

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	172
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/p1afs600-2fg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

Fusion Devices	AFS090	AFS250	AFS600	AFS1500
ARM Cortex-M1 Devices		M1AFS250		M1AFS1500
Pigeon Point Devices			P1AFS600 ³	P1AFS1500 3
MicroBlade Devices		U1AFS250 ⁴	U1AFS600 ⁴	U1AFS1500 ⁴
QN108 ⁵	C, I	-	-	-
QN180 ⁵	C, I	C, I	-	-
PQ208	-	C, I	C, I	-
FG256	C, I	C, I	C, I	C, I
FG484	-	-	C, I	C, I
FG676	-	_	-	C, I

Notes:

1. C = Commercial Temperature Range: 0°C to 85°C Junction

2. I = Industrial Temperature Range: -40°C to 100°C Junction

3. Pigeon Point devices are only offered in FG484 and FG256.

4. MicroBlade devices are only offered in FG256.

5. Package not available.

Speed Grade and Temperature Grade Matrix

	Std. ¹	-1	-2 ²
C ³	\checkmark	\checkmark	\checkmark
l ⁴	\checkmark	\checkmark	\checkmark

Notes:

1. MicroBlade devices are only offered in standard speed grade.

2. Pigeon Point devices are only offered in –2 speed grade.

3. C = Commercial Temperature Range: 0°C to 85°C Junction

4. I = Industrial Temperature Range: -40°C to 100°C Junction

Contact your local Microsemi SoC Products Group representative for device availability:

http://www.microsemi.com/index.php?option=com_content&id=137&lang=en&view=article.

Cortex-M1, Pigeon Point, and MicroBlade Fusion Device Information

This datasheet provides information for all Fusion (AFS), Cortex-M1 (M1), Pigeon Point (P1), and MicroBlade (U1) devices. The remainder of the document will only list the Fusion (AFS) devices. Please apply relevant information to M1, P1, and U1 devices when appropriate. Please note the following:

- Cortex-M1 devices are offered in the same speed grades and packages as basic Fusion devices.
- Pigeon Point devices are only offered in –2 speed grade and FG484 and FG256 packages.
- MicroBlade devices are only offered in standard speed grade and the FG256 package.

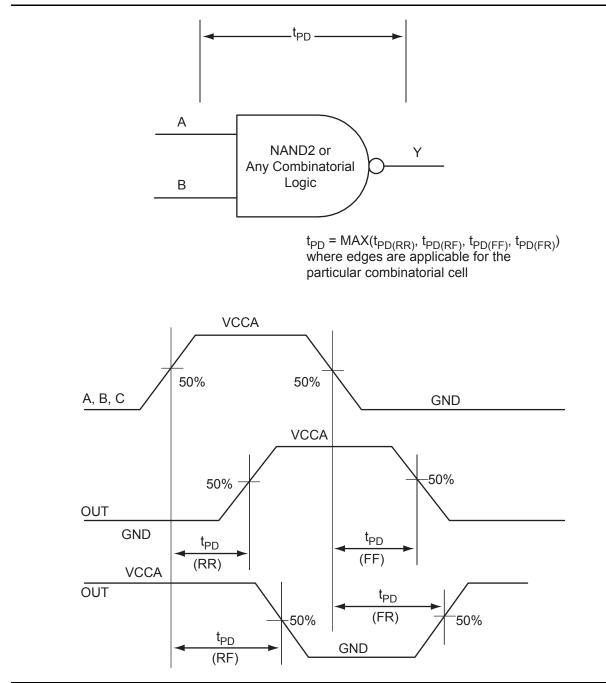
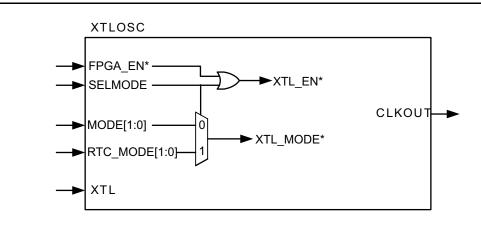


Figure 2-4 • Combinatorial Timing Model and Waveforms

Crystal Oscillator

The Crystal Oscillator (XTLOSC) is source that generates the clock from an external crystal. The output of XTLOSC CLKOUT signal can be selected as an input to the PLL. Refer to the "Clock Conditioning Circuits" section for more details. The XTLOSC can operate in normal operations and Standby mode (RTC is running and 1.5 V is not present).

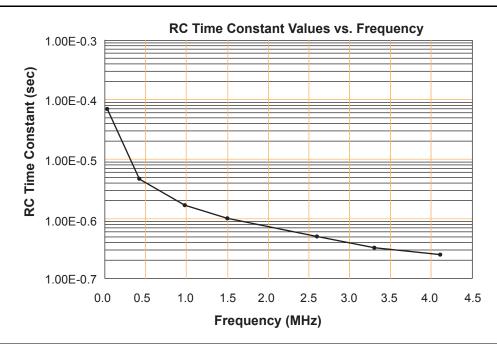
In normal operation, the internal FPGA_EN signal is '1' as long as 1.5 V is present for VCC. As such, the internal enable signal, XTL_EN, for Crystal Oscillator is enabled since FPGA_EN is asserted. The XTL_MODE has the option of using MODE or RTC_MODE, depending on SELMODE.


