

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	·
Total RAM Bits	110592
Number of I/O	119
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/p1afs600-2fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

Fusion Devices	AFS090	AFS250	AFS600	AFS1500
ARM Cortex-M1 Devices		M1AFS250	M1AFS600	M1AFS1500
Pigeon Point Devices			P1AFS600 ³	P1AFS1500 3
MicroBlade Devices		U1AFS250 ⁴	U1AFS600 ⁴	U1AFS1500 ⁴
QN108 ⁵	C, I	-	-	-
QN180 ⁵	C, I	C, I	-	-
PQ208	-	C, I	C, I	-
FG256	C, I	C, I	C, I	C, I
FG484	-	-	C, I	C, I
FG676	-	_	-	C, I

Notes:

1. C = Commercial Temperature Range: 0°C to 85°C Junction

2. I = Industrial Temperature Range: -40°C to 100°C Junction

3. Pigeon Point devices are only offered in FG484 and FG256.

4. MicroBlade devices are only offered in FG256.

5. Package not available.

Speed Grade and Temperature Grade Matrix

	Std. ¹	-1	-2 ²
C ³	\checkmark	\checkmark	\checkmark
l ⁴	\checkmark	\checkmark	\checkmark

Notes:

1. MicroBlade devices are only offered in standard speed grade.

2. Pigeon Point devices are only offered in –2 speed grade.

3. C = Commercial Temperature Range: 0°C to 85°C Junction

4. I = Industrial Temperature Range: -40°C to 100°C Junction

Contact your local Microsemi SoC Products Group representative for device availability:

http://www.microsemi.com/index.php?option=com_content&id=137&lang=en&view=article.

Cortex-M1, Pigeon Point, and MicroBlade Fusion Device Information

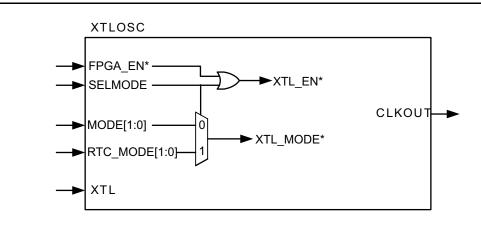
This datasheet provides information for all Fusion (AFS), Cortex-M1 (M1), Pigeon Point (P1), and MicroBlade (U1) devices. The remainder of the document will only list the Fusion (AFS) devices. Please apply relevant information to M1, P1, and U1 devices when appropriate. Please note the following:

- Cortex-M1 devices are offered in the same speed grades and packages as basic Fusion devices.
- Pigeon Point devices are only offered in –2 speed grade and FG484 and FG256 packages.
- MicroBlade devices are only offered in standard speed grade and the FG256 package.

Crystal Oscillator

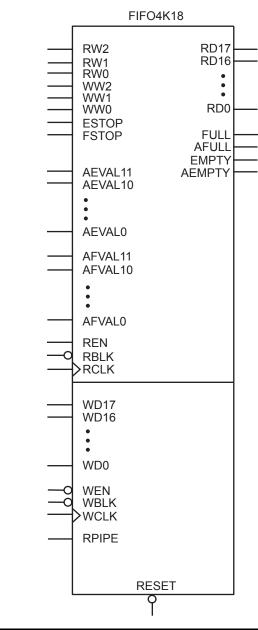
The Crystal Oscillator (XTLOSC) is source that generates the clock from an external crystal. The output of XTLOSC CLKOUT signal can be selected as an input to the PLL. Refer to the "Clock Conditioning Circuits" section for more details. The XTLOSC can operate in normal operations and Standby mode (RTC is running and 1.5 V is not present).

In normal operation, the internal FPGA_EN signal is '1' as long as 1.5 V is present for VCC. As such, the internal enable signal, XTL_EN, for Crystal Oscillator is enabled since FPGA_EN is asserted. The XTL_MODE has the option of using MODE or RTC_MODE, depending on SELMODE.


During Standby, 1.5 V is not available, as such, and FPGA_EN is '0'. SELMODE must be asserted in order for XTL_EN to be enabled; hence XTL_MODE relies on RTC_MODE. SELMODE and RTC_MODE must be connected to RTCXTLSEL and RTCXTLMODE from the AB respectively for correct operation during Standby (refer to the "Real-Time Counter System" section on page 2-31 for a detailed description).

The Crystal Oscillator can be configured in one of four modes:

- RC network, 32 KHz to 4 MHz
- Low gain, 32 to 200 KHz
- Medium gain, 0.20 to 2.0 MHz
- High gain, 2.0 to 20.0 MHz


In RC network mode, the XTAL1 pin is connected to an RC circuit, as shown in Figure 2-16 on page 2-18. The XTAL2 pin should be left floating. The RC value can be chosen based on Figure 2-18 for any desired frequency between 32 KHz and 4 MHz. The RC network mode can also accommodate an external clock source on XTAL1 instead of an RC circuit.

