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Fusion Family of Mixed Signal FPGAs
Advanced Architecture
The proprietary Fusion architecture provides granularity comparable to standard-cell ASICs. The Fusion
device consists of several distinct and programmable architectural features, including the following
(Figure 1-1 on page 1-5):

• Embedded memories

– Flash memory blocks

– FlashROM 

– SRAM and FIFO

• Clocking resources

– PLL and CCC

– RC oscillator

– Crystal oscillator

– No-Glitch MUX (NGMUX)

• Digital I/Os with advanced I/O standards

• FPGA VersaTiles

• Analog components 

– ADC

– Analog I/Os supporting voltage, current, and temperature monitoring 

– 1.5 V on-board voltage regulator 

– Real-time counter 

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
lookup table (LUT) equivalent or a D-flip-flop or latch (with or without enable) by programming the
appropriate flash switch interconnections. This versatility allows efficient use of the FPGA fabric. The
VersaTile capability is unique to the Microsemi families of flash-based FPGAs. VersaTiles and larger
functions are connected with any of the four levels of routing hierarchy. Flash switches are distributed
throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core
utilization is possible for virtually any design. 

In addition, extensive on-chip programming circuitry allows for rapid (3.3 V) single-voltage programming
of Fusion devices via an IEEE 1532 JTAG interface.

Unprecedented Integration

Integrated Analog Blocks and Analog I/Os
Fusion devices offer robust and flexible analog mixed signal capability in addition to the high-
performance flash FPGA fabric and flash memory block. The many built-in analog peripherals include a
configurable 32:1 input analog MUX, up to 10 independent MOSFET gate driver outputs, and a
configurable ADC. The ADC supports 8-, 10-, and 12-bit modes of operation with a cumulative sample
rate up to 600 k samples per second (Ksps), differential nonlinearity (DNL) < 1.0 LSB, and Total
Unadjusted Error (TUE) of 0.72 LSB in 10-bit mode. The TUE is used for characterization of the
conversion error and includes errors from all sources, such as offset and linearity. Internal bandgap
circuitry offers 1% voltage reference accuracy with the flexibility of utilizing an external reference voltage.
The ADC channel sampling sequence and sampling rate are programmable and implemented in the
FPGA logic using Designer and Libero SoC software tool support.

Two channels of the 32-channel ADCMUX are dedicated. Channel 0 is connected internally to VCC and
can be used to monitor core power supply. Channel 31 is connected to an internal temperature diode
which can be used to monitor device temperature. The 30 remaining channels can be connected to
external analog signals. The exact number of I/Os available for external connection signals is device-
dependent (refer to the "Fusion Family" table on page I for details). 
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Fusion Family of Mixed Signal FPGAs
Embedded Memories

Flash Memory Blocks

The flash memory available in each Fusion device is composed of one to four flash blocks, each 2 Mbits
in density. Each block operates independently with a dedicated flash controller and interface. Fusion
flash memory blocks combine fast access times (60 ns random access and 10 ns access in Read-Ahead
mode) with a configurable 8-, 16-, or 32-bit datapath, enabling high-speed flash operation without wait
states. The memory block is organized in pages and sectors. Each page has 128 bytes, with 33 pages
comprising one sector and 64 sectors per block. The flash block can support multiple partitions. The only
constraint on size is that partition boundaries must coincide with page boundaries. The flexibility and
granularity enable many use models and allow added granularity in programming updates. 

Fusion devices support two methods of external access to the flash memory blocks. The first method is a
serial interface that features a built-in JTAG-compliant port, which allows in-system programmability
during user or monitor/test modes. This serial interface supports programming of an AES-encrypted
stream. Data protected with security measures can be passed through the JTAG interface, decrypted,
and then programmed in the flash block. The second method is a soft parallel interface. 