During Standby, 1.5 V is not available, as such, and FPGA_EN is '0'. SELMODE must be asserted in order for XTL_EN to be enabled; hence XTL_MODE relies on RTC_MODE. SELMODE and RTC_MODE must be connected to RTCXTLSEL and RTCXTLMODE from the AB respectively for correct operation during Standby (refer to the "Real-Time Counter System" section on page 2-31 for a detailed description).

The Crystal Oscillator can be configured in one of four modes:

- RC network, 32 KHz to 4 MHz
- Low gain, 32 to 200 KHz
- Medium gain, 0.20 to 2.0 MHz
- High gain, 2.0 to 20.0 MHz

In RC network mode, the XTAL1 pin is connected to an RC circuit, as shown in Figure 2-16 on page 2-18. The XTAL2 pin should be left floating. The RC value can be chosen based on Figure 2-18 for any desired frequency between 32 KHz and 4 MHz. The RC network mode can also accommodate an external clock source on XTAL1 instead of an RC circuit.


In Low gain, Medium gain, and High gain, an external crystal component or ceramic resonator can be added onto XTAL1 and XTAL2, as shown in Figure 2-16 on page 2-18. In the case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the XTAL2 pin should be left floating.

Note: *Internal signal—does not exist in macro.

Figure 2-17 • XTLOSC Macro

Signal Name	Width	Direction	Function				
XTL_EN*	1		Enables the	Enables the crystal. Active high.			
XTL_MODE*	2		Settings for	the crystal clock for different from	equency.		
			Value	Modes	Frequency Range		
			b'00	RC network	32 KHz to 4 MHz		
			b'01	Low gain	32 to 200 KHz		
			b'10	Medium gain	0.20 to 2.0 MHz		
			b'11	High gain	2.0 to 20.0 MHz		
SELMODE	1	IN		source of XTL_MODE and a TLSEL from AB.	Iso enables the XTL_EN. Connect		
			0	For normal operation or sl FPGA_EN, XTL_MODE depe	eep mode, XTL_EN depends on nds on MODE		
			1	For Standby mode, XTL_EN i RTC_MODE	s enabled, XTL_MODE depends on		
RTC_MODE[1:0]	2	IN		the crystal clock for different find the second sec	requency ranges. XTL_MODE uses		
MODE[1:0]	2	IN		the crystal clock for different find sELMODE is '0'. In Standby,	requency ranges. XTL_MODE uses MODE inputs will be 0's.		
FPGA_EN*	1	IN	0 when 1.5 V is not present for VCC 1 when 1.5 V is present for VCC				
XTL	1	IN	Crystal Clock source				
CLKOUT	1	OUT	Crystal Cloo	ck output			

Table 2-10 • XTLOSC Signals Descriptions

Note: *Internal signal—does not exist in macro.

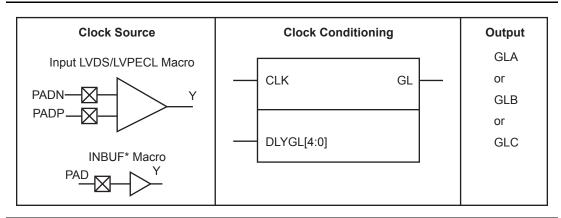
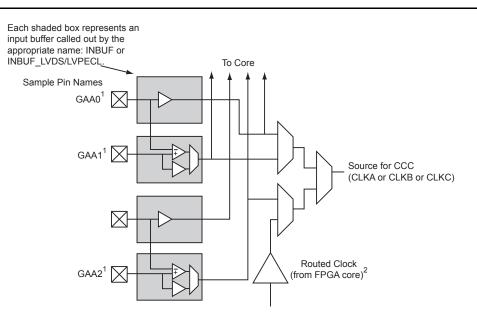



Figure 2-21 • Fusion CCC Options: Global Buffers with Programmable Delay

Global Input Selections

Each global buffer, as well as the PLL reference clock, can be driven from one of the following (Figure 2-22):

- 3 dedicated single-ended I/Os using a hardwired connection
- 2 dedicated differential I/Os using a hardwired connection
- The FPGA core

GAA[0:2]: GA represents global in the northwest corner of the device. A[0:2]: designates specific A clock source.

