



Welcome to E-XFL.COM

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

| Product Status                 | Active                                                                      |
|--------------------------------|-----------------------------------------------------------------------------|
| Number of LABs/CLBs            | -                                                                           |
| Number of Logic Elements/Cells | -                                                                           |
| Total RAM Bits                 | 110592                                                                      |
| Number of I/O                  | 172                                                                         |
| Number of Gates                | 600000                                                                      |
| Voltage - Supply               | 1.425V ~ 1.575V                                                             |
| Mounting Type                  | Surface Mount                                                               |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                                          |
| Package / Case                 | 484-BGA                                                                     |
| Supplier Device Package        | 484-FPBGA (23x23)                                                           |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microchip-technology/p1afs600-2fgg484i |
|                                |                                                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## **Table of Contents**

## Fusion Device Family Overview

| Introduction              | 1-1  |
|---------------------------|------|
| General Description       | 1-1  |
| Unprecedented Integration | 1-4  |
| Related Documents         | 1-10 |

## **Device Architecture**

| Fusion Stack Architecture |  |
|---------------------------|--|
| Core Architecture         |  |
| Clocking Resources        |  |
| Real-Time Counter System  |  |
| Embedded Memories         |  |
| Analog Block              |  |
| Analog Configuration MUX  |  |
| User I/Os                 |  |
| Pin Descriptions          |  |
| Security                  |  |

## DC and Power Characteristics

| General Specifications        | 3-1  |
|-------------------------------|------|
| Calculating Power Dissipation |      |
| Power Consumption             | 3-32 |

## Package Pin Assignments

| QN108 | <br>    | <br> | <br>      | <br> | <br> | <br>    | <br>    | <br> | <br> |     | <br> | <br>. 4- | 1 |
|-------|------|------|------|------|------|------|---------|------|-----------|------|------|---------|---------|------|------|-----|------|----------|---|
| QN180 | <br>    | <br> | <br>      | <br> | <br> | <br>    | <br>    | <br> | <br> |     | <br> | <br>. 4- | 3 |
| PQ208 | <br>    | <br> | <br>      | <br> | <br> | <br>    | <br>    | <br> | <br> |     | <br> | <br>. 4- | 7 |
| FG256 | <br>    | <br> | <br>      | <br> | <br> | <br>    | <br>    | <br> | <br> |     | <br> | <br>4-1  | 1 |
| FG484 | <br>    | <br> | <br>      | <br> | <br> | <br>    | <br>    | <br> | <br> |     | <br> | <br>4-1  | 9 |
| FG676 | <br> | <br> | <br> | <br> | <br> | <br> | <br>••• | <br> | <br>• • • | <br> | <br> | <br>• • | <br>• • | <br> | <br> | ••• | <br> | <br>4-2  | 7 |

## **Datasheet Information**

| List of Changes                                                         |   |
|-------------------------------------------------------------------------|---|
| Datasheet Categories                                                    |   |
| Safety Critical, Life Support, and High-Reliability Applications Policy | / |



With Fusion, Microsemi also introduces the Analog Quad I/O structure (Figure 1-1). Each quad consists of three analog inputs and one gate driver. Each quad can be configured in various built-in circuit combinations, such as three prescaler circuits, three digital input circuits, a current monitor circuit, or a temperature monitor circuit. Each prescaler has multiple scaling factors programmed by FPGA signals to support a large range of analog inputs with positive or negative polarity. When the current monitor circuit is selected, two adjacent analog inputs measure the voltage drop across a small external sense resistor. For more information, refer to the "Analog System Characteristics" section on page 2-117. Built-in operational amplifiers amplify small voltage signals for accurate current measurement. One analog input in each quad can be connected to an external temperature monitor diode. In addition to the external temperature monitor diode(s), a Fusion device can monitor an internal temperature diode using dedicated channel 31 of the ADCMUX.

Figure 1-1 on page 1-5 illustrates a typical use of the Analog Quad I/O structure. The Analog Quad shown is configured to monitor and control an external power supply. The AV pad measures the source of the power supply. The AC pad measures the voltage drop across an external sense resistor to calculate current. The AG MOSFET gate driver pad turns the external MOSFET on and off. The AT pad measures the load-side voltage level.



Figure 1-1 • Analog Quad



## 2 – Device Architecture

## **Fusion Stack Architecture**

To manage the unprecedented level of integration in Fusion devices, Microsemi developed the Fusion technology stack (Figure 2-1). This layered model offers a flexible design environment, enabling design at very high and very low levels of abstraction. Fusion peripherals include hard analog IP and hard and soft digital IP. Peripherals communicate across the FPGA fabric via a layer of soft gates—the Fusion backbone. Much more than a common bus interface, this Fusion backbone integrates a micro-sequencer within the FPGA fabric and configures the individual peripherals and supports low-level processing of peripheral data. Fusion applets are application building blocks that can control and respond to peripherals and other system signals. Applets can be rapidly combined to create large applications. The technology is scalable across devices, families, design types, and user expertise, and supports a well-defined interface for external IP and tool integration.

At the lowest level, Level 0, are Fusion peripherals. These are configurable functional blocks that can be hardwired structures such as a PLL or analog input channel, or soft (FPGA gate) blocks such as a UART or two-wire serial interface. The Fusion peripherals are configurable and support a standard interface to facilitate communication and implementation.

Connecting and controlling access to the peripherals is the Fusion backbone, Level 1. The backbone is a soft-gate structure, scalable to any number of peripherals. The backbone is a bus and much more; it manages peripheral configuration to ensure proper operation. Leveraging the common peripheral interface and a low-level state machine, the backbone efficiently offloads peripheral management from the system design. The backbone can set and clear flags based upon peripheral behavior and can define performance criteria. The flexibility of the stack enables a designer to configure the silicon, directly bypassing the backbone if that level of control is desired.

One step up from the backbone is the Fusion applet, Level 2. The applet is an application building block that implements a specific function in FPGA gates. It can react to stimuli and board-level events coming through the backbone or from other sources, and responds to these stimuli by accessing and manipulating peripherals via the backbone or initiating some other action. An applet controls or responds to the peripheral(s). Applets can be easily imported or exported from the design environment. The applet structure is open and well-defined, enabling users to import applets from Microsemi, system developers, third parties, and user groups.



Note: Levels 1, 2, and 3 are implemented in FPGA logic gates.

Figure 2-1 • Fusion Architecture Stack



## **Clock Aggregation**

Clock aggregation allows for multi-spine clock domains. A MUX tree provides the necessary flexibility to allow long lines or I/Os to access domains of one, two, or four global spines. Signal access to the clock aggregation system is achieved through long-line resources in the central rib, and also through local resources in the north and south ribs, allowing I/Os to feed directly into the clock system. As Figure 2-14 indicates, this access system is contiguous.

There is no break in the middle of the chip for north and south I/O VersaNet access. This is different from the quadrant clocks, located in these ribs, which only reach the middle of the rib. Refer to the *Using Global Resources in Actel Fusion Devices* application note.



Figure 2-14 • Clock Aggregation Tree Architecture

## CCC Physical Implementation

The CCC circuit is composed of the following (Figure 2-23):

- PLL core
- · 3 phase selectors
- 6 programmable delays and 1 fixed delay
- 5 programmable frequency dividers that provide frequency multiplication/division (not shown in Figure 2-23 because they are automatically configured based on the user's required frequencies)
- 1 dynamic shift register that provides CCC dynamic reconfiguration capability (not shown)

#### **CCC Programming**

The CCC block is fully configurable. It is configured via static flash configuration bits in the array, set by the user in the programming bitstream, or configured through an asynchronous dedicated shift register, dynamically accessible from inside the Fusion device. The dedicated shift register permits changes of parameters such as PLL divide ratios and delays during device operation. This latter mode allows the user to dynamically reconfigure the PLL without the need for core programming. The register file is accessed through a simple serial interface.



Note: Clock divider and multiplier blocks are not shown in this figure or in SmartGen. They are automatically configured based on the user's required frequencies.

Figure 2-23 • PLL Block



### **Current Monitor**

The Fusion Analog Quad is an excellent element for voltage- and current-monitoring applications. In addition to supporting the same functionality offered by the AV pad, the AC pad can be configured to monitor current across an external sense resistor (Figure 2-70). To support this current monitor function, a differential amplifier with 10x gain passes the amplified voltage drop between the AV and AC pads to the ADC. The amplifier enables the user to use very small resistor values, thereby limiting any impact on the circuit. This function of the AC pad does not limit AV pad operation. The AV pad can still be configured for use as a direct voltage input or scaled through the AV prescaler independently of it's use as an input to the AC pad's differential amplifier.



Figure 2-70 • Analog Quad Current Monitor Configuration



## ADC Terminology

#### **Conversion Time**

Conversion time is the interval between the release of the hold state (imposed by the input circuitry of a track-and-hold) and the instant at which the voltage on the sampling capacitor settles to within one LSB of a new input value.

#### DNL – Differential Non-Linearity

For an ideal ADC, the analog-input levels that trigger any two successive output codes should differ by one LSB (DNL = 0). Any deviation from one LSB in defined as DNL (Figure 2-83).



Figure 2-83 • Differential Non-Linearity (DNL)

#### **ENOB – Effective Number of Bits**

ENOB specifies the dynamic performance of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists only of quantization of noise. As the input frequency increases, the overall noise (particularly in the distortion components) also increases, thereby reducing the ENOB and SINAD (also see "Signal-to-Noise and Distortion Ratio (SINAD)".) ENOB for a full-scale, sinusoidal input waveform is computed using EQ 12.

$$ENOB = \frac{SINAD - 1.76}{6.02}$$

EQ 12

#### FS Error – Full-Scale Error

Full-scale error is the difference between the actual value that triggers that transition to full-scale and the ideal analog full-scale transition value. Full-scale error equals offset error plus gain error.



#### Intra-Conversion

Performing a conversion during power-up calibration is possible but should be avoided, since the performance is not guaranteed, as shown in Table 2-49 on page 2-117. This is described as intra-conversion. Figure 2-92 on page 2-113 shows intra-conversion, (conversion that starts during power-up calibration).

#### **Injected Conversion**

A conversion can be interrupted by another conversion. Before the current conversion is finished, a second conversion can be started by issuing a pulse on signal ADCSTART. When a second conversion is issued before the current conversion is completed, the current conversion would be dropped and the ADC would start the second conversion on the rising edge of the SYSCLK. This is known as injected conversion. Since the ADC is synchronous, the minimum time to issue a second conversion is two clock cycles of SYSCLK after the previous one. Figure 2-93 on page 2-113 shows injected conversion, (conversion that starts before a previously started conversion is finished). The total time for calibration still remains 3,840 ADCCLK cycles.

#### ADC Example

This example shows how to choose the correct settings to achieve the fastest sample time in 10-bit mode for a system that runs at 66 MHz. Assume the acquisition times defined in Table 2-44 on page 2-108 for 10-bit mode, which gives 0.549 µs as a minimum hold time.

The period of SYSCLK:  $t_{SYSCLK} = 1/66$  MHz = 0.015  $\mu$ s

Choosing TVC between 1 and 33 will meet the maximum and minimum period for the ADCCLK requirement. A higher TVC leads to a higher ADCCLK period.