In Low gain, Medium gain, and High gain, an external crystal component or ceramic resonator can be added onto XTAL1 and XTAL2, as shown in Figure 2-16 on page 2-18. In the case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the XTAL2 pin should be left floating.

Note: *Internal signal—does not exist in macro.

Figure 2-17 • XTLOSC Macro

FIFO4K18 Description

Figure 2-56 • FIFO4KX18

ESTOP, FSTOP

ESTOP is used to stop the FIFO read counter from further counting once the FIFO is empty (i.e., the EMPTY flag goes High). A High on this signal inhibits the counting.

FSTOP is used to stop the FIFO write counter from further counting once the FIFO is full (i.e., the FULL flag goes High). A High on this signal inhibits the counting.

For more information on these signals, refer to the "ESTOP and FSTOP Usage" section on page 2-70.

FULL, EMPTY

When the FIFO is full and no more data can be written, the FULL flag asserts High. The FULL flag is synchronous to WCLK to inhibit writing immediately upon detection of a full condition and to prevent overflows. Since the write address is compared to a resynchronized (and thus time-delayed) version of the read address, the FULL flag will remain asserted until two WCLK active edges after a read operation eliminates the full condition.

When the FIFO is empty and no more data can be read, the EMPTY flag asserts High. The EMPTY flag is synchronous to RCLK to inhibit reading immediately upon detection of an empty condition and to prevent underflows. Since the read address is compared to a resynchronized (and thus time-delayed) version of the write address, the EMPTY flag will remain asserted until two RCLK active edges after a write operation removes the empty condition.

For more information on these signals, refer to the "FIFO Flag Usage Considerations" section on page 2-70.

AFULL, AEMPTY

These are programmable flags and will be asserted on the threshold specified by AFVAL and AEVAL, respectively.

When the number of words stored in the FIFO reaches the amount specified by AEVAL while reading, the AEMPTY output will go High. Likewise, when the number of words stored in the FIFO reaches the amount specified by AFVAL while writing, the AFULL output will go High.

AFVAL, AEVAL

The AEVAL and AFVAL pins are used to specify the almost-empty and almost-full threshold values, respectively. They are 12-bit signals. For more information on these signals, refer to "FIFO Flag Usage Considerations" section.

ESTOP and FSTOP Usage

The ESTOP pin is used to stop the read counter from counting any further once the FIFO is empty (i.e., the EMPTY flag goes High). Likewise, the FSTOP pin is used to stop the write counter from counting any further once the FIFO is full (i.e., the FULL flag goes High).

The FIFO counters in the Fusion device start the count at 0, reach the maximum depth for the configuration (e.g., 511 for a 512×9 configuration), and then restart at 0. An example application for the ESTOP, where the read counter keeps counting, would be writing to the FIFO once and reading the same content over and over without doing another write.

FIFO Flag Usage Considerations

The AEVAL and AFVAL pins are used to specify the 12-bit AEMPTY and AFULL threshold values, respectively. The FIFO contains separate 12-bit write address (WADDR) and read address (RADDR) counters. WADDR is incremented every time a write operation is performed, and RADDR is incremented every time a read operation is performed. Whenever the difference between WADDR and RADDR is greater than or equal to AFVAL, the AFULL output is asserted. Likewise, whenever the difference between WADDR and RADDR is less than or equal to AEVAL, the AEMPTY output is asserted. To handle different read and write aspect ratios, AFVAL and AEVAL are expressed in terms of total data bits instead of total data words. When users specify AFVAL and AEVAL in terms of read or write words, the SmartGen tool translates them into bit addresses and configures these signals automatically. SmartGen configures the AFULL flag to assert when the write address exceeds the read address by at least a predefined value. In a 2k×8 FIFO, for example, a value of 1,500 for AFVAL means that the AFULL flag will be asserted after a write when the difference between the write address and the read address reaches 1,500 (there have been at least 1500 more writes than reads). It will stay asserted until the difference between the write and read addresses drops below 1,500.

INL – Integral Non-Linearity

INL is the deviation of an actual transfer function from a straight line. After nullifying offset and gain errors, the straight line is either a best-fit straight line or a line drawn between the end points of the transfer function (Figure 2-85).

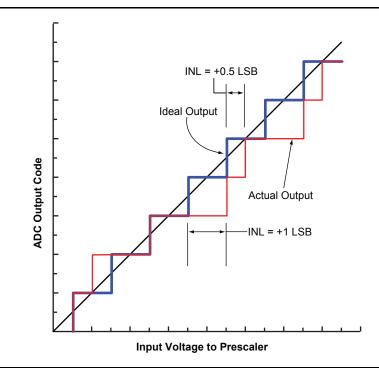


Figure 2-85 • Integral Non-Linearity (INL)

LSB – Least Significant Bit

In a binary number, the LSB is the least weighted bit in the group. Typically, the LSB is the furthest right bit. For an ADC, the weight of an LSB equals the full-scale voltage range of the converter divided by 2^N , where N is the converter's resolution.