Notes:

- 1. Represents the global input pins. Globals have direct access to the clock conditioning block and are not routed via the FPGA fabric. Refer to the "User I/O Naming Convention" section on page 2-158 for more information.
- 2. Instantiate the routed clock source input as follows:
 - a) Connect the output of a logic element to the clock input of the PLL, CLKDLY, or CLKINT macro. b) Do not place a clock source I/O (INBUF or INBUF_LVPECL/LVDS) in a relevant global pin location.
- 3. LVDS-based clock sources are available in the east and west banks on all Fusion devices.

Figure 2-22 • Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT

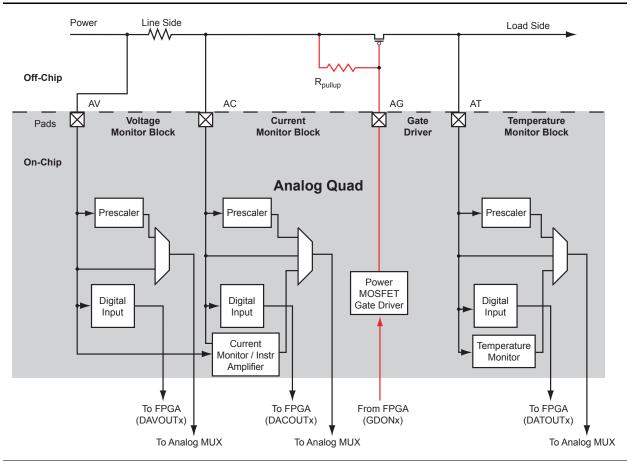
Timing Characteristics

Table 2-31 • RAM4K9

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address setup time	0.25	0.28	0.33	ns
t _{AH}	Address hold time	0.00	0.00	0.00	ns
t _{ENS}	REN, WEN setup time	0.14	0.16	0.19	ns
t _{ENH}	REN, WEN hold time	0.10	0.11	0.13	ns
t _{BKS}	BLK setup time	0.23	0.27	0.31	ns
t _{BKH}	BL hold time	0.02	0.02	0.02	ns
t _{DS}	Input data (DIN) setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DIN) hold time	0.00	0.00	0.00	ns
+	Clock High to new data valid on DOUT (output retained, WMODE = 0)	1.79	2.03	2.39	ns
t _{CKQ1}	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	0.89	1.02	1.20	ns
t _{C2CWWH} 1	Address collision clk-to-clk delay for reliable write after write on same address—Applicable to Rising Edge	0.30	0.26	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address—Applicable to Opening Edge	0.45	0.38	0.34	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address— Applicable to Opening Edge	0.49	0.42	0.37	ns
1	RESET Low to data out Low on DOUT (flow-through)	0.92	1.05	1.23	ns
t _{RSTBQ}	RESET Low to Data Out Low on DOUT (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET minimum pulse width	0.21	0.24	0.29	ns
t _{CYC}	Clock cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum frequency	310	272	231	MHz

Notes:


1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Gate Driver

The Fusion Analog Quad includes a Gate Driver connected to the Quad's AG pin (Figure 2-74). Designed to work with external p- or n-channel MOSFETs, the Gate driver is a configurable current sink or source and requires an external pull-up or pull-down resistor. The AG supports 4 selectable gate drive levels: 1 μ A, 3 μ A, 10 μ A, and 30 μ A (Figure 2-75 on page 2-91). The AG also supports a High Current Drive mode in which it can sink 20 mA; in this mode the switching rate is approximately 1.3 MHz with 100 ns turn-on time and 600 ns turn-off time. Modeled on an open-drain-style output, it does not output a voltage level without an appropriate pull-up or pull-down resistor. If 1 V is forced on the drain, the current sinking/sourcing will exceed the ability of the transistor, and the device could be damaged.

The AG pad is turned on via the corresponding GDONx pin in the Analog Block macro, where x is the number of the corresponding Analog Quad for the AG pad to be enabled (GDON0 to GDON9).

The gate-to-source voltage (V_{gs}) of the external MOSFET is limited to the programmable drive current times the external pull-up or pull-down resistor value (EQ 5).

$$V_{gs} \le I_g \times (R_{pullup} \text{ or } R_{pulldown})$$

EQ 5

ADC Terminology

Conversion Time

Conversion time is the interval between the release of the hold state (imposed by the input circuitry of a track-and-hold) and the instant at which the voltage on the sampling capacitor settles to within one LSB of a new input value.

DNL – Differential Non-Linearity

For an ideal ADC, the analog-input levels that trigger any two successive output codes should differ by one LSB (DNL = 0). Any deviation from one LSB in defined as DNL (Figure 2-83).

