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Fusion Family of Mixed Signal FPGAs
Advanced Architecture
The proprietary Fusion architecture provides granularity comparable to standard-cell ASICs. The Fusion
device consists of several distinct and programmable architectural features, including the following
(Figure 1-1 on page 1-5):

• Embedded memories

– Flash memory blocks

– FlashROM 

– SRAM and FIFO

• Clocking resources

– PLL and CCC

– RC oscillator

– Crystal oscillator

– No-Glitch MUX (NGMUX)

• Digital I/Os with advanced I/O standards

• FPGA VersaTiles

• Analog components 

– ADC

– Analog I/Os supporting voltage, current, and temperature monitoring 

– 1.5 V on-board voltage regulator 

– Real-time counter 

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
lookup table (LUT) equivalent or a D-flip-flop or latch (with or without enable) by programming the
appropriate flash switch interconnections. This versatility allows efficient use of the FPGA fabric. The
VersaTile capability is unique to the Microsemi families of flash-based FPGAs. VersaTiles and larger
functions are connected with any of the four levels of routing hierarchy. Flash switches are distributed
throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core
utilization is possible for virtually any design. 

In addition, extensive on-chip programming circuitry allows for rapid (3.3 V) single-voltage programming
of Fusion devices via an IEEE 1532 JTAG interface.

Unprecedented Integration

Integrated Analog Blocks and Analog I/Os
Fusion devices offer robust and flexible analog mixed signal capability in addition to the high-
performance flash FPGA fabric and flash memory block. The many built-in analog peripherals include a
configurable 32:1 input analog MUX, up to 10 independent MOSFET gate driver outputs, and a
configurable ADC. The ADC supports 8-, 10-, and 12-bit modes of operation with a cumulative sample
rate up to 600 k samples per second (Ksps), differential nonlinearity (DNL) < 1.0 LSB, and Total
Unadjusted Error (TUE) of 0.72 LSB in 10-bit mode. The TUE is used for characterization of the
conversion error and includes errors from all sources, such as offset and linearity. Internal bandgap
circuitry offers 1% voltage reference accuracy with the flexibility of utilizing an external reference voltage.
The ADC channel sampling sequence and sampling rate are programmable and implemented in the
FPGA logic using Designer and Libero SoC software tool support.

Two channels of the 32-channel ADCMUX are dedicated. Channel 0 is connected internally to VCC and
can be used to monitor core power supply. Channel 31 is connected to an internal temperature diode
which can be used to monitor device temperature. The 30 remaining channels can be connected to
external analog signals. The exact number of I/Os available for external connection signals is device-
dependent (refer to the "Fusion Family" table on page I for details). 
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2 – Device Architecture

Fusion Stack Architecture
To manage the unprecedented level of integration in Fusion devices, Microsemi developed the Fusion
technology stack (Figure 2-1). This layered model offers a flexible design environment, enabling design
at very high and very low levels of abstraction. Fusion peripherals include hard analog IP and hard and
soft digital IP. Peripherals communicate across the FPGA fabric via a layer of soft gates—the Fusion
backbone. Much more than a common bus interface, this Fusion backbone integrates a micro-sequencer
within the FPGA fabric and configures the individual peripherals and supports low-level processing of
peripheral data. Fusion applets are application building blocks that can control and respond to
peripherals and other system signals. Applets can be rapidly combined to create large applications. The
technology is scalable across devices, families, design types, and user expertise, and supports a 
well-defined interface for external IP and tool integration.

At the lowest level, Level 0, are Fusion peripherals. These are configurable functional blocks that can be
hardwired structures such as a PLL or analog input channel, or soft (FPGA gate) blocks such as a UART
or two-wire serial interface. The Fusion peripherals are configurable and support a standard interface to
facilitate communication and implementation.

Connecting and controlling access to the peripherals is the Fusion backbone, Level 1. The backbone is a
soft-gate structure, scalable to any number of peripherals. The backbone is a bus and much more; it
manages peripheral configuration to ensure proper operation. Leveraging the common peripheral
interface and a low-level state machine, the backbone efficiently offloads peripheral management from
the system design. The backbone can set and clear flags based upon peripheral behavior and can define
performance criteria. The flexibility of the stack enables a designer to configure the silicon, directly
bypassing the backbone if that level of control is desired.

One step up from the backbone is the Fusion applet, Level 2. The applet is an application building block
that implements a specific function in FPGA gates. It can react to stimuli and board-level events coming
through the backbone or from other sources, and responds to these stimuli by accessing and
manipulating peripherals via the backbone or initiating some other action. An applet controls or responds
to the peripheral(s). Applets can be easily imported or exported from the design environment. The applet
structure is open and well-defined, enabling users to import applets from Microsemi, system developers,
third parties, and user groups.