The minimum TVC is chosen so that  $t_{distrib}$  and  $t_{post-cal}$  can be run faster. The period of ADCCLK with a TVC of 1 can be computed by EQ 24.

$$t_{ADCCLK} = 4 \times (1 + TVC) \times t_{SYSCLK} = 4 \times (1 + 1) \times 0.015 \ \mu s = 0.12 \ \mu s$$

EQ 24

The STC value can now be computed by using the minimum sample/hold time from Table 2-44 on page 2-108, as shown in EQ 25.

STC = 
$$\frac{t_{sample}}{t_{ADCCLK}} - 2 = \frac{0.549 \ \mu s}{0.12 \ \mu s} - 2 = 4.575 - 2 = 2.575$$

EQ 25

You must round up to 3 to accommodate the minimum sample time requirement. The actual sample time,  $t_{sample}$ , with an STC of 3, is now equal to 0.6  $\mu$ s, as shown in EQ 26

$$t_{sample} = (2 + STC) \times t_{ADCCLK} = (2 + 3) \times t_{ADCCLK} = 5 \times 0.12 \ \mu s = 0.6 \ \mu s$$

EQ 26

Microsemi recommends post-calibration for temperature drift over time, so post-calibration is enabled. The post-calibration time,  $t_{post-cal}$ , can be computed by EQ 27. The post-calibration time is 0.24 µs.

$$t_{post-cal} = 2 \times t_{ADCCLK} = 0.24 \ \mu s$$

EQ 27

The distribution time,  $t_{distrib}$ , is equal to 1.2 µs and can be computed as shown in EQ 28 (N is number of bits, referring back to EQ 8 on page 2-94).

$$_{\text{distrib}} = N \times t_{\text{ADCCLK}} = 10 \times 0.12 = 1.2 \ \mu \text{s}$$

t

EQ 28

The total conversion time can now be summated, as shown in EQ 29 (referring to EQ 23 on page 2-109).

 $t_{sync\_read} + t_{sample} + t_{distrib} + t_{post-cal} + t_{sync\_write} = (0.015 + 0.60 + 1.2 + 0.24 + 0.015) \ \mu s = 2.07 \ \mu s = EQ \ 29$ 



|               |                        | Tot<br>Er          | al Chai<br>ror (LS | nnel<br>SB)  | Chann<br>E | el Inpu<br>rror (L§ | t Offset<br>SB) | Chanı<br>I   | nel Input<br>Error (m\ | Offset<br>/) | Chan | nel Gaiı<br>(%FSR | n Error<br>) |  |
|---------------|------------------------|--------------------|--------------------|--------------|------------|---------------------|-----------------|--------------|------------------------|--------------|------|-------------------|--------------|--|
| Analog<br>Pad | Prescaler<br>Range (V) | Neg.<br>Max.       | Med.               | Pos.<br>Max. | Neg<br>Max | Med.                | Pos.<br>Max.    | Neg.<br>Max. | Med.                   | Pos.<br>Max. | Min. | Тур.              | Max.         |  |
| Positi        | ve Range               | ADC in 10-Bit Mode |                    |              |            |                     |                 |              |                        |              |      |                   |              |  |
| AV, AC        | 16                     | -22                | -2                 | 12           | -11        | -2                  | 14              | -169         | -32                    | 224          | 3    | 0                 | -3           |  |
|               | 8                      | -40                | -5                 | 17           | -11        | -5                  | 21              | -87          | -40                    | 166          | 2    | 0                 | -4           |  |
|               | 4                      | -45                | -9                 | 24           | -16        | -11                 | 36              | -63          | -43                    | 144          | 2    | 0                 | -4           |  |
|               | 2                      | -70                | -19                | 33           | -33        | -20                 | 66              | -66          | -39                    | 131          | 2    | 0                 | -4           |  |
|               | 1                      | -25                | -7                 | 5            | -11        | -3                  | 26              | -11          | -3                     | 26           | 3    | -1                | -3           |  |
|               | 0.5                    | -41                | -12                | 8            | -12        | -7                  | 38              | -6           | -4                     | 19           | 3    | -1                | -3           |  |
|               | 0.25                   | -53                | -14                | 19           | -20        | -14                 | 40              | -5           | -3                     | 10           | 5    | 0                 | -4           |  |
|               | 0.125                  | -89                | -29                | 24           | -40        | -28                 | 88              | -5           | -4                     | 11           | 7    | 0                 | -5           |  |
| AT            | 16                     | -3                 | 9                  | 15           | -4         | 0                   | 4               | -64          | 5                      | 64           | 1    | 0                 | -1           |  |
|               | 4                      | -10                | 2                  | 15           | -11        | -2                  | 11              | -44          | -8                     | 44           | 1    | 0                 | -1           |  |
| Negati        | ve Range               |                    |                    |              |            |                     | ADC in          | 10-Bit N     | lode                   |              |      |                   |              |  |
| AV, AC        | 16                     | -35                | -10                | 9            | -24        | -6                  | 9               | -383         | -96                    | 148          | 5    | -1                | -6           |  |
|               | 8                      | -65                | -19                | 12           | -34        | -12                 | 9               | -268         | -99                    | 75           | 5    | -1                | -5           |  |
|               | 4                      | -86                | -28                | 21           | -64        | -24                 | 19              | -254         | -96                    | 76           | 5    | -1                | -6           |  |
|               | 2                      | -136               | -53                | 37           | -115       | -42                 | 39              | -230         | -83                    | 78           | 6    | -2                | -7           |  |
|               | 1                      | -98                | -35                | 8            | -39        | -8                  | 15              | -39          | -8                     | 15           | 10   | -3                | -10          |  |
|               | 0.5                    | -121               | -46                | 7            | -54        | -14                 | 18              | -27          | -7                     | 9            | 10   | -4                | -11          |  |
|               | 0.25                   | -149               | -49                | 19           | -72        | -16                 | 40              | –18          | -4                     | 10           | 14   | -4                | -12          |  |
|               | 0.125                  | -188               | -67                | 38           | -112       | -27                 | 56              | -14          | -3                     | 7            | 16   | -5                | -14          |  |

# Table 2-51 • Uncalibrated Analog Channel Accuracy\*Worst-Case Industrial Conditions, TJ = 85°C

*Note:* \*Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For 8-bit mode, divide the LSB count by 4. Gain remains the same.

#### Table 2-99 • Short Current Event Duration before Failure

| Temperature | Time Before Failure |
|-------------|---------------------|
| -40°C       | >20 years           |
| 0°C         | >20 years           |
| 25°C        | >20 years           |
| 70°C        | 5 years             |
| 85°C        | 2 years             |
| 100°C       | 6 months            |

## Table 2-100 • Schmitt Trigger Input Hysteresis Hysteresis Voltage Value (typ.) for Schmitt Mode Input Buffers

| Input Buffer Configuration                          | Hysteresis Value (typ.) |
|-----------------------------------------------------|-------------------------|
| 3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode) | 240 mV                  |
| 2.5 V LVCMOS (Schmitt trigger mode)                 | 140 mV                  |
| 1.8 V LVCMOS (Schmitt trigger mode)                 | 80 mV                   |
| 1.5 V LVCMOS (Schmitt trigger mode)                 | 60 mV                   |

#### Table 2-101 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

| Input Buffer                               | Input Rise/Fall Time (min.) | Input Rise/Fall Time (max.)                                                    | Reliability      |
|--------------------------------------------|-----------------------------|--------------------------------------------------------------------------------|------------------|
| LVTTL/LVCMOS (Schmitt trigger<br>disabled) | No requirement              | 10 ns*                                                                         | 20 years (100°C) |
| LVTTL/LVCMOS (Schmitt trigger<br>enabled)  | No requirement              | No requirement, but input<br>noise voltage cannot exceed<br>Schmitt hysteresis | 20 years (100°C) |
| HSTL/SSTL/GTL                              | No requirement              | 10 ns*                                                                         | 10 years (100°C) |
| LVDS/BLVDS/M-LVDS/LVPECL                   | No requirement              | 10 ns*                                                                         | 10 years (100°C) |

Note: \* The maximum input rise/fall time is related only to the noise induced into the input buffer trace. If the noise is low, the rise time and fall time of input buffers, when Schmitt trigger is disabled, can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure there is no excessive noise coupling into input signals.



#### Table 2-105 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew

Commercial Temperature Range Conditions:  $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Pro I/Os

| Drive<br>Strength | Speed<br>Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>PYS</sub> | t <sub>EOU</sub> | t <sub>zL</sub> | t <sub>zH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>zLS</sub> | t <sub>zHS</sub> | Units |
|-------------------|----------------|-------------------|-----------------|------------------|-----------------|------------------|------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 4 mA              | Std.           | 0.66              | 7.88            | 0.04             | 1.20            | 1.57             | 0.43             | 8.03            | 6.70            | 2.69            | 2.59            | 10.26            | 8.94             | ns    |
|                   | -1             | 0.56              | 6.71            | 0.04             | 1.02            | 1.33             | 0.36             | 6.83            | 5.70            | 2.29            | 2.20            | 8.73             | 7.60             | ns    |
|                   | -2             | 0.49              | 5.89            | 0.03             | 0.90            | 1.17             | 0.32             | 6.00            | 5.01            | 2.01            | 1.93            | 7.67             | 6.67             | ns    |
| 8 mA              | Std.           | 0.66              | 5.08            | 0.04             | 1.20            | 1.57             | 0.43             | 5.17            | 4.14            | 3.05            | 3.21            | 7.41             | 6.38             | ns    |
|                   | -1             | 0.56              | 4.32            | 0.04             | 1.02            | 1.33             | 0.36             | 4.40            | 3.52            | 2.59            | 2.73            | 6.30             | 5.43             | ns    |
|                   | -2             | 0.49              | 3.79            | 0.03             | 0.90            | 1.17             | 0.32             | 3.86            | 3.09            | 2.28            | 2.40            | 5.53             | 4.76             | ns    |
| 12 mA             | Std.           | 0.66              | 3.67            | 0.04             | 1.20            | 1.57             | 0.43             | 3.74            | 2.87            | 3.28            | 3.61            | 5.97             | 5.11             | ns    |
|                   | -1             | 0.56              | 3.12            | 0.04             | 1.02            | 1.33             | 0.36             | 3.18            | 2.44            | 2.79            | 3.07            | 5.08             | 4.34             | ns    |
|                   | -2             | 0.49              | 2.74            | 0.03             | 0.90            | 1.17             | 0.32             | 2.79            | 2.14            | 2.45            | 2.70            | 4.46             | 3.81             | ns    |
| 16 mA             | Std.           | 0.66              | 3.46            | 0.04             | 1.20            | 1.57             | 0.43             | 3.53            | 2.61            | 3.33            | 3.72            | 5.76             | 4.84             | ns    |
|                   | -1             | 0.56              | 2.95            | 0.04             | 1.02            | 1.33             | 0.36             | 3.00            | 2.22            | 2.83            | 3.17            | 4.90             | 4.12             | ns    |
|                   | -2             | 0.49              | 2.59            | 0.03             | 0.90            | 1.17             | 0.32             | 2.63            | 1.95            | 2.49            | 2.78            | 4.30             | 3.62             | ns    |
| 24 mA             | Std.           | 0.66              | 3.21            | 0.04             | 1.20            | 1.57             | 0.43             | 3.27            | 2.16            | 3.39            | 4.13            | 5.50             | 4.39             | ns    |
|                   | -1             | 0.56              | 2.73            | 0.04             | 1.02            | 1.33             | 0.36             | 2.78            | 1.83            | 2.88            | 3.51            | 4.68             | 3.74             | ns    |
|                   | -2             | 0.49              | 2.39            | 0.03             | 0.90            | 1.17             | 0.32             | 2.44            | 1.61            | 2.53            | 3.08            | 4.11             | 3.28             | ns    |

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.