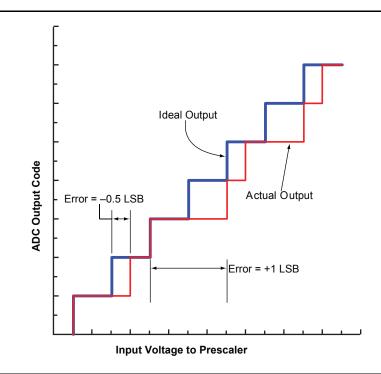


Figure 2-83 • Differential Non-Linearity (DNL)

ENOB – Effective Number of Bits

ENOB specifies the dynamic performance of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists only of quantization of noise. As the input frequency increases, the overall noise (particularly in the distortion components) also increases, thereby reducing the ENOB and SINAD (also see "Signal-to-Noise and Distortion Ratio (SINAD)".) ENOB for a full-scale, sinusoidal input waveform is computed using EQ 12.

$$ENOB = \frac{SINAD - 1.76}{6.02}$$

EQ 12

FS Error – Full-Scale Error

Full-scale error is the difference between the actual value that triggers that transition to full-scale and the ideal analog full-scale transition value. Full-scale error equals offset error plus gain error.

INL – Integral Non-Linearity

INL is the deviation of an actual transfer function from a straight line. After nullifying offset and gain errors, the straight line is either a best-fit straight line or a line drawn between the end points of the transfer function (Figure 2-85).

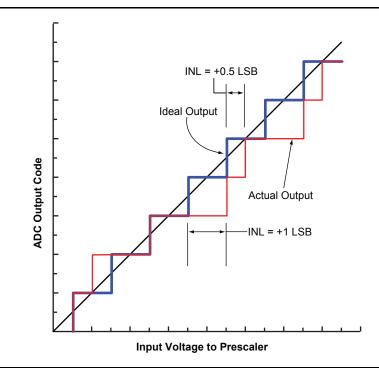


Figure 2-85 • Integral Non-Linearity (INL)

LSB – Least Significant Bit

In a binary number, the LSB is the least weighted bit in the group. Typically, the LSB is the furthest right bit. For an ADC, the weight of an LSB equals the full-scale voltage range of the converter divided by 2^N , where N is the converter's resolution.

EQ 13 shows the calculation for a 10-bit ADC with a unipolar full-scale voltage of 2.56 V:

EQ 13

No Missing Codes

An ADC has no missing codes if it produces all possible digital codes in response to a ramp signal applied to the analog input.

Table 2-50 • ADC Characteristics in Direct Input ModeCommercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise),Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Direct Inpu	t using Analog Pad AV, AC, A	T				
VINADC	Input Voltage (Direct Input)	Refer to Table 3-2 on page 3-3				
CINADC	Input Capacitance	Channel not selected		7		pF
		Channel selected but not sampling		8		pF
		Channel selected and sampling		18		pF
ZINADC	Input Impedance	8-bit mode		2		kΩ
		10-bit mode		2		kΩ
		12-bit mode		2		kΩ
Analog Ref	erence Voltage VAREF					
VAREF	Accuracy	T _J = 25°C	2.537	2.56	2.583	V
	Temperature Drift of Internal Reference			65		ppm / °C
	External Reference		2.527		VCC33A + 0.05	V
ADC Accur	acy (using external reference) ^{1,2}	1		I	
DC Accura						
TUE	Total Unadjusted Error	8-bit mode		0.3	29	LSB
		10-bit mode		0.	72	LSB
		12-bit mode		1.	.8	LSB
INL	Integral Non-Linearity	8-bit mode		0.20	0.25	LSB
		10-bit mode		0.32	0.43	LSB
		12-bit mode		1.71	1.80	LSB
DNL	Differential Non-Linearity (no missing code)	8-bit mode		0.20	0.24	LSB
		10-bit mode		0.60	0.65	LSB
		12-bit mode		2.40	2.48	LSB
	Offset Error	8-bit mode		0.01	0.17	LSB
]	10-bit mode		0.05	0.20	LSB
]	12-bit mode		0.20	0.40	LSB
	Gain Error	8-bit mode		0.0004	0.003	LSB
]	10-bit mode		0.002	0.011	LSB
]	12-bit mode		0.007	0.044	LSB
	Gain Error (with internal reference)	All modes		2		% FSR

Notes:

1. Accuracy of the external reference is 2.56 V \pm 4.6 mV.

2. Data is based on characterization.

3. The sample rate is time-shared among active analog inputs.

Timing Characteristics

Table 2-55 • Analog Configuration Multiplexer (ACM) TimingCommercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{CLKQACM}	Clock-to-Q of the ACM	19.73	22.48	26.42	ns
t _{SUDACM}	Data Setup time for the ACM	4.39	5.00	5.88	ns
t _{HDACM}	Data Hold time for the ACM	0.00	0.00	0.00	ns
t _{SUAACM}	Address Setup time for the ACM	4.73	5.38	6.33	ns
t _{HAACM}	Address Hold time for the ACM	0.00	0.00	0.00	ns
t _{SUEACM}	Enable Setup time for the ACM	3.93	4.48	5.27	ns
t _{HEACM}	Enable Hold time for the ACM	0.00	0.00	0.00	ns
t _{MPWARACM}	Asynchronous Reset Minimum Pulse Width for the ACM	10.00	10.00	10.00	ns
t _{REMARACM}	Asynchronous Reset Removal time for the ACM	12.98	14.79	17.38	ns
t _{RECARACM}	Asynchronous Reset Recovery time for the ACM	12.98	14.79	17.38	ns
t _{MPWCLKACM}	Clock Minimum Pulse Width for the ACM	45.00	45.00	45.00	ns
t _{FMAXCLKACM}	lock Maximum Frequency for the ACM	10.00	10.00	10.00	MHz

Features Supported on Pro I/Os

Table 2-72 lists all features supported by transmitter/receiver for single-ended and differential I/Os.