EQ 13 shows the calculation for a 10-bit ADC with a unipolar full-scale voltage of 2.56 V:

EQ 13

No Missing Codes

An ADC has no missing codes if it produces all possible digital codes in response to a ramp signal applied to the analog input.

Table 2-57 details the settings available to control the prescaler values of the AV, AC, and AT pins. Note that the AT pin has a reduced number of available prescaler values.

Control Lines Bx[2:0]	Scaling Factor, Pad to ADC Input	LSB for an 8-Bit Conversion ¹ (mV)	LSB for a 10-Bit Conversion ¹ (mV)	LSB for a 12-Bit Conversion ¹ (mV)	Full-Scale Voltage in 10-Bit Mode ²	Range Name
000 ³	0.15625	64	16	4	16.368 V	16 V
001	0.3125	32	8	2	8.184 V	8 V
010 ³	0.625	16	4	1	4.092 V	4 V
011	1.25	8	2	0.5	2.046 V	2 V
100	2.5	4	1	0.25	1.023 V	1 V
101	5.0	2	0.5	0.125	0.5115 V	0.5 V
110	10.0	1	0.25	0.0625	0.25575 V	0.25 V
111	20.0	0.5	0.125	0.03125	0.127875 V	0.125 V

Table 2-57 • Prescaler Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Notes:

1. LSB voltage equivalences assume VAREF = 2.56 V.

2. Full Scale voltage for n-bit mode: ((2ⁿ) - 1) x (LSB for a n-bit Conversion)

3. These are the only valid ranges for the Temperature Monitor Block Prescaler.

Table 2-58 details the settings available to control the MUX within each of the AV, AC, and AT circuits. This MUX determines whether the signal routed to the ADC is the direct analog input, prescaled signal, or output of either the Current Monitor Block or the Temperature Monitor Block.

Table 2-58 • Analog Multiplexer Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[4]	Control Lines Bx[3]	ADC Connected To
0	0	Prescaler
0	1	Direct input
1	0	Current amplifier temperature monitor
1	1	Not valid

Table 2-59 details the settings available to control the Direct Analog Input switch for the AV, AC, and AT pins.

Table 2-59 • Direct Analog Input Switch Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[5]	Direct Input Switch
0	Off
1	On

Table 2-60 details the settings available to control the polarity of the signals coming to the AV, AC, and AT pins. Note that the only valid setting for the AT pin is logic 0 to support positive voltages.

Table 2-60 • Voltage Polarity Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)*

Control Lines Bx[6]	Input Signal Polarity
0	Positive
1	Negative

Note: *The B3[6] signal for the AT pad should be kept at logic 0 to accept only positive voltages.

I/O Software Support

In the Fusion development software, default settings have been defined for the various I/O standards supported. Changes can be made to the default settings via the use of attributes; however, not all I/O attributes are applicable for all I/O standards. Table 2-84 and Table 2-85 list the valid I/O attributes that can be manipulated by the user for each I/O standard.

Single-ended I/O standards in Fusion support up to five different drive strengths.

Table 2-84 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (all macros with OE)*	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER
LVTTL/LVCMOS 3.3 V	3	3	3	3	3	3
LVCMOS 2.5 V	3	3	3	3	3	3
LVCMOS 2.5/5.0 V	3	3	3	3	3	3
LVCMOS 1.8 V	3	3	3	3	3	3
LVCMOS 1.5 V	3	3	3	3	3	3
PCI (3.3 V)			3		3	3
PCI-X (3.3 V)	3		3		3	3
LVDS, BLVDS, M-LVDS			3			3
LVPECL						3

Note: * This feature does not apply to the standard I/O banks, which are the north I/O banks of AFS090 and AFS250 devices