## Voltage Referenced I/O Characteristics

#### 3.3 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

| 3.3 V GTL          |           | VIL         | VIF              | VOL | VOH       | IOL       | IOH | IOSL | IOSH                    | IIL <sup>1</sup>        | IIH <sup>2</sup> |                 |
|--------------------|-----------|-------------|------------------|-----|-----------|-----------|-----|------|-------------------------|-------------------------|------------------|-----------------|
| Drive<br>Strength  | Min.<br>V | Max.<br>V   | Min. Max.<br>V V |     | Max.<br>V | Min.<br>V | mA  | mA   | Max.<br>mA <sup>3</sup> | Max.<br>mA <sup>3</sup> | μA <sup>4</sup>  | μA <sup>4</sup> |
| 20 mA <sup>3</sup> | -0.3      | VREF – 0.05 | VREF + 0.05      | 3.6 | 0.4       | -         | 20  | 20   | 181                     | 268                     | 10               | 10              |

Table 2-138 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.



#### Figure 2-124 • AC Loading

#### Table 2-139 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) | VREF (typ.) (V) | VTT (typ.) (V) | C <sub>LOAD</sub> (pF) |
|---------------|----------------|----------------------|-----------------|----------------|------------------------|
| VREF – 0.05   | VREF + 0.05    | 0.8                  | 0.8             | 1.2            | 10                     |

Note: \*Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

#### Timing Characteristics

Table 2-140 • 3.3 V GTL

```
Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 0.8 V
```

| Speed<br>Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
|----------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| Std.           | 0.66              | 2.08            | 0.04             | 2.93            | 0.43              | 2.04            | 2.08            |                 |                 | 4.27             | 4.31             | ns    |
| -1             | 0.56              | 1.77            | 0.04             | 2.50            | 0.36              | 1.73            | 1.77            |                 |                 | 3.63             | 3.67             | ns    |
| -2             | 0.49              | 1.55            | 0.03             | 2.19            | 0.32              | 1.52            | 1.55            |                 |                 | 3.19             | 3.22             | ns    |

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.



## **User-Defined Supply Pins**

#### VREF I/O Voltage Reference

Reference voltage for I/O minibanks. Both AFS600 and AFS1500 (north bank only) support Microsemi Pro I/O. These I/O banks support voltage reference standard I/O. The VREF pins are configured by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated as the voltage reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its minibank.

#### VAREF Analog Reference Voltage

The Fusion device can be configured to generate a 2.56 V internal reference voltage that can be used by the ADC. While using the internal reference, the reference voltage is output on the VAREF pin for use as a system reference. If a different reference voltage is required, it can be supplied by an external source and applied to this pin. The valid range of values that can be supplied to the ADC is 1.0 V to 3.3 V. When VAREF is internally generated by the Fusion device, a bypass capacitor must be connected from this pin to ground. The value of the bypass capacitor should be between 3.3 µF and 22 µF, which is based on the needs of the individual designs. The choice of the capacitor value has an impact on the settling time it takes the VAREF signal to reach the required specification of 2.56 V to initiate valid conversions by the ADC. If the lower capacitor value is chosen, the settling time required for VAREF to achieve 2.56 V will be shorter than when selecting the larger capacitor value. The above range of capacitor values supports the accuracy specification of the ADC, which is detailed in the datasheet. Designers choosing the smaller capacitor value will not obtain as much margin in the accuracy as that achieved with a larger capacitor value. Depending on the capacitor value selected in the Analog System Builder, a tool in Libero SoC, an automatic delay circuit will be generated using logic tiles available within the FPGA to ensure that VAREF has achieved the 2.56 V value. Microsemi recommends customers use 10 uF as the value of the bypass capacitor. Designers choosing to use an external VAREF need to ensure that a stable and clean VAREF source is supplied to the VAREF pin before initiating conversions by the ADC. Designers should also make sure that the ADCRESET signal is deasserted before initiating valid conversions.<sup>2</sup>

If the user connects VAREF to external 3.3 V on their board, the internal VAREF driving OpAmp tries to bring the pin down to the nominal 2.56 V until the device is programmed and up/functional. Under this scenario, it is recommended to connect an external 3.3 V supply through a ~1 KOhm resistor to limit current, along with placing a 10-100nF capacitor between VAREF and GNDA.

## **User Pins**

#### I/O

#### User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected. Unused I/O pins are configured as inputs with pull-up resistors.

During programming, I/Os become tristated and weakly pulled up to VCCI. With the VCCI and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os get instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

#### Axy Analog Input/Output

Analog I/O pin, where x is the analog pad type (C = current pad, G = Gate driver pad, T = Temperature pad, V = Voltage pad) and y is the Analog Quad number (0 to 9). There is a minimum 1 M $\Omega$  to ground on AV, AC, and AT. This pin can be left floating when it is unused.

<sup>2.</sup> The ADC is functional with an external reference down to 1V, however to meet the performance parameters highlighted in the datasheet refer to the VAREF specification in Table 3-2 on page 3-3.



#### Table 3-12 • Summary of I/O Input Buffer Power (per pin)—Default I/O Software Settings (continued)

|                                  | VCCI (V) | Static Power<br>PDC7 (mW) <sup>1</sup> | Dynamic Power<br>PAC9 (µW/MHz) <sup>2</sup> |
|----------------------------------|----------|----------------------------------------|---------------------------------------------|
| Applicable to Advanced I/O Banks |          |                                        |                                             |
| Single-Ended                     |          |                                        |                                             |
| 3.3 V LVTTL/LVCMOS               | 3.3      | _                                      | 16.69                                       |
| 2.5 V LVCMOS                     | 2.5      | _                                      | 5.12                                        |
| 1.8 V LVCMOS                     | 1.8      | _                                      | 2.13                                        |
| 1.5 V LVCMOS (JESD8-11)          | 1.5      | _                                      | 1.45                                        |
| 3.3 V PCI                        | 3.3      | _                                      | 18.11                                       |
| 3.3 V PCI-X                      | 3.3      | _                                      | 18.11                                       |
| Differential                     |          |                                        |                                             |
| LVDS                             | 2.5      | 2.26                                   | 1.20                                        |
| LVPECL                           | 3.3      | 5.72                                   | 1.87                                        |
| Applicable to Standard I/O Banks |          |                                        |                                             |
| 3.3 V LVTTL/LVCMOS               | 3.3      | _                                      | 16.79                                       |
| 2.5 V LVCMOS                     | 2.5      | _                                      | 5.19                                        |
| 1.8 V LVCMOS                     | 1.8      | _                                      | 2.18                                        |
| 1.5 V LVCMOS (JESD8-11)          | 1.5      | _                                      | 1.52                                        |

Notes:

1. PDC7 is the static power (where applicable) measured on VCCI.

2. PAC9 is the total dynamic power measured on VCC and VCCI.



#### Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings<sup>1</sup>

|                                | C <sub>LOAD</sub> (pF) | VCCI (V) | Static Power<br>PDC8 (mW) <sup>2</sup> | Dynamic Power<br>PAC10 (µW/MHz) <sup>3</sup> |  |  |  |  |
|--------------------------------|------------------------|----------|----------------------------------------|----------------------------------------------|--|--|--|--|
| Applicable to Pro I/O Banks    |                        |          |                                        |                                              |  |  |  |  |
| Single-Ended                   |                        |          |                                        |                                              |  |  |  |  |
| 3.3 V LVTTL/LVCMOS             | 35                     | 3.3      | -                                      | 474.70                                       |  |  |  |  |
| 2.5 V LVCMOS                   | 35                     | 2.5      | -                                      | 270.73                                       |  |  |  |  |
| 1.8 V LVCMOS                   | 35                     | 1.8      | -                                      | 151.78                                       |  |  |  |  |
| 1.5 V LVCMOS (JESD8-11)        | 35                     | 1.5      | -                                      | 104.55                                       |  |  |  |  |
| 3.3 V PCI                      | 10                     | 3.3      | -                                      | 204.61                                       |  |  |  |  |
| 3.3 V PCI-X                    | 10                     | 3.3      | _                                      | 204.61                                       |  |  |  |  |
| Voltage-Referenced             |                        | •        | •                                      | •                                            |  |  |  |  |
| 3.3 V GTL                      | 10                     | 3.3      | -                                      | 24.08                                        |  |  |  |  |
| 2.5 V GTL                      | 10                     | 2.5      | -                                      | 13.52                                        |  |  |  |  |
| 3.3 V GTL+                     | 10                     | 3.3      | -                                      | 24.10                                        |  |  |  |  |
| 2.5 V GTL+                     | 10                     | 2.5      | -                                      | 13.54                                        |  |  |  |  |
| HSTL (I)                       | 20                     | 1.5      | 7.08                                   | 26.22                                        |  |  |  |  |
| HSTL (II)                      | 20                     | 1.5      | 13.88                                  | 27.22                                        |  |  |  |  |
| SSTL2 (I)                      | 30                     | 2.5      | 16.69                                  | 105.56                                       |  |  |  |  |
| SSTL2 (II)                     | 30                     | 2.5      | 25.91                                  | 116.60                                       |  |  |  |  |
| SSTL3 (I)                      | 30                     | 3.3      | 26.02                                  | 114.87                                       |  |  |  |  |
| SSTL3 (II)                     | 30                     | 3.3      | 42.21                                  | 131.76                                       |  |  |  |  |
| Differential                   |                        |          | •                                      | •                                            |  |  |  |  |
| LVDS                           | -                      | 2.5      | 7.70                                   | 89.62                                        |  |  |  |  |
| LVPECL                         | -                      | 3.3      | 19.42                                  | 168.02                                       |  |  |  |  |
| Applicable to Advanced I/O Ban | ks                     |          | •                                      |                                              |  |  |  |  |
| Single-Ended                   |                        |          |                                        |                                              |  |  |  |  |
| 3.3 V LVTTL / 3.3 V LVCMOS     | 35                     | 3.3      | -                                      | 468.67                                       |  |  |  |  |
| 2.5 V LVCMOS                   | 35                     | 2.5      | -                                      | 267.48                                       |  |  |  |  |
| 1.8 V LVCMOS                   | 35                     | 1.8      | _                                      | 149.46                                       |  |  |  |  |
| 1.5 V LVCMOS (JESD8-11)        | 35                     | 1.5      | _                                      | 103.12                                       |  |  |  |  |
| 3.3 V PCI                      | 10                     | 3.3      | -                                      | 201.02                                       |  |  |  |  |
| 3.3 V PCI-X                    | 10                     | 3.3      | -                                      | 201.02                                       |  |  |  |  |

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.

2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.