Table 2-72 • Fusion Pro I/O Features

Feature	Description			
Single-ended and voltage- referenced transmitter	Hot insertion in every mode except PCI or 5 V input tolerant (these modes u clamp diodes and do not allow hot insertion)	ise		
features	Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.			
	Weak pull-up and pull-down			
	Two slew rates			
	Skew between output buffer enable/disable time: 2 ns delay (rising edge) a 0 ns delay (falling edge); see "Selectable Skew between Output Buf Enable/Disable Time" on page 2-149 for more information			
	Five drive strengths			
	5 V-tolerant receiver ("5 V Input Tolerance" section on page 2-144)			
	LVTTL/LVCMOS 3.3 V outputs compatible with 5 V TTL inputs ("5 V Outputs Tolerance" section on page 2-148)	out		
	igh performance (Table 2-76 on page 2-143)			
Single-ended receiver features	Schmitt trigger option			
	ESD protection			
	Programmable delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 with '111' setting, 0.85-ns intermediate delay increments (at 25° C, 1.5 V)	ns		
	High performance (Table 2-76 on page 2-143)			
	Separate ground planes, GND/GNDQ, for input buffers only to avoid outp induced noise in the input circuitry	ut-		
Voltage-referenced differential receiver features	Programmable Delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 with '111' setting, 0.85-ns intermediate delay increments (at 25° C, 1.5 V)	ns		
	High performance (Table 2-76 on page 2-143)			
	Separate ground planes, GND/GNDQ, for input buffers only to avoid outp induced noise in the input circuitry	ut-		
CMOS-style LVDS, BLVDS, M-LVDS, or LVPECL	Two I/Os and external resistors are used to provide a CMOS-style LVE BLVDS, M-LVDS, or LVPECL transmitter solution.)S,		
transmitter	Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.			
	Weak pull-up and pull-down			
	Fast slew rate			
LVDS/LVPECL differential	ESD protection			
receiver features	High performance (Table 2-76 on page 2-143)			
	Programmable delay: 0.625 ns with '000' setting, 6.575 ns with '111' settin 0.85-ns intermediate delay increments (at 25°C, 1.5 V)	ng,		
	Separate input buffer ground and power planes to avoid output-induced no in the input circuitry	ise		

Device Architecture

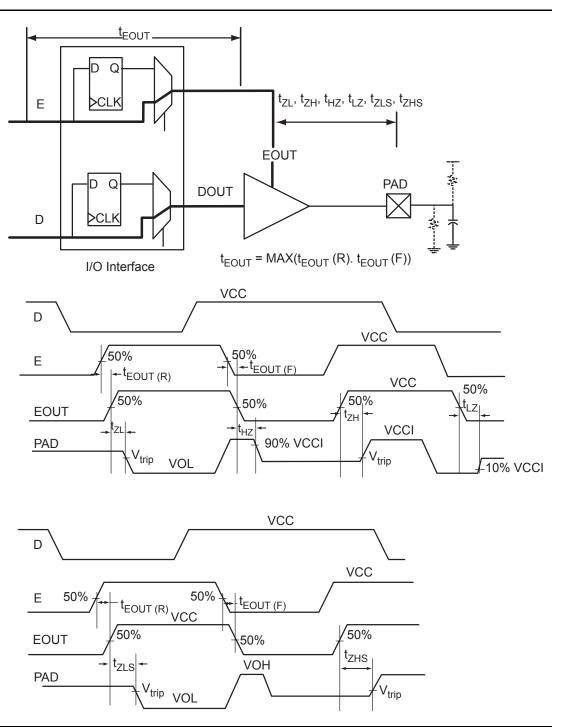
Table 2-77 • Comparison Table for 5 V–Compliant Receiver Scheme

Scheme	Board Components	Speed	Current Limitations
1	Two resistors	Low to high ¹	Limited by transmitter's drive strength
2	Resistor and Zener 3.3 V	Medium	Limited by transmitter's drive strength
3	Bus switch	High	N/A
4	Minimum resistor value ² R = 47 Ω at T _J = 70°C R = 150 Ω at T _J = 85°C R = 420 Ω at T _J = 100°C	Medium	Maximum diode current at 100% duty cycle, signal constantly at '1' 52.7 mA at $T_J = 70^{\circ}C / 10$ -year lifetime 16.5 mA at $T_J = 85^{\circ}C / 10$ -year lifetime 5.9 mA at $T_J = 100^{\circ}C / 10$ -year lifetime For duty cycles other than 100%, the currents can be increased by a factor = 1 / (duty cycle).
			Example: 20% duty cycle at 70°C Maximum current = (1 / 0.2) * 52.7 mA = 5 * 52.7 mA = 263.5 mA