Device Architecture

Table 2-115 • 2.5 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
4 mA	Std.	0.66	8.66	0.04	1.31	0.43	7.83	8.66	2.68	2.30	10.07	10.90	ns
	-1	0.56	7.37	0.04	1.11	0.36	6.66	7.37	2.28	1.96	8.56	9.27	ns
	-2	0.49	6.47	0.03	0.98	0.32	5.85	6.47	2.00	1.72	7.52	8.14	ns
8 mA	Std.	0.66	5.17	0.04	1.31	0.43	5.04	5.17	3.05	3.00	7.27	7.40	ns
	-1	0.56	4.39	0.04	1.11	0.36	4.28	4.39	2.59	2.55	6.19	6.30	ns
	-2	0.49	3.86	0.03	0.98	0.32	3.76	3.86	2.28	2.24	5.43	5.53	ns
12 mA	Std.	0.66	3.56	0.04	1.31	0.43	3.63	3.43	3.30	3.44	5.86	5.67	ns
	-1	0.56	3.03	0.04	1.11	0.36	3.08	2.92	2.81	2.92	4.99	4.82	ns
	-2	0.49	2.66	0.03	0.98	0.32	2.71	2.56	2.47	2.57	4.38	4.23	ns
16 mA	Std.	0.66	3.35	0.04	1.31	0.43	3.41	3.06	3.36	3.55	5.65	5.30	ns
	-1	0.56	2.85	0.04	1.11	0.36	2.90	2.60	2.86	3.02	4.81	4.51	ns
	-2	0.49	2.50	0.03	0.98	0.32	2.55	2.29	2.51	2.65	4.22	3.96	ns
24 mA	Std.	0.66	3.56	0.04	1.31	0.43	3.63	3.43	3.30	3.44	5.86	5.67	ns
	-1	0.56	3.03	0.04	1.11	0.36	3.08	2.92	2.81	2.92	4.99	4.82	ns
	-2	0.49	2.66	0.03	0.98	0.32	2.71	2.56	2.47	2.57	4.38	4.23	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-116 • 2.5 V LVCMOS Low Slew

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	11.00	0.04	1.29	0.43	10.37	11.00	2.03	1.83	ns
	-1	0.56	9.35	0.04	1.10	0.36	8.83	9.35	1.73	1.56	ns
	-2	0.49	8.21	0.03	0.96	0.32	7.75	8.21	1.52	1.37	ns
4 mA	Std.	0.66	11.00	0.04	1.29	0.43	10.37	11.00	2.03	1.83	ns
	-1	0.56	9.35	0.04	1.10	0.36	8.83	9.35	1.73	1.56	ns
	-2	0.49	8.21	0.03	0.96	0.32	7.75	8.21	1.52	1.37	ns
6 mA	Std.	0.66	7.50	0.04	1.29	0.43	7.36	7.50	2.39	2.46	ns
	-1	0.56	6.38	0.04	1.10	0.36	6.26	6.38	2.03	2.10	ns
	-2	0.49	5.60	0.03	0.96	0.32	5.49	5.60	1.78	1.84	ns
8 mA	Std.	0.66	7.50	0.04	1.29	0.43	7.36	7.50	2.39	2.46	ns
	-1	0.56	6.38	0.04	1.10	0.36	6.26	6.38	2.03	2.10	ns
	-2	0.49	5.60	0.03	0.96	0.32	5.49	5.60	1.78	1.84	ns

Table 2-117 • 2.5 V LVCMOS High Slew
Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V
Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	8.20	0.04	1.29	0.43	7.24	8.20	2.03	1.91	ns
	-1	0.56	6.98	0.04	1.10	0.36	6.16	6.98	1.73	1.62	ns
	-2	0.49	6.13	0.03	0.96	0.32	5.41	6.13	1.52	1.43	ns
4 mA	Std.	0.66	8.20	0.04	1.29	0.43	7.24	8.20	2.03	1.91	ns
	-1	0.56	6.98	0.04	1.10	0.36	6.16	6.98	1.73	1.62	ns
	-2	0.49	6.13	0.03	0.96	0.32	5.41	6.13	1.52	1.43	ns
6 mA	Std.	0.66	4.77	0.04	1.29	0.43	4.55	4.77	2.38	2.55	ns
	-1	0.56	4.05	0.04	1.10	0.36	3.87	4.05	2.03	2.17	ns
	-2	0.49	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns
8 mA	Std.	0.66	4.77	0.04	1.29	0.43	4.55	4.77	2.38	2.55	ns
	-1	0.56	4.05	0.04	1.10	0.36	3.87	4.05	2.03	2.17	ns
	-2	0.49	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns

Timing Characteristics

Table 2-136 • 3.3 V PCI/PCI-X

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Pro I/Os

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.66	2.81	0.04	1.05	1.67	0.43	2.86	2.00	3.28	3.61	5.09	4.23	ns
-1	0.56	2.39	0.04	0.89	1.42	0.36	2.43	1.70	2.79	3.07	4.33	3.60	ns
-2	0.49	2.09	0.03	0.78	1.25	0.32	2.13	1.49	2.45	2.70	3.80	3.16	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-137 • 3.3 V PCI/PCI-X

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/Os

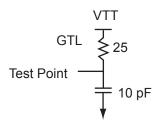
Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.68	0.04	0.86	0.43	2.73	1.95	3.21	3.58	4.97	4.19	0.66	ns
-1	0.56	2.28	0.04	0.73	0.36	2.32	1.66	2.73	3.05	4.22	3.56	0.56	ns
-2	0.49	2.00	0.03	0.65	0.32	2.04	1.46	2.40	2.68	3.71	3.13	0.49	ns

2.5 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.