Note: Levels 1, 2, and 3 are implemented in FPGA logic gates.

Figure 2-1 • Fusion Architecture Stack
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Device Architecture
Timing Characteristics

Sample VersaTile Specifications—Sequential Module
The Fusion library offers a wide variety of sequential cells, including flip-flops and latches. Each has a
data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a
representative sample from the library (Figure 2-5). For more details, refer to the IGLOO, ProASIC3,
SmartFusion and Fusion Macro Library Guide. 

Table 2-1 • Combinatorial Cell Propagation Delays
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell Equation Parameter –2 –1 Std. Units

INV Y = !A tPD 0.40 0.46 0.54 ns

AND2 Y = A · B tPD 0.47 0.54 0.63 ns

NAND2 Y = !(A · B) tPD 0.47 0.54 0.63 ns

OR2 Y = A + B tPD 0.49 0.55 0.65 ns

NOR2 Y = !(A + B) tPD 0.49 0.55 0.65 ns

XOR2 Y = A B tPD 0.74 0.84 0.99 ns

MAJ3 Y = MAJ(A, B, C) tPD 0.70 0.79 0.93 ns

XOR3 Y = A  B C tPD 0.87 1.00 1.17 ns

MUX2 Y = A !S + B S tPD 0.51 0.58 0.68 ns

AND3 Y = A · B · C tPD 0.56 0.64 0.75 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Figure 2-5 • Sample of Sequential Cells
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Device Architecture
Array Coordinates
During many place-and-route operations in the Microsemi Designer software tool, it is possible to set
constraints that require array coordinates. Table 2-3 is provided as a reference. The array coordinates
are measured from the lower left (0, 0). They can be used in region constraints for specific logic
groups/blocks, designated by a wildcard, and can contain core cells, memories, and I/Os.

Table 2-3 provides array coordinates of core cells and memory blocks.

I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed
because there is not a one-to-one correspondence between I/O cells and edge core cells. In addition, the
I/O coordinate system changes depending on the die/package combination. It is not listed in Table 2-3.
The Designer ChipPlanner tool provides array coordinates of all I/O locations. I/O and cell coordinates
are used for placement constraints. However, I/O placement is easier by package pin assignment. 

Figure 2-7 illustrates the array coordinates of an AFS600 device. For more information on how to use
array coordinates for region/placement constraints, see the Designer User's Guide or online help
(available in the software) for Fusion software tools.

Table 2-3 • Array Coordinates 

Device

VersaTiles Memory Rows All

Min. Max. Bottom Top Min. Max.

x y x y (x, y) (x, y) (x, y) (x, y)

AFS090 3 2 98 25 None (3, 26) (0, 0) (101, 29)

AFS250 3 2 130 49 None (3, 50) (0, 0) (133, 53)

AFS600 3 4 194 75 (3, 2) (3, 76) (0, 0) (197, 79)

AFS1500 3 4 322 123 (3, 2) (3, 124) (0, 0) (325, 129)

Note: The vertical I/O tile coordinates are not shown. West side coordinates are {(0, 2) to (2, 2)} to {(0, 77) to (2, 77)};
east side coordinates are {(195, 2) to (197, 2)} to {(195, 77) to (197, 77)}.

Figure 2-7 • Array Coordinates for AFS600
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Fusion Family of Mixed Signal FPGAs
Crystal Oscillator 
The Crystal Oscillator (XTLOSC) is source that generates the clock from an external crystal. The output
of XTLOSC CLKOUT signal can be selected as an input to the PLL. Refer to the "Clock Conditioning
Circuits" section for more details. The XTLOSC can operate in normal operations and Standby mode
(RTC is running and 1.5 V is not present).

In normal operation, the internal FPGA_EN signal is '1' as long as 1.5 V is present for VCC.   As such,
the internal enable signal, XTL_EN, for Crystal Oscillator is enabled since FPGA_EN is asserted. The
XTL_MODE has the option of using MODE or RTC_MODE, depending on SELMODE.

During Standby, 1.5 V is not available, as such, and FPGA_EN is '0'. SELMODE must be asserted in
order for XTL_EN to be enabled; hence XTL_MODE relies on RTC_MODE. SELMODE and RTC_MODE
must be connected to RTCXTLSEL and RTCXTLMODE from the AB respectively for correct operation
during Standby (refer to the "Real-Time Counter System" section on page 2-31 for a detailed
description).

The Crystal Oscillator can be configured in one of four modes:

• RC network, 32 KHz to 4 MHz

• Low gain, 32 to 200 KHz

• Medium gain, 0.20 to 2.0 MHz

• High gain, 2.0 to 20.0 MHz

In RC network mode, the XTAL1 pin is connected to an RC circuit, as shown in Figure 2-16 on
page 2-18. The XTAL2 pin should be left floating. The RC value can be chosen based on Figure 2-18 for
any desired frequency between 32 KHz and 4 MHz. The RC network mode can also accommodate an
external clock source on XTAL1 instead of an RC circuit.