## **Static Power Consumption of Various Internal Resources**

Table 3-15 • Different Components Contributing to the Static Power Consumption in Fusion Devices

|           |                                                                     | Power  |                             | Device-Specific Static Contributions |        |        |        |       |
|-----------|---------------------------------------------------------------------|--------|-----------------------------|--------------------------------------|--------|--------|--------|-------|
| Parameter | Definition                                                          | Supply |                             | AFS1500                              | AFS600 | AFS250 | AFS090 | Units |
| PDC1      | Core static power contribution in operating mode                    | VCC    | 1.5 V                       | 18                                   | 7.5    | 4.50   | 3.00   | mW    |
| PDC2      | Device static power contribution in<br>standby mode                 | VCC33A | 3.3 V                       | 0.66                                 |        |        |        | mW    |
| PDC3      | Device static power contribution in<br>sleep mode                   | VCC33A | 3.3 V                       | 0.03                                 |        |        |        | mW    |
| PDC4      | NVM static power contribution                                       | VCC    | 1.5 V                       | 1.19                                 |        |        |        | mW    |
| PDC5      | Analog Block static power<br>contribution of ADC                    | VCC33A | 3.3 V                       | 8.25                                 |        |        |        | mW    |
| PDC6      | Analog Block static power<br>contribution per Quad                  | VCC33A | 3.3 V                       | 3.3                                  |        |        |        | mW    |
| PDC7      | Static contribution per input pin – standard dependent contribution | VCCI   | See Table 3-12 on page 3-18 |                                      |        |        |        |       |
| PDC8      | Static contribution per input pin – standard dependent contribution | VCCI   | See Table 3-13 on page 3-20 |                                      |        | 3-20   |        |       |
| PDC9      | Static contribution for PLL                                         | VCC    | 1.5 V 2.55                  |                                      |        | mW     |        |       |

## **Power Calculation Methodology**

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- The internal clock frequencies
- · The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- The number of NVM blocks used in the design
- The number of Analog Quads used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 3-16 on page 3-27.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 3-17 on page 3-27.
- Read rate and write rate to the RAM—guidelines are provided for typical applications in Table 3-17 on page 3-27.
- Read rate to the NVM blocks

The calculation should be repeated for each clock domain defined in the design.



#### **RC Oscillator Dynamic Contribution**—**P**<sub>RC-OSC</sub>

#### **Operating Mode**

P<sub>RC-OSC</sub> = PAC19

#### Standby Mode and Sleep Mode

 $P_{RC-OSC} = 0 W$ 

#### Analog System Dynamic Contribution—P<sub>AB</sub>

**Operating Mode** 

P<sub>AB</sub> = PAC20

#### Standby Mode and Sleep Mode

 $P_{AB} = 0 W$ 

#### Guidelines

#### Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that the net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100%, as all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
  - Bit 0 (LSB) = 100%
  - Bit 1 = 50%
  - Bit 2 = 25%
  - ...
  - Bit 7 (MSB) = 0.78125%
  - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . 0.78125%) / 8.

#### Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When non-tristate output buffers are used, the enable rate should be 100%.

#### Table 3-16 • Toggle Rate Guidelines Recommended for Power Calculation

| Component      | Guideline                        |     |
|----------------|----------------------------------|-----|
| $\alpha_1$     | Toggle rate of VersaTile outputs | 10% |
| α <sub>2</sub> | I/O buffer toggle rate           | 10% |

#### Table 3-17 • Enable Rate Guidelines Recommended for Power Calculation

| Component      | Definition                           | Guideline |
|----------------|--------------------------------------|-----------|
| β <sub>1</sub> | I/O output buffer enable rate        | 100%      |
| β <sub>2</sub> | RAM enable rate for read operations  | 12.5%     |
| β <sub>3</sub> | RAM enable rate for write operations | 12.5%     |
| β <sub>4</sub> | NVM enable rate for read operations  | 0%        |



### Example of Power Calculation

This example considers a shift register with 5,000 storage tiles, including a counter and memory that stores analog information. The shift register is clocked at 50 MHz and stores and reads information from a RAM.

The device used is a commercial AFS600 device operating in typical conditions.

The calculation below uses the power calculation methodology previously presented and shows how to determine the dynamic and static power consumption of resources used in the application.

Also included in the example is the calculation of power consumption in operating, standby, and sleep modes to illustrate the benefit of power-saving modes.

#### Global Clock Contribution—P<sub>CLOCK</sub>

 $F_{CLK}$  = 50 MHz Number of sequential VersaTiles: N<sub>S-CELL</sub> = 5,000 Estimated number of Spines: N<sub>SPINES</sub> = 5 Estimated number of Rows: N<sub>ROW</sub> = 313

#### **Operating Mode**

$$\begin{split} & \mathsf{P}_{\mathsf{CLOCK}} = (\mathsf{PAC1} + \mathsf{N}_{\mathsf{SPINE}} * \mathsf{PAC2} + \mathsf{N}_{\mathsf{ROW}} * \mathsf{PAC3} + \mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} * \mathsf{PAC4}) * \mathsf{F}_{\mathsf{CLK}} \\ & \mathsf{P}_{\mathsf{CLOCK}} = (0.0128 + 5 * 0.0019 + 313 * 0.00081 + 5,000 * 0.00011) * 50 \\ & \mathsf{P}_{\mathsf{CLOCK}} = 41.28 \ \mathsf{mW} \end{split}$$

#### Standby Mode and Sleep Mode

 $P_{CLOCK} = 0 W$ 

Logic—Sequential Cells, Combinational Cells, and Routing Net Contributions— $P_{S-CELL}$ ,  $P_{C-CELL}$ , and  $P_{NET}$ 

 $\label{eq:F_CLK} F_{CLK} = 50 \text{ MHz}$ Number of sequential VersaTiles: N\_{S-CELL} = 5,000 Number of combinatorial VersaTiles: N\_{C-CELL} = 6,000 Estimated toggle rate of VersaTile outputs:  $\alpha_1 = 0.1$  (10%)

#### **Operating Mode**

$$\begin{split} \mathsf{P}_{S\text{-}CELL} &= \mathsf{N}_{S\text{-}CELL} * (\mathsf{P}_{\mathsf{AC5}}\text{+} (\alpha_1 \,/\, 2) * \mathsf{PAC6}) * \mathsf{F}_{\mathsf{CLK}} \\ \mathsf{P}_{S\text{-}CELL} &= 5,000 * (0.00007 + (0.1 \,/\, 2) * 0.00029) * 50 \\ \mathsf{P}_{S\text{-}CELL} &= 21.13 \text{ mW} \end{split}$$

 $P_{C-CELL} = N_{C-CELL}^* (\alpha_1 / 2) * PAC7 * F_{CLK}$  $P_{C-CELL} = 6,000 * (0.1 / 2) * 0.00029 * 50$  $P_{C-CELL} = 4.35 \text{ mW}$ 

$$\begin{split} \mathsf{P}_{\mathsf{NET}} &= (\mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} + \mathsf{N}_{\mathsf{C}\text{-}\mathsf{CELL}}) * (\alpha_1 / 2) * \mathsf{PAC8} * \mathsf{F}_{\mathsf{CLK}} \\ \mathsf{P}_{\mathsf{NET}} &= (5,000 + 6,000) * (0.1 / 2) * 0.0007 * 50 \\ \mathsf{P}_{\mathsf{NET}} &= 19.25 \text{ mW} \end{split}$$

 $P_{LOGIC} = P_{S-CELL} + P_{C-CELL} + P_{NET}$  $P_{LOGIC} = 21.13 \text{ mW} + 4.35 \text{ mW} + 19.25 \text{ mW}$  $P_{LOGIC} = 44.73 \text{ mW}$ 

#### Standby Mode and Sleep Mode



# 4 – Package Pin Assignments

## **QN108**



Note: The die attach paddle center of the package is tied to ground (GND).

### Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.