 Table 2-141 • Minimum and Maximum DC Input and Output Levels

2.5 GTL	VIL		VIL VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
20 mA ³	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20	124	169	10	10


Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-125 • AC Loading

Table 2-142 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.05	VREF + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Timing Characteristics

Table 2-143 • 2.5 V GTL

```
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 0.8 V
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.66	2.13	0.04	2.46	0.43	2.16	2.13			4.40	4.36	ns
-1	0.56	1.81	0.04	2.09	0.36	1.84	1.81			3.74	3.71	ns
-2	0.49	1.59	0.03	1.83	0.32	1.61	1.59			3.28	3.26	ns

Pin Descriptions

Supply Pins

GND Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ needs to always be connected on the board to GND. Note: In FG256, FG484, and FG676 packages, GNDQ and GND pins are connected within the package and are labeled as GND pins in the respective package pin assignment tables.

ADCGNDREF Analog Reference Ground

Analog ground reference used by the ADC. This pad should be connected to a quiet analog ground.

GNDA Ground (analog)

Quiet ground supply voltage to the Analog Block of Fusion devices. The use of a separate analog ground helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.

GNDAQ Ground (analog quiet)

Quiet ground supply voltage to the analog I/O of Fusion devices. The use of a separate analog ground helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation. Note: In FG256, FG484, and FG676 packages, GNDAQ and GNDA pins are connected within the package and are labeled as GNDA pins in the respective package pin assignment tables.

GNDNVM Flash Memory Ground

Ground supply used by the Fusion device's flash memory block module(s).

GNDOSC Oscillator Ground

Ground supply for both integrated RC oscillator and crystal oscillator circuit.

VCC15A Analog Power Supply (1.5 V)

1.5 V clean analog power supply input for use by the 1.5 V portion of the analog circuitry.

VCC33A Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the 3.3 V portion of the analog circuitry.

VCC33N Negative 3.3 V Output

This is the -3.3 V output from the voltage converter. A 2.2 μ F capacitor must be connected from this pin to ground.

VCC33PMP Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the analog charge pump. To avoid high current draw, VCC33PMP should be powered up simultaneously with or after VCC33A.

VCCNVM Flash Memory Block Power Supply (1.5 V)

1.5 V power supply input used by the Fusion device's flash memory block module(s). To avoid high current draw, VCC should be powered up before or simultaneously with VCCNVM.

VCCOSC Oscillator Power Supply (3.3 V)

Power supply for both integrated RC oscillator and crystal oscillator circuit. The internal 100 MHz oscillator, powered by the VCCOSC pin, is needed for device programming, operation of the VDDN33 pump, and eNVM operation. VCCOSC is off only when VCCA is off. VCCOSC must be powered whenever the Fusion device needs to function.

Power per I/O Pin

Table 3-12 • Summary of I/O Input Buffer Power (per pin)—Default I/O Software Settings

	VCCI (V)	Static Power PDC7 (mW) ¹	Dynamic Power PAC9 (µW/MHz) ²
Applicable to Pro I/O Banks			