FPGA logic or an on-chip soft microprocessor can access flash memory through the parallel interface.
Since the flash parallel interface is implemented in the FPGA fabric, it can potentially be customized to
meet special user requirements. For more information, refer to the CoreCFI Handbook. The flash
memory parallel interface provides configurable byte-wide (×8), word-wide (×16), or dual-word-wide
(×32) data-port options. Through the programmable flash parallel interface, the on-chip and off-chip
memories can be cascaded for wider or deeper configurations. 

The flash memory has built-in security. The user can configure either the entire flash block or the small
blocks to protect against unintentional or intrusive attempts to change or destroy the storage contents.
Each on-chip flash memory block has a dedicated controller, enabling each block to operate
independently.

The flash block logic consists of the following sub-blocks:

• Flash block – Contains all stored data. The flash block contains 64 sectors and each sector
contains 33 pages of data.

• Page Buffer – Contains the contents of the current page being modified. A page contains 8 blocks
of data.

• Block Buffer – Contains the contents of the last block accessed. A block contains 128 data bits.

• ECC Logic – The flash memory stores error correction information with each block to perform
single-bit error correction and double-bit error detection on all data blocks.

User Nonvolatile FlashROM 
In addition to the flash blocks, Fusion devices have 1 Kbit of user-accessible, nonvolatile FlashROM 
on-chip. The FlashROM is organized as 8×128-bit pages. The FlashROM can be used in diverse system
applications: 

• Internet protocol addressing (wireless or fixed)

• System calibration settings

• Device serialization and/or inventory control

• Subscription-based business models (for example, set-top boxes)

• Secure key storage for communications algorithms protected by security

• Asset management/tracking

• Date stamping

• Version management

The FlashROM is written using the standard IEEE 1532 JTAG programming interface. Pages can be
individually programmed (erased and written). On-chip AES decryption can be used selectively over
public networks to load data such as security keys stored in the FlashROM for a user design. 

The FlashROM can be programmed (erased and written) via the JTAG programming interface, and its
contents can be read back either through the JTAG programming interface or via direct FPGA core
addressing.
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Device Architecture
RAM4K9 Description

Figure 2-48 • RAM4K9
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Fusion Family of Mixed Signal FPGAs
Modes of Operation
There are two read modes and one write mode:

• Read Nonpipelined (synchronous—1 clock edge): In the standard read mode, new data is driven
onto the RD bus in the same clock cycle following RA and REN valid. The read address is
registered on the read port clock active edge, and data appears at RD after the RAM access time.
Setting PIPE to OFF enables this mode.

• Read Pipelined (synchronous—2 clock edges): The pipelined mode incurs an additional clock
delay from the address to the data but enables operation at a much higher frequency. The read
address is registered on the read port active clock edge, and the read data is registered and
appears at RD after the second read clock edge. Setting PIPE to ON enables this mode.

• Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into
the SRAM at the write address when WEN is High. The setup times of the write address, write
enables, and write data are minimal with respect to the write clock. Write and read transfers are
described with timing requirements in the "SRAM Characteristics" section on page 2-63 and the
"FIFO Characteristics" section on page 2-72.

RAM Initialization
Each SRAM block can be individually initialized on power-up by means of the JTAG port using the
UJTAG mechanism (refer to the "JTAG IEEE 1532" section on page 2-229 and the Fusion SRAM/FIFO
Blocks application note). The shift register for a target block can be selected and loaded with the proper
bit configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation. 
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Fusion Family of Mixed Signal FPGAs
Table 2-36 describes each pin in the Analog Block. Each function within the Analog Block will be
explained in detail in the following sections.

Table 2-36 • Analog Block Pin Description

Signal Name
Number 
of Bits Direction Function

Location of 
Details

VAREF 1 Input/Output Voltage reference for ADC ADC

ADCGNDREF 1 Input External ground reference ADC

MODE[3:0] 4 Input ADC operating mode ADC

SYSCLK 1 Input External system clock

TVC[7:0] 8 Input Clock divide control ADC

STC[7:0] 8 Input Sample time control ADC

ADCSTART 1 Input Start of conversion ADC

PWRDWN 1 Input ADC comparator power-down if 1.
When asserted, the ADC will stop
functioning, and the digital portion of
the analog block will continue
operating. This may result in invalid
status flags from the analog block.
Therefore, Microsemi does not
recommend asserting the PWRDWN
pin.