In Low gain, Medium gain, and High gain, an external crystal component or ceramic resonator can be
added onto XTAL1 and XTAL2, as shown in Figure 2-16 on page 2-18. In the case where the Crystal
Oscillator block is not used, the XTAL1 pin should be connected to GND and the XTAL2 pin should be left
floating.

Note: *Internal signal—does not exist in macro.

Figure 2-17 • XTLOSC Macro
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Fusion Family of Mixed Signal FPGAs
CCC Physical Implementation
The CCC circuit is composed of the following (Figure 2-23):

• PLL core

• 3 phase selectors

• 6 programmable delays and 1 fixed delay

• 5 programmable frequency dividers that provide frequency multiplication/division (not shown in
Figure 2-23 because they are automatically configured based on the user's required frequencies)

• 1 dynamic shift register that provides CCC dynamic reconfiguration capability (not shown)

CCC Programming
The CCC block is fully configurable. It is configured via static flash configuration bits in the array, set by
the user in the programming bitstream, or configured through an asynchronous dedicated shift register,
dynamically accessible from inside the Fusion device. The dedicated shift register permits changes of
parameters such as PLL divide ratios and delays during device operation. This latter mode allows the
user to dynamically reconfigure the PLL without the need for core programming. The register file is
accessed through a simple serial interface. 

Note: Clock divider and multiplier blocks are not shown in this figure or in SmartGen. They are automatically configured
based on the user's required frequencies.

Figure 2-23 • PLL Block
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Device Architecture
SRAM and FIFO
All Fusion devices have SRAM blocks along the north side of the device. Additionally, AFS600 and
AFS1500 devices have an SRAM block on the south side of the device. To meet the needs of high-
performance designs, the memory blocks operate strictly in synchronous mode for both read and write
operations. The read and write clocks are completely independent, and each may operate at any desired
frequency less than or equal to 350 MHz. The following configurations are available:

• 4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—two read, two write or one read, one write)

• 512×9, 256×18 (two-port RAM—one read and one write)

• Sync write, sync pipelined/nonpipelined read

The Fusion SRAM memory block includes dedicated FIFO control logic to generate internal addresses
and external flag logic (FULL, EMPTY, AFULL, AEMPTY). 

During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In
FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by
internal MUXes. Refer to Figure 2-47 for more information about the implementation of the embedded
FIFO controller.

The Fusion architecture enables the read and write sizes of RAMs to be organized independently,
allowing for bus conversion. This is done with the WW (write width) and RW (read width) pins. The
different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1. For example, the write size can
be set to 256×18 and the read size to 512×9.

Both the write and read widths for the RAM blocks can be specified independently with the WW (write
width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and
4k×1.

Refer to the allowable RW and WW values supported for each of the RAM macro types in Table 2-27 on
page 2-58.

When a width of one, two, or four is selected, the ninth bit is unused. For example, when writing 9-bit
values and reading 4-bit values, only the first four bits and the second four bits of each 9-bit value are
addressable for read operations. The ninth bit is not accessible.
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Fusion Family of Mixed Signal FPGAs
EQ 16 through EQ 18 can be used to calculate the acquisition time required for a given input. The STC
signal gives the number of sample periods in ADCCLK for the acquisition time of the desired signal. If the
actual acquisition time is higher than the STC value, the settling time error can affect the accuracy of the
ADC, because the sampling capacitor is only partially charged within the given sampling cycle. Example
acquisition times are given in Table 2-44 and Table 2-45. When controlling the sample time for the ADC
along with the use of the active bipolar prescaler, current monitor, or temperature monitor, the minimum
sample time(s) for each must be obeyed. EQ 19 can be used to determine the appropriate value of STC.

You can calculate the minimum actual acquisition time by using EQ 16:

VOUT = VIN(1 – e–t/RC)

EQ 16

For 0.5 LSB gain error, VOUT should be replaced with (VIN –(0.5 × LSB Value)):

(VIN – 0.5 × LSB Value) = VIN(1 – e–t/RC)

EQ 17

where VIN is the ADC reference voltage (VREF)

Solving EQ 17:

t = RC x ln (VIN / (0.5 x LSB Value))

EQ 18

where R = ZINAD + RSOURCE and C = CINAD.

Calculate the value of STC by using EQ 19.

tSAMPLE = (2 + STC) x (1 / ADCCLK) or tSAMPLE = (2 + STC) x (ADC Clock Period)

EQ 19

where ADCCLK = ADC clock frequency in MHz.

tSAMPLE = 0.449 µs from bit resolution in Table 2-44.