Notes:

1. Speed and current consumption increase as the board resistance values decrease.

2. Resistor values ensure I/O diode long-term reliability.



Device Architecture

Table 2-81 • Fusion Pro I/O Default Attributes

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (tribuf and bibuf only)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER	IN_DELAY (input only)	IN_DELAY_VAL (input only)	SCHMITT_TRIGGER (input only)
LVTTL/LVCMO S 3.3 V	Refer to the following tables for more information:	Refer to the following tables for more information:	Off	None	35 pF	-	Off	0	Off
LVCMOS 2.5 V	Table 2-78 on page 2-152	Table 2-78 on page 2-152	Off	None	35 pF	—	Off	0	Off
LVCMOS 2.5/5.0 V	Table 2-79 on page 2-152 Table 2-80 on page 2-152	Table 2-79 on page 2-152 Table 2-80 on page 2-152	Off	None	35 pF	-	Off	0	Off
LVCMOS 1.8 V	Table 2-00 off page 2-102		Off	None	35 pF	-	Off	0	Off
LVCMOS 1.5 V			Off	None	35 pF	_	Off	0	Off
PCI (3.3 V)			Off	None	10 pF	-	Off	0	Off
PCI-X (3.3 V)			Off	None	10 pF	-	Off	0	Off
GTL+ (3.3 V)			Off	None	10 pF	-	Off	0	Off
GTL+ (2.5 V)			Off	None	10 pF	-	Off	0	Off
GTL (3.3 V)			Off	None	10 pF	-	Off	0	Off
GTL (2.5 V)			Off	None	10 pF	-	Off	0	Off
HSTL Class I			Off	None	20 pF	-	Off	0	Off
HSTL Class II			Off	None	20 pF	-	Off	0	Off
SSTL2 Class I and II			Off	None	30 pF	-	Off	0	Off
SSTL3 Class I and II			Off	None	30 pF	-	Off	0	Off
LVDS, BLVDS, M-LVDS			Off	None	0 pF	-	Off	0	Off
LVPECL			Off	None	0 pF	-	Off	0	Off

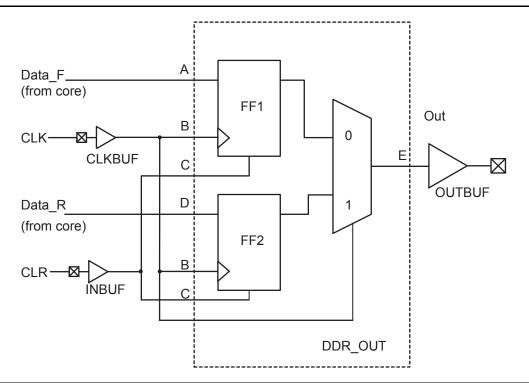


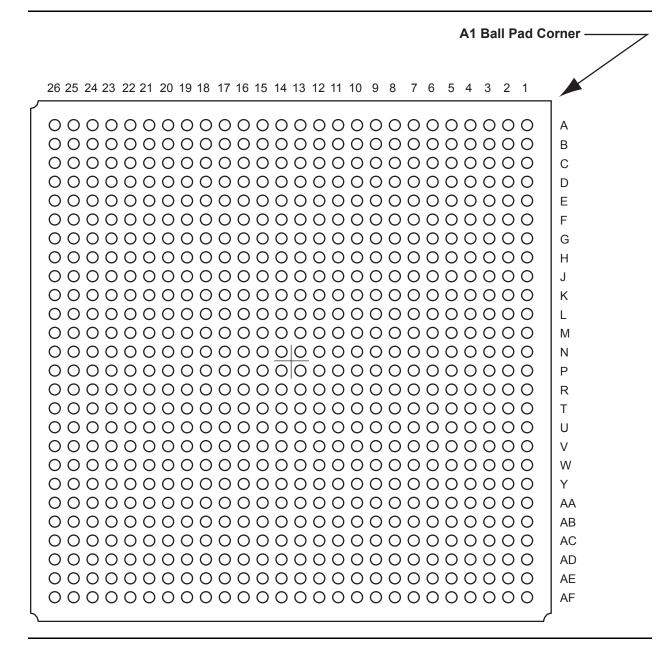
Figure 2-118 • Tristate Output Buffer Timing Model and Delays (example)