| Pin Number         AF\$090 Function         AF\$250 Function         AF\$600 Function         AF\$1500 Function           H3         XTAL2         XTAL2         XTAL2         XTAL2         XTAL2           H4         XTAL1         XTAL1         XTAL1         XTAL1         XTAL1           H4         CRUDSC         GNDOSC         GNDOSC         GNDOSC         GNDOSC           H6         VCCOSC         VCCOSC         VCCOSC         VCCOSC         VCCO           H8         GND         GND         GND         GND         GND         GND           H9         VCC         VCC         VCC         VCC         VCC         VCC         VCC           H10         GND         GND         GND         GND         GND         GND         GND           H11         GDC1/I038PDB1V0         IO51PDB1V0         IO47PDB2V0         IO69PDB2V0         IO69PDB2V0         IO69PDB2V0         IO68PDB2V0         IG6A1/IO44PDB2V0         IO68PDB2V0         IG6A1/IO46PDB2V0         GCA0/IO68NDB2V0         GCA1/IO48PDB2V0         GCA0/IO68NDB2V0         GCA1/IO48PDB2V0         GCB0/IO63NDB2V0         GCA1/IO48PDB2V0         GCB0/IO63NDB2V0         GCB0/IO63NDB2V0         GCB0/IO63NDB2V0         GCB0/IO63NDB2V0         GCB0/IO63NDB2V0                                                                                                                                                                                                                                                                                                           | FG256      |                 |                 |                 |                  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|-----------------|-----------------|------------------|--|--|--|
| H3         XTAL2         XTAL2         XTAL2         XTAL2         XTAL2           H4         XTAL1         XTAL1         XTAL1         XTAL1         XTAL1           H5         GNDOSC         GNDOSC         GNDOSC         GNDOSC         GNDOSC           H6         VCCOSC         VCCOSC         VCCOSC         VCCOSC         VCCOSC           H7         VCC         VCC         VCC         VCC         VCC           H8         GND         GND         GND         GND         GND           H10         GND         GND         GND         GND         GND           H11         GDC0/038NDB1V0         IO51NDB1V0         IO47NDB2V0         IO68NDB2V0           H12         GDC1/038NDB1V0         IO5AN/049PDB1V0         GCA1/049PDB2V0         GCA1/064PDB2V0           H13         GDB1/039NDB1V0         GCA0/049NDB1V0         GCCB0/044NDB2V0         GCB0/068NDB2V0           H15         GCA/1036NDB1V0         GCA0/049NDB1V0         GCA0/049NDB2V0         GCA1/1064PDB2V0           J1         GEA0/044NDB3V0         GFA0/066NDB3V0         GFA0/10105NDB4V0         GFB0/067NDB3V0           J2         GEA1/104PDB3V0         GFA1/066PDB3V0         GFA1/10106PDB4V0         GFB0/071NDB4V0                                                                                                                                                                                                                                                                                                                                               | Pin Number | AFS090 Function | AFS250 Function | AFS600 Function | AFS1500 Function |  |  |  |
| H4         XTAL1         XTAL1         XTAL1         XTAL1         XTAL1           H5         GNDOSC         GNDOSC         GNDOSC         GNDOSC         GNDOSC           H6         VCCOSC         VCCOSC         VCCOSC         VCCOSC           H7         VCC         VCC         VCC         VCC           H8         GND         GND         GND         GND           H9         VCC         VCC         VCC         VCC           H10         GND         GND         GND         GND           H11         GDC0/038NDB1V0         IO51PDB1V0         IO47PDB2V0         IO69PDB2V0           H13         GDE1/039PDB1V0         GCA/104PDB1V0         GCA/104PDB2V0         GCA/1064PDB2V0           H14         GDB0/039NDB1V0         GCA0/04NDB2V0         GCA/1064PDB2V0         GCA/1064PDB2V0           H15         GCA0/038NDB1V0         GCA0/04NDB2V0         GCB0/063NDB2V0         GFA/1070PDB4V0           J2         GEA/1044PDB3V0         GFB0/070NDB4V0         GFA/10105PDB4V0           J3         IO43NDB3V0         GFB0/07NDB3V0         GFB0/10106ND44V0           J4         GEC2/1043PDB3V0         GFB1/106PDB3V0         GFC0/1072ND84V0           J5         N                                                                                                                                                                                                                                                                                                                                                                        | H3         | XTAL2           | XTAL2           | XTAL2           | XTAL2            |  |  |  |
| H5         GNDOSC         GNDOSC         GNDOSC         GNDOSC         GNDOSC           H6         VCCOSC         VCCOSC         VCCOSC         VCCOSC         VCCOSC           H7         VCC         VCC         VCC         VCC         VCC           H8         GND         GND         GND         GND         GND           H9         VCC         VCC         VCC         VCC         VCC           H10         GDC///O38NDB1V0         IOS1PDB1V0         IO47NDB2V0         IO69NDB2V0           H11         GDC///O38NDB1V0         GCA1//O49PDB1V0         GCA1//O49DB2V0         GCA1//O46PDB2V0           H14         GDB///O39NDB1V0         GCA1//O49PDB1V0         GCA1//O49DB2V0         GCA1//O46PDB2V0           H15         GCA0//O36NDB1V0         GCA1//O49PDB2V0         GCA1//O46PDB2V0         GCB1//O63NDB2V0           J1         GEA///O44PDB3V0         GFA1//O4PDB3V0         GFA1//O106PDB4V0         GFB0//O106NDB4V0           J2         GEA///O44PDB3V0         GFB0//O7NDB3V0         GFB0//O106NDB4V0         GFB0//O106NDB4V0           J3         IO43NDB3V0         GFB1//O67PDB3V0         GFB0//O7NDB4V0         GFB1//O106PDB4V0           J4         GEC2//O43PDB3V0         GFB1//O67PDB3V0         GFD1//                                                                                                                                                                                                                                                                                                                    | H4         | XTAL1           | XTAL1           | XTAL1           | XTAL1            |  |  |  |
| H6         VCCOSC         VCCOSC         VCCOSC         VCCOSC           H7         VCC         VCC         VCC         VCC         VCC           H8         GND         GND         GND         GND         GND           H9         VCC         VCC         VCC         VCC         VCC           H10         GND         GND         GND         GND         GND           H11         GDC//038NDB1V0         IO51NDB1V0         IO47NDE2V0         IO69NDE2V0           H12         GDC///038PDB1V0         IO51PDB1V0         IO47NDE2V0         IO69NDE2V0           H13         GDB///039PDB1V0         GCA///049NDB1V0         GCA///04PDE2V0         GCA///04PDE2V0           H14         GDB///039PDB1V0         GCB///048NDB1V0         GCB///04NDE2V0         GCB///063NDE2V0           H16         GCA///036PDB1V0         GCB///048NDB1V0         GCB///04PDE2V0         GCB///063NDE2V0           J2         GEA///044PDB3V0         GFB///066NDB3V0         GFB///071NDB4V0         GFB///0106NDB4V0           J3         IO43NDB3V0         GFB///067NDB3V0         GFB///071NDB4V0         GFB///0108NDB4V0           J4         GEC2//043PDB3V0         GFB///067NDB3V0         GFB///0707PDB4V0         GFC//10107PDB4V0                                                                                                                                                                                                                                                                                                                               | H5         | GNDOSC          | GNDOSC          | GNDOSC          | GNDOSC           |  |  |  |
| H7         VCC         VCC         VCC         VCC         VCC           H8         GND         GND         GND         GND         GND           H9         VCC         VCC         VCC         VCC         VCC           H10         GND         GND         GND         GND         GND         GND           H11         GDC0//038NDB1V0         IO51NDB1V0         IO47ND82V0         IO69NDB2V0           H12         GDC1//038PDB1V0         GCA1//049PDB1V0         GCA1//045PDB2V0         GCA1//064PDB2V0           H14         GDB0//039NDB1V0         GCA0//048NDB1V0         GCA1//044PDB2V0         GCB0//064NDB2V0           H15         GCA0//048PDB1V0         GCB1//048PDB1V0         GCB1//044PDB2V0         GCB1//063NDB2V0           J1         GEA///044NDB3V0         GFA1//066PDB3V0         GFA0//070NDB4V0         GFB1//0106PDB4V0           J3         I043NDB3V0         GFB1//067PDB3V0         GFB1//071PDB4V0         GFB1//0106PDB4V0           J4         GEC2//043PDB3V0         GFB1//067PDB3V0         GFC1//0107PDB4V0         GFB1//0106PDB4V0           J5         NC         GFC1//068NDB3V0         GFC1//0107PDB4V0         GFC1//0107PDB4V0         GFC1//0107PDB4V0           J6         NC         GFC1//                                                                                                                                                                                                                                                                                                                    | H6         | VCCOSC          | VCCOSC          | VCCOSC          | VCCOSC           |  |  |  |
| H8         GND         GND         GND         GND         GND           H9         VCC         VCC         VCC         VCC         VCC           H10         GND         GND         GND         GND         GND           H11         GDC0/038NDB1V0         IO51NDB1V0         IO47NDB2V0         IO69PDB2V0           H12         GDC1/038PDB1V0         GCA1/049PDB1V0         IO47PDB2V0         IO69PDB2V0           H13         GBB/IO39PDB1V0         GCA1/049PDB1V0         GCA/IO45NDB2V0         GCA/IO64PDB2V0           H14         GDB0/IO39NDB1V0         GCA0/IO49NDB1V0         GCA0/IO44NDB2V0         GCB0/IO64NDB2V0           H16         GCA/I/044PDB3V0         GFA0/IO160NDB4V0         GCB1/IO65PDB4V0         GCB1/IO105NDB4V0           J2         GEA/I/O44PDB3V0         GFA1/IO66PDB3V0         GFA0/IO105NDB4V0         GFA0/IO105NDB4V0           J3         IO43NDB3V0         GFB1/IO67PDB3V0         GFC0/IO107NDB4V0         GFC0/IO107NDB4V0           J4         GEC2/IO43PDB3V0         GFC1/IO68PDB3V0         GFC1/IO17PDB4V0         GFC1/IO107PDB4V0           J3         NC         GFC0/IO68NDB3V0         GFC1/IO107PDB4V0         GFC1/IO107PDB4V0           J4         GCC2/IO43PDB3V0         GFC1/IO68PDB3V0         G                                                                                                                                                                                                                                                                                                  | H7         | VCC             | VCC             | VCC             | VCC              |  |  |  |