ADC Clock frequency = 10 MHz or a 100 ns period.

STC = (tSAMPLE / (1 / 10 MHz)) – 2 = 4.49 – 2 = 2.49. 

You must round up to 3 to accommodate the minimum sample time.

Sample Phase
A conversion is performed in three phases. In the first phase, the analog input voltage is sampled on the
input capacitor. This phase is called sample phase. During the sample phase, the output signals BUSY
and SAMPLE change from '0' to '1', indicating the ADC is busy and sampling the analog signal. The
sample time can be controlled by input signals STC[7:0]. The sample time can be calculated by EQ 20.
When controlling the sample time for the ADC along with the use of Prescaler or Current Monitor or
Temperature Monitor, the minimum sample time for each must be obeyed.

Table 2-44 • Acquisition Time Example with VAREF = 2.56 V

VIN = 2.56V, R = 4K (RSOURCE ~ 0), C = 18 pF

Resolution LSB Value (mV) Min. Sample/Hold Time for 0.5 LSB (µs)

8 10 0.449

10 2.5 0.549

12 0.625 0.649

Table 2-45 • Acquisition Time Example with VAREF = 3.3 V

VIN = 3.3V, R = 4K (RSOURCE ~ 0), C = 18 pF

Resolution LSB Value (mV) Min. Sample/Hold time for 0.5 LSB (µs)

8 12.891 0.449

10 3.223 0.549

12 0.806 0.649
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Device Architecture
The optimal setting for the system running at 66 MHz with an ADC for 10-bit mode chosen is shown in
Table 2-47:

Timing Diagrams  

Table 2-47 • Optimal Setting at 66 MHz in 10-Bit Mode

TVC[7:0] = 1 = 0x01

STC[7:0] = 3 = 0x03

MODE[3:0] = b'0100 = 0x4*

Note: No power-down after every conversion is chosen in this case; however, if the application is power-sensitive,
the MODE[2] can be set to '0', as described above, and it will not affect any performance.

Note: *Refer to EQ 15 on page 2-107 for the calculation on the period of ADCCLK, tADCCLK.

Figure 2-89 • Power-Up Calibration Status Signal Timing Diagram
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics

Table 2-55 • Analog Configuration Multiplexer (ACM) Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

 Parameter  Description –2 –1 Std.  Units 

 tCLKQACM  Clock-to-Q of the ACM 19.73 22.48 26.42  ns

 tSUDACM  Data Setup time for the ACM 4.39 5.00 5.88  ns

 tHDACM  Data Hold time for the ACM 0.00 0.00 0.00  ns

 tSUAACM  Address Setup time for the ACM 4.73 5.38 6.33  ns

 tHAACM  Address Hold time for the ACM 0.00 0.00 0.00  ns

 tSUEACM  Enable Setup time for the ACM 3.93 4.48 5.27  ns

 tHEACM  Enable Hold time for the ACM 0.00 0.00 0.00  ns

 tMPWARACM Asynchronous Reset Minimum Pulse Width for the ACM 10.00 10.00 10.00  ns

 tREMARACM Asynchronous Reset Removal time for the ACM 12.98 14.79 17.38  ns

 tRECARACM Asynchronous Reset Recovery time for the ACM 12.98 14.79 17.38  ns

 tMPWCLKACM Clock Minimum Pulse Width for the ACM 45.00 45.00 45.00  ns

tFMAXCLKACM lock Maximum Frequency for the ACM 10.00 10.00 10.00 MHz
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Device Architecture
Analog Quad ACM Description
Table 2-56 maps out the ACM space associated with configuration of the Analog Quads within the
Analog Block. Table 2-56 shows the byte assignment within each quad and the function of each bit within
each byte. Subsequent tables will explain each bit setting and how it corresponds to a particular
configuration. After 3.3 V and 1.5 V are applied to Fusion, Analog Quad configuration registers are
loaded with default settings until the initialization and configuration state machine changes them to user-
defined settings.

Table 2-56 • Analog Quad ACM Byte Assignment

Byte Bit Signal (Bx) Function Default Setting 

Byte 0 

(AV)

0 B0[0] Scaling factor control – prescaler Highest voltage range

1 B0[1] 

2 B0[2] 

3 B0[3] Analog MUX select Prescaler 

4 B0[4] Current monitor switch Off 

5 B0[5] Direct analog input switch Off 

6 B0[6] Selects V-pad polarity Positive 

7 B0[7] Prescaler op amp mode Power-down 

Byte 1 

(AC)

0 B1[0] Scaling factor control – prescaler Highest voltage range

1 B1[1] 

2 B1[2] 

3 B1[3] Analog MUX select Prescaler 

4 B1[4] 

5 B1[5] Direct analog input switch Off 

6 B1[6] Selects C-pad polarity Positive 

7 B1[7] Prescaler op amp mode Power-down 

Byte 2 

(AG)