Device Architecture

Output DDR

Figure 2-144 • Output DDR Timing Model

Table 2-181 • Parameter Definitions


Parameter Name	Parameter Definition	Measuring Nodes (From, To)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	A, B
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	A, B
t _{DDROHD2}	Data Hold Data_R	D, B

	QN180			QN180	
Pin Number	AFS090 Function	AFS250 Function	Pin Number	AFS090 Function	AFS250 Function
B9	XTAL2	XTAL2	B45	GBA2/IO31PDB1V0	GBA2/IO40PDB1V0
B10	GEA0/IO44NDB3V0	GFA0/IO66NDB3V0	B46	GNDQ	GNDQ
B11	GEB2/IO42PDB3V0	IO60NDB3V0	B47	GBA1/IO30RSB0V0	GBA0/IO38RSB0V0
B12	VCC	VCC	B48	GBB1/IO28RSB0V0	GBC1/IO35RSB0V0
B13	VCCNVM	VCCNVM	B49	VCC	VCC
B14	VCC15A	VCC15A	B50	GBC0/IO25RSB0V0	IO31RSB0V0
B15	NCAP	NCAP	B51	IO23RSB0V0	IO28RSB0V0
B16	VCC33N	VCC33N	B52	IO20RSB0V0	IO25RSB0V0
B17	GNDAQ	GNDAQ	B53	VCC	VCC
B18	AC0	AC0	B54	IO11RSB0V0	IO14RSB0V0
B19	AT0	AT0	B55	IO08RSB0V0	IO11RSB0V0
B20	AT1	AT1	B56	GAC1/IO05RSB0V0	IO08RSB0V0
B21	AV1	AV1	B57	VCCIB0	VCCIB0
B22	AC2	AC2	B58	GAB0/IO02RSB0V0	GAC0/IO04RSB0V0
B23	ATRTN1	ATRTN1	B59	GAA0/IO00RSB0V0	GAA1/IO01RSB0V0
B24	AG3	AG3	B60	VCCPLA	VCCPLA
B25	AV3	AV3	C1	NC	NC
B26	AG4	AG4	C2	NC	VCCIB3
B27	ATRTN2	ATRTN2	C3	GND	GND
B28	NC	AC5	C4	NC	GFC2/IO69PPB3V0
B29	VCC33A	VCC33A	C5	GFC1/IO49PDB3V0	GFC1/IO68PDB3V0
B30	VAREF	VAREF	C6	GFA0/IO47NPB3V0	GFB0/IO67NPB3V0
B31	PUB	PUB	C7	VCCIB3	NC
B32	PTEM	PTEM	C8	GND	GND
B33	GNDNVM	GNDNVM	C9	GEA1/IO44PDB3V0	GFA1/IO66PDB3V0
B34	VCC	VCC	C10	GEA2/IO42NDB3V0	GEC2/IO60PDB3V0
B35	ТСК	ТСК	C11	NC	GEA2/IO58PSB3V0
B36	TMS	TMS	C12	NC	NC
B37	TRST	TRST	C13	GND	GND
B38	GDB2/IO41PSB1V0	GDA2/IO55PSB1V0	C14	NC	NC
B39	GDC0/IO38NDB1V0	GDB0/IO53NDB1V0	C15	NC	NC
B40	VCCIB1	VCCIB1	C16	GNDA	GNDA
B41	GCA1/IO36PDB1V0	GCA1/IO49PDB1V0	C17	NC	NC
B42	GCC0/IO34NDB1V0	GCC0/IO47NDB1V0	C18	NC	NC
B43	GCB2/IO33PSB1V0	GBC2/IO42PSB1V0	C19	NC	NC
B44	VCC	VCC	C20	NC	NC

