCIB1

H15 GND GND

H16 GND GND

H17 NC IO53NDB2V0

H18 IO38PDB2V0 IO57PDB2V0

H19 GCA2/IO39PDB2V0 GCA2/IO59PDB2V0

H20 VCCIB2 VCCIB2

H21 IO37NDB2V0 IO54NDB2V0

H22 IO37PDB2V0 IO54PDB2V0

J1 NC IO112PPB4V0

J2 IO76NDB4V0 IO113NDB4V0

J3 GFB2/IO74PDB4V0 GFB2/IO109PDB4V0

J4 GFA2/IO75PDB4V0 GFA2/IO110PDB4V0

J5 NC IO112NPB4V0

J6 NC IO104PDB4V0

J7 NC IO111PDB4V0

J8 VCCIB4 VCCIB4

J9 GND GND

J10 VCC VCC

J11 GND GND

J12 VCC VCC

J13 GND GND

J14 VCC VCC

J15 VCCIB2 VCCIB2

J16 GCB2/IO40PDB2V0 GCB2/IO60PDB2V0

J17 NC IO58NDB2V0

J18 IO38NDB2V0 IO57NDB2V0

J19 IO39NDB2V0 IO59NDB2V0

J20 GCC2/IO41PDB2V0 GCC2/IO61PDB2V0

J21 NC IO55PSB2V0

J22 IO42PDB2V0 IO56PDB2V0

K1 GFC2/IO73PDB4V0 GFC2/IO108PDB4V0

K2 GND GND

K3 IO74NDB4V0 IO109NDB4V0

FG484

Pin 
Number AFS600 Function AFS1500 Function

K4 IO75NDB4V0 IO110NDB4V0

K5 GND GND

K6 NC IO104NDB4V0

K7 NC IO111NDB4V0

K8 GND GND

K9 VCC VCC

K10 GND GND

K11 VCC VCC

K12 GND GND

K13 VCC VCC

K14 GND GND

K15 GND GND

K16 IO40NDB2V0 IO60NDB2V0

K17 NC IO58PDB2V0

K18 GND GND

K19 NC IO68NPB2V0

K20 IO41NDB2V0 IO61NDB2V0

K21 GND GND

K22 IO42NDB2V0 IO56NDB2V0

L1 IO73NDB4V0 IO108NDB4V0

L2 VCCOSC VCCOSC

L3 VCCIB4 VCCIB4

L4 XTAL2 XTAL2

L5 GFC1/IO72PDB4V0 GFC1/IO107PDB4V0

L6 VCCIB4 VCCIB4

L7 GFB1/IO71PDB4V0 GFB1/IO106PDB4V0

L8 VCCIB4 VCCIB4

L9 GND GND

L10 VCC VCC

L11 GND GND

L12 VCC VCC

L13 GND GND

L14 VCC VCC

L15 VCCIB2 VCCIB2

L16 IO48PDB2V0 IO70PDB2V0

FG484

Pin 
Number AFS600 Function AFS1500 Function
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Datasheet Information
Advance v0.5
(June 2006)

The low power modes of operation were updated and clarified. N/A

The AFS1500 digital I/O count was updated in Table 1 • Fusion Family. i

The AFS1500 digital I/O count was updated in the "Package I/Os: Single-/Double-
Ended (Analog)" table.

ii

The "Voltage Regulator Power Supply Monitor (VRPSM)" was updated. 2-36

Figure 2-45 • FlashROM Timing Diagram was updated. 2-53

The "256-Pin FBGA" table for the AFS1500 is new. 3-12

Advance v0.4
(April 2006)

The G was moved in the "Product Ordering Codes" section. III

Advance v0.3
(April 2006)

The "Features and Benefits" section was updated. I

The "Fusion Family" table was updated. I

The "Package I/Os: Single-/Double-Ended (Analog)" table was updated. II

The "Product Ordering Codes" table was updated. III

The "Temperature Grade Offerings" table was updated. IV

The "General Description" section was updated to include ARM information. 1-1

Figure 2-46 • FlashROM Timing Diagram was updated. 2-58

The "FlashROM" section was updated. 2-57

The "RESET" section was updated. 2-61

The "RESET" section was updated. 2-64

Figure 2-27 · Real-Time Counter System was updated. 2-35

Table 2-19 • Flash Memory Block Pin Names was updated. 2-43

Figure 2-33 • Flash Memory Block Diagram was updated to include AUX block
information.

2-45

Figure 2-34 • Flash Memory Block Organization was updated to include AUX block
information.

2-46

The note in the "Program Operation" section was updated. 2-48

Figure 2-76 • Gate Driver Example was updated. 2-95

The "Analog Quad ACM Description" section was updated. 2-130

Information about the maximum pad input frequency was added to the "Gate Driver"
section.

2-94

Figure 2-65 • Analog Block Macro was updated. 2-81

Figure 2-65 • Analog Block Macro was updated. 2-81

The "Analog Quad" section was updated. 2-84

The "Voltage Monitor" section was updated. 2-86

The "Direct Digital Input" section was updated. 2-89

The "Current Monitor" section was updated. 2-90

Information about the maximum pad input frequency was added to the "Gate Driver"
section.

2-94
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