0 B2[0] Internal chip temperature monitor * Off 

1 B2[1] Spare –

2 B2[2] Current drive control Lowest current 

3 B2[3] 

4 B2[4] Spare –

5 B2[5] Spare –

6 B2[6] Selects G-pad polarity Positive 

7 B2[7] Selects low/high drive Low drive 

Byte 3 

(AT)

0 B3[0] Scaling factor control – prescaler Highest voltage range 

1 B3[1] 

2 B3[2] 

3 B3[3] Analog MUX select Prescaler 

4 B3[4] 

5 B3[5] Direct analog input switch Off 

6 B3[6] – –

7 B3[7] Prescaler op amp mode Power-down 

Note: *For the internal temperature monitor to function, Bit 0 of Byte 2 for all 10 Quads must be set.
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Fusion Family of Mixed Signal FPGAs
Figure 2-102 • DDR Output Support in Fusion Devices
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Fusion Family of Mixed Signal FPGAs
For Fusion devices requiring Level 3 and/or Level 4 compliance, the board drivers connected to Fusion
I/Os need to have 10 k (or lower) output drive resistance at hot insertion, and 1 k (or lower) output
drive resistance at hot removal. This is the resistance of the transmitter sending a signal to the Fusion
I/O, and no additional resistance is needed on the board. If that cannot be assured, three levels of
staging can be used to meet Level 3 and/or Level 4 compliance. Cards with two levels of staging should
have the following sequence: 

1. Grounds

2. Powers, I/Os, other pins

Cold-Sparing Support
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically
connected to the system that is in operation. This means that all input buffers of the subsystem must
present very high input impedance with no power applied so as not to disturb the operating portion of the
system.

Pro I/O banks and standard I/O banks fully support cold-sparing.

For Pro I/O banks, standards such as PCI that require I/O clamp diodes, can also achieve cold-sparing
compliance, since clamp diodes get disconnected internally when the supplies are at 0 V.

For Advanced I/O banks, since the I/O clamp diode is always active, cold-sparing can be accomplished
either by employing a bus switch to isolate the device I/Os from the rest of the system or by driving each
advanced I/O pin to 0 V.

If Standard I/O banks are used in applications requiring cold-sparing, a discharge path from the power
supply to ground should be provided. This can be done with a discharge resistor or a switched resistor.
This is necessary because the standard I/O buffers do not have built-in I/O clamp diodes.

If a resistor is chosen, the resistor value must be calculated based on decoupling capacitance on a given
power supply on the board (this decoupling capacitor is in parallel with the resistor). The RC time
constant should ensure full discharge of supplies before cold-sparing functionality is required. The
resistor is necessary to ensure that the power pins are discharged to ground every time there is an
interruption of power to the device.

I/O cold-sparing may add additional current if the pin is configured with either a pull-up or pull down
resistor and driven in the opposite direction. A small static current is induced on each IO pin when the pin
is driven to a voltage opposite to the weak pull resistor. The current is equal to the voltage drop across
the input pin divided by the pull resistor. Please refer to Table 2-95 on page 2-169, Table 2-96 on
page 2-169, and Table 2-97 on page 2-171 for the specific pull resistor value for the corresponding I/O
standard.

For example, assuming an LVTTL 3.3 V input pin is configured with a weak Pull-up resistor, a current will
flow through the pull-up resistor if the input pin is driven low. For an LVTTL 3.3 V, pull-up resistor is ~45
k and the resulting current is equal to 3.3 V / 45 k = 73 µA for the I/O pin. This is true also when a
weak pull-down is chosen and the input pin is driven high. Avoiding this current can be done by driving
the input low when a weak pull-down resistor is used, and driving it high when a weak pull-up resistor is
used.

In Active and Static modes, this current draw can occur in the following cases:

• Input buffers with pull-up, driven low

• Input buffers with pull-down, driven high

• Bidirectional buffers with pull-up, driven low

• Bidirectional buffers with pull-down, driven high

• Output buffers with pull-up, driven low

• Output buffers with pull-down, driven high

• Tristate buffers with pull-up, driven low

• Tristate buffers with pull-down, driven high
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5 V Output Tolerance
Fusion I/Os must be set to 3.3 V LVTTL or 3.3 V LVCMOS mode to reliably drive 5 V TTL receivers. It is
also critical that there be NO external I/O pull-up resistor to 5 V, since this resistor would pull the I/O pad
voltage beyond the 3.6 V absolute maximum value and consequently cause damage to the I/O. 