| H9         VCC         VCC         VCC         VCC         VCC           H10         GND         GND         GND         GND         GND           H11         GDC///038NDB1V0         IO51NDB1V0         IO47NDB2V0         IO69NDB2V0           H12         GDC1///038PDB1V0         GCA1///049PDB1V0         GCA1///045PDB2V0         GCA1///045PDB2V0         GCA1///045PDB2V0           H13         GDB1///039PDB1V0         GCA///048NDB1V0         GCA///04NDB2V0         GCA///06NDB2V0         GFA///070NDB4V0         GFA///06NDB2V0         GFA///070NDB4V0         GFA///06NDB3V0         GFA///070NDB4V0         GFA///06NDB3V0         GFB///071NDB4V0         GFB///06ND0NDB4V0         GFA///06NDB4V0         GFA///06NDB4V0         GFA///06NDB4V0         GFA///06NDB4V0         GFA///06NDB4V0         GFA///06NDB4V0         GFA///06NDB4V0         GFA///06NDB4V0         GFA///06NDB4V0         GFB///06NDB4V0         GFA///06NDB4V0         GFA///06NDB4V0         GFA///06NDB4V0         GFA///06NDB4V0         GFA///06NDB4V0         GFA///06NDB4V0         GFA///06NDB4V0         GFA///06NDB4V0                                                                                                                                                           | H8         | GND             | GND             | GND             | GND              |  |  |  |
| H10         GND         GND         GND         GND         GND           H11         GDC0/IO38NDB1V0         IO51NDB1V0         IO47NDB2V0         IO69PDB2V0           H12         GDC1/IO38PDB1V0         GCA1/IO49PDB1V0         GCA1/IO45PDB2V0         IO69PDB2V0           H13         GDB1/IO39PDB1V0         GCA1/IO49PDB1V0         GCA1/IO45PDB2V0         GCA1/IO64PDB2V0           H14         GDB0/IO39NDB1V0         GCA0/IO49NDB1V0         GCA0/IO45NDB2V0         GCCB/IO63NDB2V0           H16         GCA1/IO36PDB1V0         GCB1/IO48NDB1V0         GCB0/IO43NDB2V0         GCE0/IO63NDB2V0           J1         GEA0/IO44NDB3V0         GFA1/IO66PDB3V0         GFA1/IO105PDB4V0         GFA1/IO105PDB4V0           J2         GEA1/IO44PDB3V0         GFA1/IO66PDB3V0         GFA1/IO17DPD4V0         GFA1/IO105PDB4V0           J3         IO43NDB3V0         GFB1/IO67PDB3V0         GFB1/IO17DPD4V0         GFC0/IO101NDB4V0           J4         GEC2/IO43PDB3V0         GFB1/IO67PDB3V0         GFC1/IO17DPD4V0         GFC0/IO101NDB4V0           J5         NC         GFC0/IO68NDB3V0         GFC1/IO17DPD4V0         GFC1/IO107DPD4V0           J4         GEC2/IO43PDB3V0         GFD1/IO68PDB3V0         GFC1/IO17PDB4V0         GFC0/IO10107NDB4V0           J5         N                                                                                                                                                                                                                                                              | H9         | VCC             | VCC             | VCC             | VCC              |  |  |  |
| H11         GDC0/IO38NDB1V0         IO51NDB1V0         IO47NDB2V0         IO69NDB2V0           H12         GDC1/IO38PDB1V0         IO51PDB1V0         IO47PDB2V0         IO69PDB2V0           H13         GDB1/IO39PDB1V0         GCA1/IO49PDB1V0         GCA1/IO45PDB2V0         GCA1/IO44PDB2V0           H14         GDB0/IO39NDB1V0         GCA0/IO49NDB1V0         GCA0/IO49NDB2V0         GCA0/IO64NDB2V0           H15         GCA0/IO36NDB1V0         GCB0/IO48NDB1V0         GCB0/IO44NDB2V0         GCB0/IO63NDB2V0           H16         GCA1/IO36PDB1V0         GCB1/IO48PDB1V0         GCB1/IO44PDB2V0         GCB1/IO63PDB4V0           J1         GEA0/IO44NDB3V0         GFA0/IO66NDB3V0         GFA0/IO105NDB4V0         GFA0/IO6105NDB4V0           J2         GEA1/IO44PDB3V0         GFA1/IO66PDB3V0         GFA0/IO70PDB4V0         GFA1/IO105PDB4V0           J3         IO43NDE3V0         GFB0/IO67NDB3V0         GFB0/IO71NDB4V0         GFB0/IO107NDB4V0           J4         GEC2/IO43PDB3V0         GFB1/IO67PDB3V0         GFC1/IO72PDB4V0         GFC1/IO107PDB4V0           J5         NC         GFC1/IO68PDB3V0         GFC1/IO72PDB4V0         GFC1/IO107PDB4V0           J4         GEC2/IO43PDB3V0         GFC1/IO68PDB3V0         GFC1/IO107PDB4V0         GFC1/IO107PDB4V0           J6 </td <td>H10</td> <td>GND</td> <td>GND</td> <td>GND</td> <td>GND</td>                                                                                                                                                                        | H10        | GND             | GND             | GND             | GND              |  |  |  |
| H12         GDC1//038PDB1V0         IO51PDB1V0         IO47PDB2V0         IO69PDB2V0           H13         GDB1//039PDB1V0         GCA1//049PDB1V0         GCA1//049PDB2V0         GCA1//064PDB2V0           H14         GDB0//039NDB1V0         GCA0//049NDB1V0         GCA0//048NDB2V0         GCA0//064NDB2V0           H15         GCA0//036NDB1V0         GCB0//048NDB1V0         GCC0//048NDB2V0         GCB1//048PDB2V0           H16         GCA1//036PDB1V0         GCB1//048PDB1V0         GCB1//044PDB2V0         GCB1//063PDB2V0           J1         GEA0//044NDB3V0         GFA0//066NDB3V0         GFA0//070NDB4V0         GFA1//0105PDB4V0           J2         GEA1//044PDB3V0         GFB1//067PDB3V0         GFA1//070PDB4V0         GFA1//0105PDB4V0           J3         I043NDB3V0         GFB1//067PDB3V0         GFB1//071NDB4V0         GFB0//0107NDB4V0           J4         GEC2//043PDB3V0         GFC1//068PDB3V0         GFC1//072PDB4V0         GFC1//0107PDB4V0           J5         NC         GFC1//068PDB3V0         GFC1//072PDB4V0         GFC1//0107PDB4V0           J4         GEC2//041PDB1V0         GND         GND         GND           J4         GEC2//041NPB1V0         GND         GND         GND           J7         GND         GND         GND<                                                                                                                                                                                                                                                                       | H11        | GDC0/IO38NDB1V0 | IO51NDB1V0      | IO47NDB2V0      | IO69NDB2V0       |  |  |  |
| H13         GDB1/IO39PDB1V0         GCA1/IO49PDB1V0         GCA1/IO45PDB2V0         GCA1/IO64PDB2V0           H14         GDB0/IO39NDB1V0         GCA0/IO49NDB1V0         GCA0/IO45NDB2V0         GCA0/IO64NDB2V0           H15         GCA0/IO36NDB1V0         GCB0/IO48NDB1V0         GCB0/IO44NDB2V0         GCB0/IO63NDB2V0           H16         GCA1/IO36PDB1V0         GCB1/IO48PDB1V0         GCB1/IO44PDB2V0         GCB1/IO63PDB2V0           J1         GEA0/IO44NDB3V0         GFA0/IO66NDB3V0         GFA0/IO70NDB4V0         GFA0/IO105NDB4V0           J2         GEA1/IO44PDB3V0         GFA0/IO66NDB3V0         GFA0/IO70NDB4V0         GFA1/IO66PDB4V0           J3         IO43NDB3V0         GFB0/IO67NDB3V0         GFB0/IO71NDB4V0         GFA0/IO106NDB4V0           J4         GEC2/IO43PDB3V0         GFB1/IO67PDB3V0         GFB1/IO71PDB4V0         GF0/IO107NDB4V0           J5         NC         GFC/IO68NDB3V0         GFC/IO72NDB4V0         GFC0/IO107NDB4V0           J6         NC         GFC/IO68NDB3V0         GFC/IO72NDB4V0         GFC0/IO107NDB4V0           J4         GEC2/IO43PDB1V0         GND         GND         GND         GND           J4         GEC2/IO41NPB1V0         GND         GND         GND         GND           J4         GCC/IO41                                                                                                                                                                                                                                                                       | H12        | GDC1/IO38PDB1V0 | IO51PDB1V0      | IO47PDB2V0      | IO69PDB2V0       |  |  |  |
| H14         GDB0//O39NDB1V0         GCA0//O49NDB1V0         GCA0//O45NDB2V0         GCA0//O64NDB2V0           H15         GCA0//O36NDB1V0         GCB0//O48NDB1V0         GCB0//O44NDB2V0         GCB0//O43NDB2V0           H16         GCA1//O36PDB1V0         GCB1//O48PDB1V0         GCB1//O44PDB2V0         GCB1//O43PDB2V0           J1         GEA0//O44NDB3V0         GFA0//O66NDB3V0         GFA0//O70NDB4V0         GFA0//O105NDB4V0           J2         GEA1//O44PDB3V0         GFA1//O66PDB3V0         GFA1//O70PDB4V0         GFA1//O105NDB4V0           J3         IO43NDB3V0         GFB0//O67NDB3V0         GFB0//O71NDB4V0         GFA1//O6PDB4V0           J4         GEC2//O43PDB3V0         GFB1//O67PDB3V0         GFB1//O71PDB4V0         GFC1//O107NDB4V0           J5         NC         GFC0//O68NDB3V0         GFC0//O72NDB4V0         GFC1//I010PDB4V0           J6         NC         GFC1//O68PDB3V0         GFC1//O72NDB4V0         GFC1//I010PDB4V0           J7         GND         GND         GND         GND         GND           J8         VCC         VCC         VCC         VCC         VCC           J10         VCC         VCC         VCC         VCC         VCC           J11         GDC2//O41NPB1V0         IO56NPB1V0                                                                                                                                                                                                                                                                                                    | H13        | GDB1/IO39PDB1V0 | GCA1/IO49PDB1V0 | GCA1/IO45PDB2V0 | GCA1/IO64PDB2V0  |  |  |  |
| H15         GCA0/IO36NDB1V0         GCB0/IO48NDB1V0         GCB0/IO44NDB2V0         GCB0/IO63NDB2V0           H16         GCA1/IO36PDB1V0         GCB1/IO48PDB1V0         GCB1/IO44PDB2V0         GCB1/IO63PDB2V0           J1         GEA0/IO44NDB3V0         GFA0/IO66NDB3V0         GFA0/IO70NDB4V0         GFA0/IO105NDB4V0           J2         GEA1/IO44PDB3V0         GFA1/IO66PDB3V0         GFA1/IO70PDB4V0         GFA1/IO105PDB4V0           J3         IO43NDB3V0         GFB0/IO67NDB3V0         GFB0/IO71NDB4V0         GFB0/IO106NDB4V0           J4         GEC2/IO43PDB3V0         GFB1/IO67PDB3V0         GFB1/IO71PDB4V0         GFE1/IO106PDB4V0           J5         NC         GFC0/IO68NDB3V0         GFC0/IO72NDB4V0         GFC0/IO17NDB4V0           J6         NC         GFC1/IO68PDB3V0         GFC1/IO72PDB4V0         GFC1/IO17PDB4V0           J7         GND         GND         GND         GND           J8         VCC         VCC         VCC         VCC           J10         VCC         VCC         VCC         VCC           J11         GDC2/IO41NPB1V0         IO56NPB1V0         GDA1/IO54PDB2V0         GDA1/IO83NPB2V0           J11         GDC2/IO41NPB1V0         GDC1/IO52PPB2V0         GDA1/IO54PDB2V0         GDA1/IO81PDB2V0                                                                                                                                                                                                                                                                                        | H14        | GDB0/IO39NDB1V0 | GCA0/IO49NDB1V0 | GCA0/IO45NDB2V0 | GCA0/IO64NDB2V0  |  |  |  |
| H16         GCA1/I036PDB1V0         GCB1/I048PDB1V0         GCB1/I044PDB2V0         GCB1/I063PDB2V0           J1         GEA0/I044NDB3V0         GFA0/I066NDB3V0         GFA0/I070NDB4V0         GFA0/I015NDB4V0           J2         GEA1/I044PDB3V0         GFA1/I066PDB3V0         GFA1/I070PDB4V0         GFA1/I0105PDB4V0           J3         I043NDB3V0         GFB0/I067NDB3V0         GFB0/I071NDB4V0         GFB0/I016NDB4V0           J4         GEC2/I043PDB3V0         GFB1/I067PDB3V0         GFB1/I071PDB4V0         GFB1/I0106PDB4V0           J5         NC         GFC0/I068NDB3V0         GFC0/I072NDB4V0         GFC0/I0107NDB4V0           J6         NC         GFC1/I068PDB3V0         GFC1/I072PDB4V0         GFC1/I0107PDB4V0           J7         GND         GND         GND         GND         GND           J8         VCC         VCC         VCC         VCC         VCC           J9         GND         GND         GND         GND         GND           J11         GDC2/I041NPB1V0         I056NPB1V0         I056NPB2V0         I083NPB2V0           J12         NC         GDB0/I053NPB1V0         GDA1/I054PDB2V0         GDA1/I054PDB2V0           J13         NC         GDA1/I054PDB1V0         GDC1/I052PPB2V0         <                                                                                                                                                                                                                                                                                                       | H15        | GCA0/IO36NDB1V0 | GCB0/IO48NDB1V0 | GCB0/IO44NDB2V0 | GCB0/IO63NDB2V0  |  |  |  |