Single-Ended			
3.3 V LVTTL/LVCMOS	3.3	-	17.39
3.3 V LVTTL/LVCMOS – Schmitt trigger	3.3	_	25.51
2.5 V LVCMOS	2.5	_	5.76
2.5 V LVCMOS – Schmitt trigger	2.5	_	7.16
1.8 V LVCMOS	1.8	_	2.72
1.8 V LVCMOS – Schmitt trigger	1.8	_	2.80
1.5 V LVCMOS (JESD8-11)	1.5	_	2.08
1.5 V LVCMOS (JESD8-11) – Schmitt trigger	1.5	_	2.00
3.3 V PCI	3.3	_	18.82
3.3 V PCI – Schmitt trigger	3.3	_	20.12
3.3 V PCI-X	3.3	_	18.82
3.3 V PCI-X – Schmitt trigger	3.3	_	20.12
Voltage-Referenced			
3.3 V GTL	3.3	2.90	8.23
2.5 V GTL	2.5	2.13	4.78
3.3 V GTL+	3.3	2.81	4.14
2.5 V GTL+	2.5	2.57	3.71
HSTL (I)	1.5	0.17	2.03
HSTL (II)	1.5	0.17	2.03
SSTL2 (I)	2.5	1.38	4.48
SSTL2 (II)	2.5	1.38	4.48
SSTL3 (I)	3.3	3.21	9.26
SSTL3 (II)	3.3	3.21	9.26
Differential	· · · · · · · · · · · · · · · · · · ·		-
LVDS	2.5	2.26	1.50
LVPECL	3.3	5.71	2.17

Notes:

1. PDC7 is the static power (where applicable) measured on VCCI.

2. PAC9 is the total dynamic power measured on VCC and VCCI.

Total Static Power Consumption—PSTAT

Number of Quads used: $N_{QUADS} = 4$ Number of NVM blocks available (AFS600): $N_{NVM-BLOCKS} = 2$ Number of input pins used: $N_{INPUTS} = 30$ Number of output pins used: $N_{OUTPUTS} = 40$

Operating Mode

 $\mathsf{P}_{\mathsf{STAT}} = \mathsf{PDC1} + (\mathsf{N}_{\mathsf{NVM-BLOCKS}} * \mathsf{PDC4}) + \mathsf{PDC5} + (\mathsf{N}_{\mathsf{QUADS}} * \mathsf{PDC6}) + (\mathsf{N}_{\mathsf{INPUTS}} * \mathsf{PDC7}) + (\mathsf{N}_{\mathsf{OUTPUTS}} * \mathsf{PDC8})$

P_{STAT} = 7.50 mW + (2 * 1.19 mW) + 8.25 mW + (4 * 3.30 mW) + (30 * 0.00) + (40 * 0.00)

P_{STAT} = 31.33 mW

Standby Mode

P_{STAT} = PDC2

 $P_{STAT} = 0.03 \text{ mW}$

Sleep Mode

 $P_{STAT} = PDC3$

 $P_{STAT} = 0.03 \text{ mW}$

Total Power Consumption—PTOTAL

In operating mode, the total power consumption of the device is 174.39 mW:

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{TOTAL} = 143.06 mW + 31.33 mW

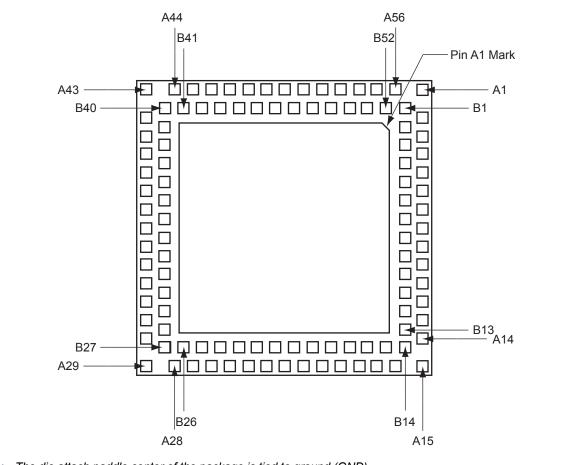
P_{TOTAL} = 174.39 mW

In standby mode, the total power consumption of the device is limited to 0.66 mW:

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

 $P_{TOTAL} = 0.03 \text{ mW} + 0.63 \text{ mW}$

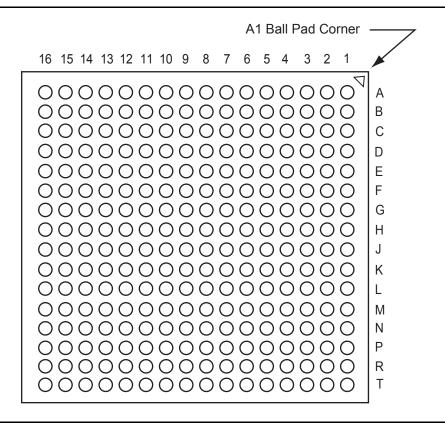
 $P_{TOTAL} = 0.66 \text{ mW}$


In sleep mode, the total power consumption of the device drops as low as 0.03 mW:

 $P_{TOTAL} = P_{STAT} + P_{DYN}$ $P_{TOTAL} = 0.03 \text{ mW}$

4 – Package Pin Assignments

QN108


Note: The die attach paddle center of the package is tied to ground (GND).

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.

FG256

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.

		FG256		
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function
M15	TRST	TRST	TRST	TRST
M16	GND	GND	GND	GND
N1	GEB2/IO42PDB3V0	GEB2/IO59PDB3V0	GEB2/IO59PDB4V0	GEB2/IO86PDB4V0
N2	GEA2/IO42NDB3V0	IO59NDB3V0	IO59NDB4V0	IO86NDB4V0
N3	NC	GEA2/IO58PPB3V0	GEA2/IO58PPB4V0	GEA2/IO85PPB4V0
N4	VCC33PMP	VCC33PMP	VCC33PMP	VCC33PMP
N5	VCC15A	VCC15A	VCC15A	VCC15A
N6	NC	NC	AG0	AG0
N7	AC1	AC1	AC3	AC3
N8	AG3	AG3	AG5	AG5
N9	AV3	AV3	AV5	AV5
N10	AG4	AG4	AG6	AG6
N11	NC	NC	AC8	AC8
N12	GNDA	GNDA	GNDA	GNDA
N13	VCC33A	VCC33A	VCC33A	VCC33A
N14	VCCNVM	VCCNVM	VCCNVM	VCCNVM
N15	ТСК	ТСК	ТСК	ТСК
N16	TDI	TDI	TDI	TDI
P1	VCCNVM	VCCNVM	VCCNVM	VCCNVM
P2	GNDNVM	GNDNVM	GNDNVM	GNDNVM
P3	GNDA	GNDA	GNDA	GNDA
P4	NC	NC	AC0	AC0