When set to 3.3 V LVTTL or 3.3 V LVCMOS mode, Fusion I/Os can directly drive signals into 5 V TTL
receivers. In fact, VOL = 0.4 V and VOH = 2.4 V in both 3.3 V LVTTL and 3.3 V LVCMOS modes exceed
the VIL = 0.8 V and VIH = 2 V level requirements of 5 V TTL receivers. Therefore, level '1' and level '0'
will be recognized correctly by 5 V TTL receivers.

Simultaneously Switching Outputs and PCB Layout
• Simultaneously switching outputs (SSOs) can produce signal integrity problems on adjacent

signals that are not part of the SSO bus. Both inductive and capacitive coupling parasitics of bond
wires inside packages and of traces on PCBs will transfer noise from SSO busses onto signals
adjacent to those busses. Additionally, SSOs can produce ground bounce noise and VCCI dip
noise. These two noise types are caused by rapidly changing currents through GND and VCCI
package pin inductances during switching activities:

• Ground bounce noise voltage = L(GND) * di/dt

• VCCI dip noise voltage = L(VCCI) * di/dt

Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The
shielding should be done both on the board and inside the package unless otherwise described. 

In-package shielding can be achieved in several ways; the required shielding will vary depending on
whether pins next to SSO bus are LVTTL/LVCMOS inputs, LVTTL/LVCMOS outputs, or
GTL/SSTL/HSTL/LVDS/LVPECL inputs and outputs. Board traces in the vicinity of the SSO bus have to
be adequately shielded from mutual coupling and inductive noise that can be generated by the SSO bus.
Also, noise generated by the SSO bus needs to be reduced inside the package. 

PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time,
maintaining signal integrity between devices.

Key issues that need to considered are as follows:

• Power and ground plane design and decoupling network design

• Transmission line reflections and terminations
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Device Architecture
SSTL3 Class I
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Fusion devices support Class
I. This provides a differential amplifier input buffer and a push-pull output buffer.   

Timing Characteristics

Table 2-162 • Minimum and Maximum DC Input and Output Levels

SSTL3 Class I VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

14 mA –0.3 VREF – 0.2 VREF + 0.2 3.6 0.7 VCCI – 1.1 14 14 54 51 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-132 • AC Loading

Table 2-163 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)

VREF – 0.2 VREF + 0.2 1.5 1.5 1.485 30

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point

30 pF

50

25

SSTL3
Class I

VTT

Table 2-164 • SSTL3 Class I
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 3.0 V, VREF = 1.5 V

Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

 Std. 0.66 2.31 0.04 1.25 0.43 2.35 1.84 4.59 4.07 ns

 –1 0.56 1.96 0.04 1.06 0.36 2.00 1.56 3.90 3.46 ns

 –2 0.49 1.72 0.03 0.93 0.32 1.75 1.37 3.42 3.04 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
TMS Test Mode Select

The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an
internal weak pull-up resistor on the TMS pin. 

TRST Boundary Scan Reset Pin

The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan
circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-
down resistor could be included to ensure the TAP is held in reset mode. The resistor values must be
chosen from Table 2-183 and must satisfy the parallel resistance value requirement. The values in
Table 2-183 correspond to the resistor recommended when a single device is used and to the equivalent
parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entering an undesired JTAG state. In such
cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500  to 1 k will satisfy the requirements.

Special Function Pins

NC No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be
left floating with no effect on the operation of the device.

DC Don't Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

NCAP Negative Capacitor

Negative Capacitor is where the negative terminal of the charge pump capacitor is connected. A
capacitor, with a 2.2 µF recommended value, is required to connect between PCAP and NCAP.

PCAP Positive Capacitor

Positive Capacitor is where the positive terminal of the charge pump capacitor is connected. A capacitor,
with a 2.2 µF recommended value, is required to connect between PCAP and NCAP.

PUB Push Button

Push button is the connection for the external momentary switch used to turn on the 1.5 V voltage
regulator and can be floating if not used.

PTBASE Pass Transistor Base

Pass Transistor Base is the control signal of the voltage regulator. This pin should be connected to the
base of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if
not used.

PTEM Pass Transistor Emitter

Pass Transistor Emitter is the feedback input of the voltage regulator.

This pin should be connected to the emitter of the external pass transistor used with the 1.5 V internal
voltage regulator and can be floating if not used.

XTAL1 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or
external clock input. When using an external crystal or ceramic oscillator, external capacitors are also
recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the
case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the
XTAL2 pin should be left floating.
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3 – DC and Power Characteristics

General Specifications

Operating Conditions
Stresses beyond those listed in Table 3-1 may cause permanent damage to the device.

Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
Devices should not be operated outside the recommended operating ranges specified in Table 3-2 on
page 3-3.