| J1         GEA0/IO44NDB3V0         GFA0/IO66NDB3V0         GFA0/IO70NDB4V0         GFA0/IO105NDB4V0           J2         GEA1/IO44PDB3V0         GFA1/IO66PDB3V0         GFA1/IO70PDB4V0         GFA1/IO105PDB4V0           J3         IO43NDB3V0         GFB0/IO67NDB3V0         GFB0/IO11NDB4V0         GFB0/IO106NDB4V0           J4         GEC2/IO43PDB3V0         GFB1/IO67PDB3V0         GFB1/IO71PDB4V0         GFB1/IO106PDB4V0           J5         NC         GFC0/IO68NDB3V0         GFC0/IO72NDB4V0         GFC0/IO107NDB4V0           J6         NC         GFC1/IO68PDB3V0         GFC1/IO72PDB4V0         GFC1/IO107PDB4V0           J7         GND         GND         GND         GND         GND           J8         VCC         VCC         VCC         VCC         VCC           J9         GND         GND         GND         GND         GND           J11         GDC2/IO41NPB1V0         IO56NPB1V0         IO56NPB2V0         IO83NPB2V0           J13         NC         GDA1/IO54PDB1V0         GDA1/IO54PDB2V0         GDA1/IO81PDB2V0           J14         GDA0/IO40PDB1V0         GDC1/IO52PPB1V0         GDC1/IO52PPB2V0         GDC1/IO77NSB2V0           J16         GDA2/IO40NDB1V0         GDC0/IO52NPB1V0         GDC0/IO52NPB2V0                                                                                                                                                                                                                                                                                                  | H16        | GCA1/IO36PDB1V0 | GCB1/IO48PDB1V0 | GCB1/IO44PDB2V0 | GCB1/IO63PDB2V0  |  |  |  |
| J2         GEA1/IO44PDB3V0         GFA1/IO66PDB3V0         GFA1/IO70PDB4V0         GFA1/IO105PDB4V0           J3         IO43NDB3V0         GFB0/IO67NDB3V0         GFB0/IO71NDB4V0         GFB0/IO106NDB4V0           J4         GEC2/IO43PDB3V0         GFB1/IO67PDB3V0         GFB1/IO71PDB4V0         GFB1/IO106PDB4V0           J5         NC         GFC0/IO68NDB3V0         GFC0/IO72NDB4V0         GFC0/IO107NDB4V0           J6         NC         GFC1/IO68PDB3V0         GFC1/IO72PDB4V0         GFC1/IO107PDB4V0           J7         GND         GND         GND         GND         GND           J8         VCC         VCC         VCC         VCC         VCC           J9         GND         GND         GND         GND         GND           J10         VCC         VCC         VCC         VCC         VCC           J11         GDC2/IO41NPB1V0         IO56NPB1V0         IO56NPB2V0         IO83NPB2V0           J13         NC         GDB0/IO53NPB1V0         GDC1/IO52PPB2V0         GDC1/IO7NSB2V0           J14         GDA0/IO40PDB1V0         GDC1/IO52PPB1V0         GDC1/IO52PPB2V0         GDC1/IO7NSB2V0           J16         GDA2/IO40NDB1V0         GDC0/IO52NPB1V0         IO67NPB4V0         IO92NPB4V0                                                                                                                                                                                                                                                                                                                          | J1         | GEA0/IO44NDB3V0 | GFA0/IO66NDB3V0 | GFA0/IO70NDB4V0 | GFA0/IO105NDB4V0 |  |  |  |
| J3         IO43NDB3V0         GFB0/IO67NDB3V0         GFB0/IO71NDB4V0         GFB0/IO106NDB4V0           J4         GEC2/IO43PDB3V0         GFB1/IO67PDB3V0         GFB1/IO71PDB4V0         GFB1/IO106PDB4V0           J5         NC         GFC0/IO68NDB3V0         GFC0/IO72NDB4V0         GFC0/IO17NDB4V0           J6         NC         GFC1/IO68PDB3V0         GFC1/IO72PDB4V0         GFC1/IO17PDB4V0           J7         GND         GND         GND         GND           J8         VCC         VCC         VCC         VCC           J9         GND         GND         GND         GND           J10         VCC         VCC         VCC         VCC           J11         GDC2/IO41NPB1V0         IO56NPB1V0         IO56NPB2V0         IO83NPB2V0           J12         NC         GDB0/IO53NPB1V0         GDB0/IO53NPB2V0         GDB0/IO83NPB2V0           J13         NC         GDC1/IO52PPB1V0         GDC1/IO52PPB2V0         GDC1/IO79PB2V0           J14         GDA0/IO40PDB1V0         GDC0/IO52NPB1V0         GDC0/IO52NPB2V0         GDC0/IO79NPB2V0           J16         GDA2/IO40NDB1V0         GDC0/IO52NPB2V0         IO77NSB2V0         IO77NSB2V0           J16         GDA2/IO40NDB1V0         GDC0/IO52NPB2                                                                                                                                                                                                                                                                                                                            | J2         | GEA1/IO44PDB3V0 | GFA1/IO66PDB3V0 | GFA1/IO70PDB4V0 | GFA1/IO105PDB4V0 |  |  |  |
| J4         GEC2/IO43PDB3V0         GFB1/IO67PDB3V0         GFB1/IO71PDB4V0         GFB1/IO106PDB4V0           J5         NC         GFC0/IO68NDB3V0         GFC0/IO72NDB4V0         GFC0/IO107NDB4V0           J6         NC         GFC1/IO68PDB3V0         GFC1/IO72PDB4V0         GFC1/IO107PDB4V0           J7         GND         GND         GND         GND         GND           J8         VCC         VCC         VCC         VCC         VCC           J9         GND         GND         GND         GND         GND           J10         VCC         VCC         VCC         VCC           J11         GDC2/IO41NPB1V0         IO56NPB1V0         IO56NPB2V0         IO83NPB2V0           J12         NC         GDB0/IO53NPB1V0         GDD1/IO52PPB2V0         GDA1/IO81PDB2V0           J13         NC         GDA1/IO54PDB1V0         GDC1/IO52PPB2V0         GDC1/IO79PB2V0           J14         GDA0/IO40PDB1V0         GDC0/IO52NPB1V0         GDC0/IO52NPB2V0         IO77NSB2V0           J16         GDA2/IO40NDB1V0         GDC0/IO52NPB1V0         GDC0/IO52NPB2V0         IO92NPB4V0           K2         VCCIB3         VCCIB3         VCCIB4         VCCIB4           K3         NC                                                                                                                                                                                                                                                                                                                                                          | J3         | IO43NDB3V0      | GFB0/IO67NDB3V0 | GFB0/IO71NDB4V0 | GFB0/IO106NDB4V0 |  |  |  |
| J5         NC         GFC0/IO68NDB3V0         GFC0/IO72NDB4V0         GFC0/IO107NDB4V0           J6         NC         GFC1/IO68PDB3V0         GFC1/IO72PDB4V0         GFC1/IO107PDB4V0           J7         GND         GND         GND         GND         GND           J8         VCC         VCC         VCC         VCC         VCC           J9         GND         GND         GND         GND         GND           J10         VCC         VCC         VCC         VCC         VCC           J11         GDC2/IO41NPB1V0         IO56NPB1V0         IO56NPB2V0         IO83NPB2V0           J12         NC         GDB0/IO53NPB1V0         GDB0/IO53NPB2V0         GDB0/IO80NPB2V0           J13         NC         GDA1/IO54PDB1V0         GDA1/IO54PDB2V0         GDC1/IO79PPB2V0           J14         GDA0/IO40PDB1V0         GDC1/IO52PPB1V0         GDC0/IO52NPB2V0         GDC0/IO79NPB2V0           J16         GDA2/IO40NDB1V0         GDC0/IO52NPB3V0         IO67NPB4V0         IO92NPB4V0           K2         VCCIB3         VCCIB3         VCCIB4         VCCIB4           K3         NC         IO65PPB3V0         IO67PPB4V0         IO92PPB4V0           K4         NC         I                                                                                                                                                                                                                                                                                                                                                                | J4         | GEC2/IO43PDB3V0 | GFB1/IO67PDB3V0 | GFB1/IO71PDB4V0 | GFB1/IO106PDB4V0 |  |  |  |
| J6         NC         GFC1/IO68PDB3V0         GFC1/IO72PDB4V0         GFC1/IO107PDB4V0           J7         GND         GND         GND         GND         GND           J8         VCC         VCC         VCC         VCC         VCC           J9         GND         GND         GND         GND         GND           J10         VCC         VCC         VCC         VCC         VCC           J11         GDC2/IO41NPB1V0         IO56NPB1V0         IO56NPB2V0         IO83NPB2V0           J12         NC         GDB0/IO53NPB1V0         GDB0/IO53NPB2V0         GDB0/IO80NPB2V0           J13         NC         GDA1/IO54PDB1V0         GDA1/IO54PDB2V0         GDA1/IO81PDB2V0           J14         GDA0/IO40PDB1V0         GDC1/IO52PPB1V0         GDC1/IO52PPB2V0         GDC1/IO79NPB2V0           J15         NC         IO50NPB1V0         IO67NPB4V0         IO92NPB4V0           K1         NC         IO65NPB3V0         IO67NPB4V0         IO92NPB4V0           K2         VCCIB3         VCCIB3         VCCIB4         VCCIB4           K3         NC         IO65PPB3V0         IO67PPB4V0         IO92PPB4V0           K4         NC         IO64PDB3V0         IO65PDB                                                                                                                                                                                                                                                                                                                                                                         | J5         | NC              | GFC0/IO68NDB3V0 | GFC0/IO72NDB4V0 | GFC0/IO107NDB4V0 |  |  |  |
| J7         GND         GND         GND         GND         GND           J8         VCC         VCC         VCC         VCC         VCC           J9         GND         GND         GND         GND         GND           J10         VCC         VCC         VCC         VCC         VCC           J11         GDC2/IO41NPB1V0         IO56NPB1V0         IO56NPB2V0         IO83NPB2V0           J12         NC         GDB0/IO53NPB1V0         GDB0/IO53NPB2V0         GDB0/IO80NPB2V0           J13         NC         GDA1/IO54PDB1V0         GDC1/IO52PPB2V0         GDC1/IO79PPB2V0           J14         GDA0/IO40PDB1V0         GDC1/IO52PPB1V0         GDC1/IO52PPB2V0         GDC1/IO79NPB2V0           J15         NC         IO50NPB1V0         IO51NSB2V0         IO77NSB2V0           J16         GDA2/IO40NDB1V0         GDC0/IO52NPB1V0         GDC0/IO52NPB2V0         GDC0/IO79NPB2V0           K1         NC         IO65NPB3V0         IO67NPB4V0         IO92NPB4V0           K2         VCCIB3         VCCIB3         VCCIB4         VCCIB4           K3         NC         IO65PPB3V0         IO67PPB4V0         IO92PPB4V0           K4         NC         IO64PDB3V0                                                                                                                                                                                                                                                                                                                                                                            | J6         | NC              | GFC1/IO68PDB3V0 | GFC1/IO72PDB4V0 | GFC1/IO107PDB4V0 |  |  |  |