P5	NC	NC	AG1	AG1
P6	NC	NC	AV1	AV1
P7	AG0	AG0	AG2	AG2
P8	AG2	AG2	AG4	AG4
P9	GNDA	GNDA	GNDA	GNDA
P10	NC	AC5	AC7	AC7
P11	NC	NC	AV8	AV8
P12	NC	NC	AG8	AG8
P13	NC	NC	AV9	AV9
P14	ADCGNDREF	ADCGNDREF	ADCGNDREF	ADCGNDREF
P15	PTBASE	PTBASE	PTBASE	PTBASE
P16	GNDNVM	GNDNVM	GNDNVM	GNDNVM
R1	VCCIB3	VCCIB3	VCCIB4	VCCIB4
R2	PCAP	PCAP	PCAP	PCAP
R3	NC	NC	AT1	AT1
R4	NC	NC	AT0	AT0

	FG484			FG484	
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function
B5	IO05NDB0V0	IO04NDB0V0	C18	VCCIB1	VCCIB1
B6	IO05PDB0V0	IO04PDB0V0	C19	VCOMPLB	VCOMPLB
B7	GND	GND	C20	GBA2/IO30PDB2V0	GBA2/IO44PDB2V0
B8	IO10NDB0V1	IO09NDB0V1	C21	NC	IO48PSB2V0
B9	IO13PDB0V1	IO11PDB0V1	C22	GBB2/IO31PDB2V0	GBB2/IO45PDB2V0
B10	GND	GND	D1	IO82NDB4V0	IO121NDB4V0
B11	IO17NDB1V0	IO24NDB1V0	D2	GND	GND
B12	IO18NDB1V0	IO26NDB1V0	D3	IO83NDB4V0	IO123NDB4V0
B13	GND	GND	D4	GAC2/IO83PDB4V0	GAC2/IO123PDB4V0
B14	IO21NDB1V0	IO31NDB1V1	D5	GAA2/IO85PDB4V0	GAA2/IO125PDB4V0
B15	IO21PDB1V0	IO31PDB1V1	D6	GAC0/IO03NDB0V0	GAC0/IO03NDB0V0
B16	GND	GND	D7	GAC1/IO03PDB0V0	GAC1/IO03PDB0V0
B17	GBC1/IO26PDB1V1	GBC1/IO40PDB1V2	D8	IO09NDB0V1	IO10NDB0V1
B18	GBA1/IO28PDB1V1	GBA1/IO42PDB1V2	D9	IO09PDB0V1	IO10PDB0V1
B19	GND	GND	D10	IO11NDB0V1	IO14NDB0V2
B20	VCCPLB	VCCPLB	D11	IO16NDB1V0	IO23NDB1V0
B21	GND	GND	D12	IO16PDB1V0	IO23PDB1V0
B22	VCC	NC	D13	NC	IO32NPB1V1
C1	IO82PDB4V0	IO121PDB4V0	D14	IO23NDB1V1	IO34NDB1V1
C2	NC	IO122PSB4V0	D15	IO23PDB1V1	IO34PDB1V1
C3	IO00NDB0V0	IO00NDB0V0	D16	IO25PDB1V1	IO37PDB1V2
C4	IO00PDB0V0	IO00PDB0V0	D17	GBB1/IO27PDB1V1	GBB1/IO41PDB1V2
C5	VCCIB0	VCCIB0	D18	VCCIB2	VCCIB2
C6	IO06NDB0V0	IO05NDB0V1	D19	NC	IO47PPB2V0
C7	IO06PDB0V0	IO05PDB0V1	D20	IO30NDB2V0	IO44NDB2V0
C8	VCCIB0	VCCIB0	D21	GND	GND
C9	IO13NDB0V1	IO11NDB0V1	D22	IO31NDB2V0	IO45NDB2V0
C10	IO11PDB0V1	IO14PDB0V2	E1	IO81NDB4V0	IO120NDB4V0
C11	VCCIB0	VCCIB0	E2	IO81PDB4V0	IO120PDB4V0
C12	VCCIB1	VCCIB1	E3	VCCIB4	VCCIB4
C13	IO20NDB1V0	IO29NDB1V1	E4	GAB2/IO84PDB4V0	GAB2/IO124PDB4V0
C14	IO20PDB1V0	IO29PDB1V1	E5	IO85NDB4V0	IO125NDB4V0
C15	VCCIB1	VCCIB1	E6	GND	GND
C16	IO25NDB1V1	IO37NDB1V2	E7	VCCIB0	VCCIB0
C17	GBB0/IO27NDB1V1	GBB0/IO41NDB1V2	E8	NC	IO08NDB0V1

Revision	Changes	Page					
Revision 2 (continued)	The prescalar range for the 'Analog Input (direct input to ADC)" configurations was removed as inapplicable for direct inputs. The input resistance for direct inputs is covered in Table 2-50 • ADC Characteristics in Direct Input Mode (SAR 31201).	2-120					
	The "Examples" for calibrating accuracy for ADC channels were revised and corrected to make them consistent with terminology in the associated tables (SARs 36791, 36773).						
	A note was added to Table 2-56 • Analog Quad ACM Byte Assignment and the introductory text for Table 2-66 • Internal Temperature Monitor Control Truth Table, stating that for the internal temperature monitor to function, Bit 0 of Byte 2 for all 10 Quads must be set (SAR 34418).	2-129, 2-131					
	t _{DOUT} was corrected to t _{DIN} in Figure 2-116 • Input Buffer Timing Model and Delays (example) (SAR 37115).	2-161					
	The formulas in the table notes for Table 2-97 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 34751).	2-171					
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34877).						
	The following notes were removed from Table 2-168 • Minimum and Maximum DC Input and Output Levels (SAR 34808): ±5% Differential input voltage = ±350 mV	2-209					