FG256					
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function	
K9	VCC	VCC	VCC	VCC	
K10	GND	GND	GND	GND	
K11	NC	GDC2/IO57PPB1V0	GDC2/IO57PPB2V0	GDC2/IO84PPB2V0	
K12	GND	GND	GND	GND	
K13	NC	GDA0/IO54NDB1V0	GDA0/IO54NDB2V0	GDA0/IO81NDB2V0	
K14	NC	GDA2/IO55PPB1V0	GDA2/IO55PPB2V0	GDA2/IO82PPB2V0	
K15	VCCIB1	VCCIB1	VCCIB2	VCCIB2	
K16	NC	GDB1/IO53PPB1V0	GDB1/IO53PPB2V0	GDB1/IO80PPB2V0	
L1	NC	GEC1/IO63PDB3V0	GEC1/IO63PDB4V0	GEC1/IO90PDB4V0	
L2	NC	GEC0/IO63NDB3V0	GEC0/IO63NDB4V0	GEC0/IO90NDB4V0	
L3	NC	GEB1/IO62PDB3V0	GEB1/IO62PDB4V0	GEB1/IO89PDB4V0	
L4	NC	GEB0/IO62NDB3V0	GEB0/IO62NDB4V0	GEB0/IO89NDB4V0	
L5	NC	IO60NDB3V0	IO60NDB4V0	IO87NDB4V0	
L6	NC	GEC2/IO60PDB3V0	GEC2/IO60PDB4V0	GEC2/IO87PDB4V0	
L7	GNDA	GNDA	GNDA	GNDA	
L8	AC0	AC0	AC2	AC2	
L9	AV2	AV2	AV4	AV4	
L10	AC3	AC3	AC5	AC5	
L11	PTEM	PTEM	PTEM	PTEM	
L12	TDO	TDO	TDO	TDO	
L13	VJTAG	VJTAG	VJTAG	VJTAG	
L14	NC	IO57NPB1V0	IO57NPB2V0	IO84NPB2V0	
L15	GDB2/IO41PPB1V0	GDB2/IO56PPB1V0	GDB2/IO56PPB2V0	GDB2/IO83PPB2V0	
L16	NC	IO55NPB1V0	IO55NPB2V0	IO82NPB2V0	
M1	GND	GND	GND	GND	
M2	NC	GEA1/IO61PDB3V0	GEA1/IO61PDB4V0	GEA1/IO88PDB4V0	
M3	NC	GEA0/IO61NDB3V0	GEA0/IO61NDB4V0	GEA0/IO88NDB4V0	
M4	VCCIB3	VCCIB3	VCCIB4	VCCIB4	
M5	NC	IO58NPB3V0	IO58NPB4V0	IO85NPB4V0	
M6	NC	NC	AV0	AV0	
M7	NC	NC	AC1	AC1	
M8	AG1	AG1	AG3	AG3	
M9	AC2	AC2	AC4	AC4	
M10	AC4	AC4	AC6	AC6	
M11	NC	AG5	AG7	AG7	
M12	VPUMP	VPUMP	VPUMP	VPUMP	
M13	VCCIB1	VCCIB1	VCCIB2	VCCIB2	
M14	TMS	TMS	TMS	TMS	

FG676

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.

Revision	Changes	Page
v2.0, Revision 1 (continued)	The data in the 2.5 V LCMOS and LVCMOS 2.5 V / 5.0 V rows were updated in Table 2-75 \bullet Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance Capabilities.	
	In Table 2-78 • Fusion Standard I/O Standards—OUT_DRIVE Settings, LVCMOS 1.5 V, for OUT_DRIVE 2, was changed from a dash to a check mark.	
	The "VCC15A Analog Power Supply (1.5 V)" definition was changed from "A 1.5 V analog power supply input should be used to provide this input" to "1.5 V clean analog power supply input for use by the 1.5 V portion of the analog circuitry."	2-223
	In the "VCC33PMP Analog Power Supply (3.3 V)" pin description, the following text was changed from "VCC33PMP should be powered up before or simultaneously with VCC33A" to "VCC33PMP should be powered up simultaneously with or after VCC33A."	2-223
	The "VCCOSC Oscillator Power Supply (3.3 V)" section was updated to include information about when to power the pin.	2-223
	In the "128-Bit AES Decryption" section, FIPS-192 was incorrect and changed to FIPS-197.	2-228
	The note in Table 2-84 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications was updated.	2-156
	For 1.5 V LVCMOS, the VIL and VIH parameters, 0.30 * VCCI was changed to 0.35 * VCCI and 0.70 * VCCI was changed to 0.65 * VCCI in Table 2-86 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions, Table 2-87 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions, and Table 2-88 • Summary of Maximum and Minimum DC Input and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions, and Table 2-88 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions, and Table 2-88 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions.	2-164 to 2-165
	In Table 2-87 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions, the VIH max column was updated.	
	Table 2-89 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions was updated to include notes 3 and 4. The temperature ranges were also updated in notes 1 and 2.	2-165
	The titles in Table 2-92 • Summary of I/O Timing Characteristics – Software Default Settings to Table 2-94 • Summary of I/O Timing Characteristics – Software Default Settings were updated to "VCCI = I/O Standard Dependent."	2-167 to 2-168
	Below Table 2-98 • I/O Short Currents IOSH/IOSL, the paragraph was updated to change 110°C to 100°C and three months was changed to six months.	2-172
	Table 2-99 • Short Current Event Duration before Failure was updated to remove 110°C data.	2-174
	In Table 2-101 • I/O Input Rise Time, Fall Time, and Related I/O Reliability, LVTTL/LVCMOS rows were changed from 110°C to 100°C.	2-174
	VCC33PMP was added to Table 3-1 • Absolute Maximum Ratings. In addition, conditions for AV, AC, AG, and AT were also updated.	3-1
	VCC33PMP was added to Table 3-2 • Recommended Operating Conditions1. In addition, conditions for AV, AC, AG, and AT were also updated.	3-3
	Table 3-5 • FPGA Programming, Storage, and Operating Limits was updated to include new data and the temperature ranges were changed. The notes were removed from the table.	3-5