| J8         VCC         VCC         VCC         VCC         VCC           J9         GND         GND         GND         GND         GND           J10         VCC         VCC         VCC         VCC         VCC           J11         GDC2/IO41NPB1V0         IO56NPB1V0         IO56NPB2V0         IO83NPB2V0         IO83NPB2V0           J12         NC         GDB0/IO53NPB1V0         GDB0/IO53NPB2V0         GDB0/IO80NPB2V0         GDA1/IO81PDB2V0           J13         NC         GDA1/IO54PDB1V0         GDC1/IO52PPB2V0         GDC1/IO79PPB2V0           J14         GDA0/IO40PDB1V0         GDC1/IO52PPB1V0         GDC1/IO52PPB2V0         GDC1/IO79PPB2V0           J15         NC         IO50NPB1V0         IO51NSB2V0         IO77NSB2V0           J16         GDA2/IO40NDB1V0         GDC0/IO52NPB1V0         GDC0/IO52NPB2V0         GDC0/IO79NPB2V0           K1         NC         IO65NPB3V0         IO67NPB4V0         IO92NPB4V0           K2         VCCIB3         VCCIB3         VCCIB4         VCCIB4           K3         NC         IO64PDB3V0         IO65PDB4V0         IO96PDB4V0           K4         NC         IO64PDB3V0         IO65NDB4V0         IO96NDB4V0           K6                                                                                                                                                                                                                                                                                                                                                       | J7         | GND             | GND             | GND             | GND              |  |  |  |
| J9         GND         GND         GND         GND         GND           J10         VCC         VC         J13         NC         GDA1/IO54PDB1V0         GDA1/IO54PDB2V0         GDA1/IO31PDB2V0         GDA1/IO31PDB2V0         GDC1/IO79NPB2V0         GDC1/IO79NPB2V0         J15         NC         IO50NPB1V0         IO51NSB2V0         IO77NSB2V0         GDC0/IO79NPB2V0         GDC0/IO79NPB2V0         GDC0/IO79NPB2V0         GDC0/IO79NPB2V0         GDC0/IO79NPB2V0         GDC0/IO79NPB2V0         K1         NC         IO65NPB3V0         IO67NPB4V0         IO92NPB4V0         <                                                                                                                                                                                                                                                                                                | J8         | VCC             | VCC             | VCC             | VCC              |  |  |  |
| J10         VCC         VCC         VCC         VCC           J11         GDC2/IO41NPB1V0         IO56NPB1V0         IO56NPB2V0         IO83NPB2V0           J12         NC         GDB0/IO53NPB1V0         GDB0/IO53NPB2V0         GDB0/IO80NPB2V0           J13         NC         GDA1/IO54PDB1V0         GDA1/IO54PDB2V0         GDA1/IO81PDB2V0           J14         GDA0/IO40PDB1V0         GDC1/IO52PPB1V0         GDC1/IO52PPB2V0         GDC1/IO79PPB2V0           J15         NC         IO50NPB1V0         IO51NSB2V0         IO77NSB2V0           J16         GDA2/IO40NDB1V0         GDC0/IO52NPB1V0         GDC0/IO52NPB2V0         GDC0/IO79NPB2V0           K1         NC         IO65NPB3V0         IO67NPB4V0         IO92NPB4V0           K2         VCCIB3         VCCIB3         VCCIB4         VCCIB4           K3         NC         IO65PPB3V0         IO65PDB4V0         IO92PPB4V0           K4         NC         IO64PDB3V0         IO65PDB4V0         IO96PDB4V0           K5         GND         GND         GND         GND           K6         NC         IO64NDB3V0         IO65NDB4V0         IO96NDB4V0           K7         VCC         VCC         VCC         VCC                                                                                                                                                                                                                                                                                                                                                                  | J9         | GND             | GND             | GND             | GND              |  |  |  |
| J11         GDC2/IO41NPB1V0         IO56NPB1V0         IO56NPB2V0         IO83NPB2V0           J12         NC         GDB0/IO53NPB1V0         GDB0/IO53NPB2V0         GDB0/IO80NPB2V0           J13         NC         GDA1/IO54PDB1V0         GDA1/IO54PDB2V0         GDA1/IO81PDB2V0           J14         GDA0/IO40PDB1V0         GDC1/IO52PPB1V0         GDC1/IO52PPB2V0         GDC1/IO79PPB2V0           J15         NC         IO50NPB1V0         GDC0/IO52NPB1V0         GDC0/IO52NPB2V0         GDC0/IO79NPB2V0           J16         GDA2/IO40NDB1V0         GDC0/IO52NPB1V0         GDC0/IO52NPB2V0         GDC0/IO79NPB2V0           K1         NC         IO65NPB3V0         IO67NPB4V0         IO92NPB4V0           K2         VCCIB3         VCCIB3         VCCIB4         VCCIB4           K3         NC         IO64PDB3V0         IO65PDB4V0         IO92PPB4V0           K4         NC         IO64PDB3V0         IO65PDB4V0         IO96PDB4V0           K5         GND         GND         GND         GND           K6         NC         IO64NDB3V0         IO65NDB4V0         IO96NDB4V0           K7         VCC         VCC         VCC         VCC         VCC           K8         GND         GN                                                                                                                                                                                                                                                                                                                                              | J10        | VCC             | VCC             | VCC             | VCC              |  |  |  |
| J12         NC         GDB0/IO53NPB1V0         GDB0/IO53NPB2V0         GDB0/IO80NPB2V0         GDB0/IO80NPB2V0         GDB0/IO80NPB2V0         GDB0/IO80NPB2V0         GDA1/IO81PDB2V0         GDA1/IO81PDB2V0         GDA1/IO81PDB2V0         GDA1/IO81PDB2V0         GDA1/IO81PDB2V0         GDA1/IO79PPB2V0         GDC1/IO79PPB2V0         GDC1/IO79PPB2V0         GDC1/IO79PPB2V0         GDC1/IO79PPB2V0         GDC1/IO79PPB2V0         GDC1/IO79PPB2V0         GDC1/IO79PPB2V0         GDC1/IO79PPB2V0         GDC1/IO79PPB2V0         GDC0/IO79NPB2V0         IO77NSB2V0         IO77NSB2V0         IO77NSB2V0         GDC0/IO79NPB2V0         GDC0/IO79NPB2V0         GDC0/IO79NPB2V0         GDC0/IO79NPB2V0         GDC0/IO79NPB2V0         IO92NPB4V0         IO94NPB4V0         IO94NPB4V0 <th< td=""><td>J11</td><td>GDC2/IO41NPB1V0</td><td>IO56NPB1V0</td><td>IO56NPB2V0</td><td>IO83NPB2V0</td></th<> | J11        | GDC2/IO41NPB1V0 | IO56NPB1V0      | IO56NPB2V0      | IO83NPB2V0       |  |  |  |
| J13         NC         GDA1/IO54PDB1V0         GDA1/IO54PDB2V0         GDA1/IO81PDB2V0           J14         GDA0/IO40PDB1V0         GDC1/IO52PPB1V0         GDC1/IO52PPB2V0         GDC1/IO79PPB2V0           J15         NC         IO50NPB1V0         IO51NSB2V0         IO77NSB2V0           J16         GDA2/IO40NDB1V0         GDC0/IO52NPB1V0         GDC0/IO52NPB2V0         GDC0/IO79NPB2V0           K1         NC         IO65NPB3V0         IO67NPB4V0         IO92NPB4V0           K2         VCCIB3         VCCIB3         VCCIB4         VCCIB4           K3         NC         IO64PDB3V0         IO67PPB4V0         IO92PPB4V0           K4         NC         IO64PDB3V0         IO65PDB4V0         IO92PPB4V0           K5         GND         GND         GND         GND           K6         NC         IO64NDB3V0         IO65NDB4V0         IO96NDB4V0           K6         NC         IO64NDB3V0         IO65NDB4V0         IO96NDB4V0           K7         VCC         VCC         VCC         VCC           K8         GND         GND         GND         GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J12        | NC              | GDB0/IO53NPB1V0 | GDB0/IO53NPB2V0 | GDB0/IO80NPB2V0  |  |  |  |
| J14         GDA0/IO40PDB1V0         GDC1/IO52PPB1V0         GDC1/IO52PPB2V0         GDC1/IO79PPB2V0           J15         NC         IO50NPB1V0         IO51NSB2V0         IO77NSB2V0           J16         GDA2/IO40NDB1V0         GDC0/IO52NPB1V0         GDC0/IO52NPB2V0         GDC0/IO79NPB2V0           K1         NC         IO65NPB3V0         IO67NPB4V0         IO92NPB4V0           K2         VCCIB3         VCCIB3         VCCIB4         VCCIB4           K3         NC         IO65PPB3V0         IO67PPB4V0         IO92PPB4V0           K4         NC         IO65PPB3V0         IO67PPB4V0         IO92PPB4V0           K5         GND         GND         GND         GND           K6         NC         IO64PDB3V0         IO65PDB4V0         IO96PDB4V0           K6         NC         IO64NDB3V0         IO65NDB4V0         IO96NDB4V0           K6         NC         IO64NDB3V0         IO65NDB4V0         IO96NDB4V0           K7         VCC         VCC         VCC         VCC           K8         GND         GND         GND         GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J13        | NC              | GDA1/IO54PDB1V0 | GDA1/IO54PDB2V0 | GDA1/IO81PDB2V0  |  |  |  |
| J15NCIO50NPB1V0IO51NSB2V0IO77NSB2V0J16GDA2/IO40NDB1V0GDC0/IO52NPB1V0GDC0/IO52NPB2V0GDC0/IO79NPB2V0K1NCIO65NPB3V0IO67NPB4V0IO92NPB4V0K2VCCIB3VCCIB3VCCIB4VCCIB4K3NCIO65PPB3V0IO67PPB4V0IO92PPB4V0K4NCIO64PDB3V0IO65PDB4V0IO92PPB4V0K5GNDGNDGNDGNDK6NCIO64NDB3V0IO65NDB4V0IO96NDB4V0K7VCCVCCVCCVCCK8GNDGNDGNDGND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J14        | GDA0/IO40PDB1V0 | GDC1/IO52PPB1V0 | GDC1/IO52PPB2V0 | GDC1/IO79PPB2V0  |  |  |  |
| J16GDA2/IO40NDB1V0GDC0/IO52NPB1V0GDC0/IO52NPB2V0GDC0/IO79NPB2V0K1NCIO65NPB3V0IO67NPB4V0IO92NPB4V0K2VCCIB3VCCIB3VCCIB4VCCIB4K3NCIO65PPB3V0IO67PPB4V0IO92PPB4V0K4NCIO64PDB3V0IO65PDB4V0IO96PDB4V0K5GNDGNDGNDGNDK6NCIO64NDB3V0IO65NDB4V0IO96NDB4V0K7VCCVCCVCCVCCK8GNDGNDGNDGND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J15        | NC              | IO50NPB1V0      | IO51NSB2V0      | IO77NSB2V0       |  |  |  |
| K1NCIO65NPB3V0IO67NPB4V0IO92NPB4V0K2VCCIB3VCCIB3VCCIB4VCCIB4K3NCIO65PPB3V0IO67PPB4V0IO92PPB4V0K4NCIO64PDB3V0IO65PDB4V0IO96PDB4V0K5GNDGNDGNDGNDK6NCIO64NDB3V0IO65NDB4V0IO96NDB4V0K7VCCVCCVCCVCCK8GNDGNDGNDGND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J16        | GDA2/IO40NDB1V0 | GDC0/IO52NPB1V0 | GDC0/IO52NPB2V0 | GDC0/IO79NPB2V0  |  |  |  |
| K2VCCIB3VCCIB3VCCIB4VCCIB4K3NCIO65PPB3V0IO67PPB4V0IO92PPB4V0K4NCIO64PDB3V0IO65PDB4V0IO96PDB4V0K5GNDGNDGNDGNDK6NCIO64NDB3V0IO65NDB4V0IO96NDB4V0K7VCCVCCVCCVCCK8GNDGNDGNDGND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | K1         | NC              | IO65NPB3V0      | IO67NPB4V0      | IO92NPB4V0       |  |  |  |
| K3NCIO65PPB3V0IO67PPB4V0IO92PPB4V0K4NCIO64PDB3V0IO65PDB4V0IO96PDB4V0K5GNDGNDGNDGNDK6NCIO64NDB3V0IO65NDB4V0IO96NDB4V0K7VCCVCCVCCVCCK8GNDGNDGNDGND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K2         | VCCIB3          | VCCIB3          | VCCIB4          | VCCIB4           |  |  |  |
| K4NCIO64PDB3V0IO65PDB4V0IO96PDB4V0K5GNDGNDGNDGNDK6NCIO64NDB3V0IO65NDB4V0IO96NDB4V0K7VCCVCCVCCVCCK8GNDGNDGNDGND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K3         | NC              | IO65PPB3V0      | IO67PPB4V0      | IO92PPB4V0       |  |  |  |
| K5GNDGNDGNDGNDK6NCIO64NDB3V0IO65NDB4V0IO96NDB4V0K7VCCVCCVCCVCCK8GNDGNDGNDGND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K4         | NC              | IO64PDB3V0      | IO65PDB4V0      | IO96PDB4V0       |  |  |  |
| K6         NC         IO64NDB3V0         IO65NDB4V0         IO96NDB4V0           K7         VCC         VCC         VCC         VCC           K8         GND         GND         GND         GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K5         | GND             | GND             | GND             | GND              |  |  |  |
| K7         VCC         VCC         VCC         VCC           K8         GND         GND         GND         GND         GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K6         | NC              | IO64NDB3V0      | IO65NDB4V0      | IO96NDB4V0       |  |  |  |
| K8 GND GND GND GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K7         | VCC             | VCC             | VCC             | VCC              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K8         | GND             | GND             | GND             | GND              |  |  |  |