	An incomplete, duplicate sentence was removed from the end of the "GNDAQ Ground (analog quiet)" pin description (SAR 30185).	2-223					
	Information about configuration of unused I/Os was added to the "User Pins" section (SAR 32642).	2-225					
	The following information was added to the pin description for "XTAL1 Crystal Oscillator Circuit Input" and "XTAL2 Crystal Oscillator Circuit Input" (SAR 24119).	2-227					
	The input resistance to ground value in Table 3-3 • Input Resistance of Analog Pads for Analog Input (direct input to ADC), was corrected from 1 M Ω (typical) to 2 k Ω (typical) (SAR 34371).	3-4					
	The Storage Temperature column in Table 3-5 • FPGA Programming, Storage, and Operating Limits stated Min. T_J twice for commercial and industrial product grades and has been corrected to Min. T_J and Max. T_J (SAR 29416).	3-5					
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Dynamic Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>Fusion FPGA Fabric User's Guide</i> (SAR 34741).	3-24					
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 36612).	4-1					
July 2010	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "Fusion Device Status" table indicates the status for each device in the device family.	N/A					

Fusion Family of Mixed Signal FPGAs

Revision	Changes	Page		
Advance v0.3	The "Temperature Monitor" section was updated.	2-96		
(continued)	EQ 2 is new.	2-103		
	The "ADC Description" section was updated.			
	Figure 2-16 • Fusion Clocking Options was updated.			
	Table 2-46 · Analog Channel Specifications was updated.	2-118		
	The notes in Table 2-72 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance Capabilities were updated.			
	The "Simultaneously Switching Outputs and PCB Layout" section is new.	2-149		
	LVPECL and LVDS were updated in Table 2-81 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications.			
	LVPECL and LVDS were updated in Table 2-82 • Fusion Pro I/O Attributes vs. I/O Standard Applications.			
	The "Timing Model" was updated.			
	All voltage-referenced Minimum and Maximum DC Input and Output Level tables were updated.			
	All Timing Characteristic tables were updated	N/A		
	 Table 2-83 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions was updated. Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings was updated. 			
	Table 2-93 • I/O Output Buffer Maximum Resistances ¹ was updated.			
	The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O standards included in the datasheet. The "CoreMP7 and Cortex-M1 Software Tools" section is new.			
	Table 2-83 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions was updated.	2-165		
	Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings was updated.	2-134		
	Table 2-93 • I/O Output Buffer Maximum Resistances ¹ was updated.	2-171		
	The "BLVDS/M-LVDS" section is new. BLVDS and M-LVDS are two new I/O standards included in the datasheet.	2-211		
	The "108-Pin QFN" table for the AFS090 device is new.			
	The "180-Pin QFN" table for the AFS090 device is new.	3-4		
	The "208-Pin PQFP" table for the AFS090 device is new.	3-8		
	The "256-Pin FBGA" table for the AFS090 device is new.	3-12		
	The "256-Pin FBGA" table for the AFS250 device is new.	3-12		