Table 3-1 • Absolute Maximum Ratings 

Symbol Parameter Commercial Industrial Units

VCC DC core supply voltage –0.3 to 1.65 –0.3 to 1.65 V

VJTAG JTAG DC voltage –0.3 to 3.75 –0.3 to 3.75 V

VPUMP Programming voltage –0.3 to 3.75 –0.3 to 3.75 V

VCCPLL Analog power supply (PLL) –0.3 to 1.65 –0.3 to 1.65 V

VCCI DC I/O output buffer supply voltage –0.3 to 3.75 –0.3 to 3.75 V

VI I/O input voltage 1 –0.3 V to 3.6 V (when I/O hot insertion mode is
enabled)
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever
voltage is lower (when I/O hot-insertion mode is
disabled)

V

VCC33A +3.3 V power supply –0.3 to 3.75 2 –0.3 to 3.75 2 V

VCC33PMP +3.3 V power supply –0.3 to 3.75 2 –0.3 to 3.75 2 V

VAREF Voltage reference for ADC –0.3 to 3.75 –0.3 to 3.75 V

VCC15A Digital power supply for the analog system –0.3 to 1.65 –0.3 to 1.65 V

VCCNVM Embedded flash power supply –0.3 to 1.65 –0.3 to 1.65 V

VCCOSC Oscillator power supply –0.3 to 3.75 –0.3 to 3.75 V

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may
undershoot or overshoot according to the limits shown in Table 3-4 on page 3-4.

2. Analog data not valid beyond 3.65 V.

3. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on
voltage on the pad.

4. For flash programming and retention maximum limits, refer to Table 3-5 on page 3-5. For recommended operating limits
refer to Table 3-2 on page 3-3.
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Table 3-3 • Input Resistance of Analog Pads

Pads Pad Configuration Prescaler Range Input Resistance to Ground

AV, AC Analog Input (direct input to ADC) – 2 k (typical)

– > 10 M

Analog Input (positive prescaler) +16 V to +2 V 1 M (typical)

+1 V to +0.125 V > 10 M

Analog Input (negative prescaler) –16 V to –2 V 1 M (typical)

–1 V to –0.125 V > 10 M

Digital input +16 V to +2 V 1 M (typical)

Current monitor +16 V to +2 V 1 M (typical)

–16 V to –2 V 1 M (typical)

AT Analog Input (direct input to ADC) – 1 M (typical)

Analog Input (positive prescaler) +16 V, +4 V 1 M (typical)

Digital input +16 V, +4 V 1 M (typical)

Temperature monitor +16 V, +4 V > 10 M

Table 3-4 • Overshoot and Undershoot Limits 1

VCCI 
Average VCCI–GND Overshoot or Undershoot 

Duration as a Percentage of Clock Cycle2
Maximum Overshoot/ 

Undershoot2

 2.7 V or less 10% 1.4 V

5% 1.49 V

 3.0 V 10% 1.1 V

5% 1.19 V

 3.3 V 10% 0.79 V

5% 0.88 V

 3.6 V 10% 0.45 V

5% 0.54 V

Notes:

1. Based on reliability requirements at a junction temperature of 85°C.
2. The duration is allowed at one cycle out of six clock cycle. If the overshoot/undershoot occurs at one out of two cycles,

the maximum overshoot/undershoot has to be reduced by 0.15 V.
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Package Pin Assignments
H3 XTAL2 XTAL2 XTAL2 XTAL2

H4 XTAL1 XTAL1 XTAL1 XTAL1

H5 GNDOSC GNDOSC GNDOSC GNDOSC

H6 VCCOSC VCCOSC VCCOSC VCCOSC

H7 VCC VCC VCC VCC

H8 GND GND GND GND

H9 VCC VCC VCC VCC

H10 GND GND GND GND

H11 GDC0/IO38NDB1V0 IO51NDB1V0 IO47NDB2V0 IO69NDB2V0

H12 GDC1/IO38PDB1V0 IO51PDB1V0 IO47PDB2V0 IO69PDB2V0

H13 GDB1/IO39PDB1V0 GCA1/IO49PDB1V0 GCA1/IO45PDB2V0 GCA1/IO64PDB2V0

H14 GDB0/IO39NDB1V0 GCA0/IO49NDB1V0 GCA0/IO45NDB2V0 GCA0/IO64NDB2V0

H15 GCA0/IO36NDB1V0 GCB0/IO48NDB1V0 GCB0/IO44NDB2V0 GCB0/IO63NDB2V0

H16 GCA1/IO36PDB1V0 GCB1/IO48PDB1V0 GCB1/IO44PDB2V0 GCB1/IO63PDB2V0

J1 GEA0/IO44NDB3V0 GFA0/IO66NDB3V0 GFA0/IO70NDB4V0 GFA0/IO105NDB4V0

J2 GEA1/IO44PDB3V0 GFA1/IO66PDB3V0 GFA1/IO70PDB4V0 GFA1/IO105PDB4V0

J3 IO43NDB3V0 GFB0/IO67NDB3V0 GFB0/IO71NDB4V0 GFB0/IO106NDB4V0

J4 GEC2/IO43PDB3V0 GFB1/IO67PDB3V0 GFB1/IO71PDB4V0 GFB1/IO106PDB4V0

J5 NC GFC0/IO68NDB3V0 GFC0/IO72NDB4V0 GFC0/IO107NDB4V0

J6 NC GFC1/IO68PDB3V0 GFC1/IO72PDB4V0 GFC1/IO107PDB4V0

J7 GND GND GND GND

J8 VCC VCC VCC VCC

J9 GND GND GND GND

J10 VCC VCC VCC VCC

J11 GDC2/IO41NPB1V0 IO56NPB1V0 IO56NPB2V0 IO83NPB2V0

J12 NC GDB0/IO53NPB1V0 GDB0/IO53NPB2V0 GDB0/IO80NPB2V0

J13 NC GDA1/IO54PDB1V0 GDA1/IO54PDB2V0 GDA1/IO81PDB2V0

J14 GDA0/IO40PDB1V0 GDC1/IO52PPB1V0 GDC1/IO52PPB2V0 GDC1/IO79PPB2V0

J15 NC IO50NPB1V0 IO51NSB2V0 IO77NSB2V0

J16 GDA2/IO40NDB1V0 GDC0/IO52NPB1V0 GDC0/IO52NPB2V0 GDC0/IO79NPB2V0

K1 NC IO65NPB3V0 IO67NPB4V0 IO92NPB4V0

K2 VCCIB3 VCCIB3 VCCIB4 VCCIB4

K3 NC IO65PPB3V0 IO67PPB4V0 IO92PPB4V0

K4 NC IO64PDB3V0 IO65PDB4V0 IO96PDB4V0

K5 GND GND GND GND

K6 NC IO64NDB3V0 IO65NDB4V0 IO96NDB4V0

K7 VCC VCC VCC VCC

K8 GND GND GND GND

FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function
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Datasheet Information
Advance v1.0
(January 2008)

All Timing Characteristics tables were updated. For the Differential I/O Standards,
the Standard I/O support tables are new.

N/A

Table 2-3 • Array Coordinates was updated to change the max x and y values 2-9

Table 2-12 • Fusion CCC/PLL Specification was updated. 2-31

A note was added to Table 2-16 · RTC ACM Memory Map. 2-37

A reference to the Peripheral’s User’s Guide was added to the "Voltage Regulator
Power Supply Monitor (VRPSM)" section.

2-42

In Table 2-25 • Flash Memory Block Timing, the commercial conditions were
updated.

2-55

In Table 2-26 • FlashROM Access Time, the commercial conditions were missing
and have been added below the title of the table.

2-58

In Table 2-36 • Analog Block Pin Description, the function description was updated
for the ADCRESET.

2-82

In the "Voltage Monitor" section, the following sentence originally had ± 10% and it
was changed to +10%.

The Analog Quad inputs are tolerant up to 12 V + 10%. 

In addition, this statement was deleted from the datasheet:

Each I/O will draw power when connected to power (3 mA at 3 V).

2-86

The "Terminology" section is new. 2-88

The "Current Monitor" section was significantly updated. Figure 2-72 • Timing
Diagram for Current Monitor Strobe to Figure 2-74 • Negative Current Monitor and
Table 2-37 • Recommended Resistor for Different Current Range Measurement are
new.

2-90

The "ADC Description" section was updated to add the "Terminology" section. 2-93

In the "Gate Driver" section, 25 mA was changed to 20 mA and 1.5 MHz was
changed to 1.3 MHz. In addition, the following sentence was deleted:

The maximum AG pad switching frequency is 1.25 MHz.

2-94

The "Temperature Monitor" section was updated to rewrite most of the text and add
Figure 2-78, Figure 2-79, and Table 2-38 • Temperature Data Format. 

2-96

In Table 2-38 • Temperature Data Format, the temperature K column was changed
for 85°C from 538 to 358.

2-98

In Table 2-45 • ADC Interface Timing, "Typical-Case" was changed to "Worst-Case." 2-110

The "ADC Interface Timing" section is new. 2-110

Table 2-46 • Analog Channel Specifications was updated. 2-118

The "VCC15A Analog Power Supply (1.5 V)" section was updated. 2-224

The "VCCPLA/B PLL Supply Voltage" section is new. 2-225

In "VCCNVM Flash Memory Block Power Supply (1.5 V)" section, supply was
changed to supply input.

2-224

The "VCCPLA/B PLL Supply Voltage" pin description was updated to include the
following statement:

Actel recommends tying VCCPLX to VCC and using proper filtering circuits to
decouple VCC noise from PLL.

2-225

The "VCOMPLA/B Ground for West and East PLL" section was updated. 2-225
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