ADC

ADCRESET 1 Input ADC resets and disables Analog Quad
– active high

ADC

BUSY 1 Output 1 – Running conversion ADC

CALIBRATE 1 Output 1 – Power-up calibration ADC

DATAVALID 1 Output 1 – Valid conversion result ADC

RESULT[11:0] 12 Output Conversion result ADC

TMSTBINT 1 Input Internal temp. monitor strobe ADC

SAMPLE 1 Output 1 – An analog signal is actively being
sampled (stays high during signal
acquisition only)

0 – No analog signal is being sampled

ADC

VAREFSEL 1 Input 0 = Output internal voltage reference
(2.56 V) to VAREF

1 = Input external voltage reference
from VAREF and ADCGNDREF

ADC

CHNUMBER[4:0] 5 Input Analog input channel select Input 
multiplexer

ACMCLK 1 Input ACM clock ACM

ACMWEN 1 Input ACM write enable – active high ACM

ACMRESET 1 Input ACM reset – active low ACM

ACMWDATA[7:0] 8 Input ACM write data ACM

ACMRDATA[7:0] 8 Output ACM read data ACM

ACMADDR[7:0] 8 Input ACM address ACM

CMSTB0 to CMSTB9 10 Input Current monitor strobe – 1 per quad,
active high

Analog Quad
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Device Architecture
GDON0 to GDON9 10 Input Control to power MOS – 1 per quad Analog Quad

TMSTB0 to TMSTB9 10 Input Temperature monitor strobe – 1 per
quad; active high

Analog Quad

DAVOUT0, DACOUT0, DATOUT0
to
DAVOUT9, DACOUT9, DATOUT9

30 Output Digital outputs – 3 per quad Analog Quad

DENAV0, DENAC0, DENAT0 to
DENAV9, DENAC9, DENAT9

30 Input Digital input enables – 3 per quad Analog Quad

AV0 1 Input Analog Quad 0 Analog Quad

AC0 1 Input Analog Quad

AG0 1 Output Analog Quad

AT0 1 Input Analog Quad

ATRETURN01 1 Input Temperature monitor return shared by
Analog Quads 0 and 1

Analog Quad

AV1 1 Input Analog Quad 1 Analog Quad

AC1 1 Input Analog Quad

AG1 1 Output Analog Quad

AT1 1 Input Analog Quad

AV2 1 Input Analog Quad 2 Analog Quad

AC2 1 Input Analog Quad

AG2 1 Output Analog Quad

AT2 1 Input Analog Quad

ATRETURN23 1 Input Temperature monitor return shared by
Analog Quads 2 and 3

Analog Quad

AV3 1 Input Analog Quad 3 Analog Quad

AC3 1 Input Analog Quad

AG3 1 Output Analog Quad

AT3 1 Input Analog Quad

AV4 1 Input Analog Quad 4 Analog Quad

AC4 1 Input Analog Quad

AG4 1 Output Analog Quad

AT4 1 Input Analog Quad

ATRETURN45 1 Input Temperature monitor return shared by
Analog Quads 4 and 5

Analog Quad

AV5 1 Input Analog Quad 5 Analog Quad

AC5 1 Input Analog Quad

AG5 1 Output Analog Quad

AT5 1 Input Analog Quad

AV6 1 Input Analog Quad 6 Analog Quad

AC6 1 Input Analog Quad

Table 2-36 • Analog Block Pin Description (continued)

Signal Name
Number 
of Bits Direction Function

Location of 
Details
2-79 Revision 6



Fusion Family of Mixed Signal FPGAs
Channel Input Offset Error

Channel Offset error is measured as the input voltage that causes the transition from zero to a count of
one. An Ideal Prescaler will have offset equal to ½ of LSB voltage. Offset error is a positive or negative
when the first transition point is higher or lower than ideal. Offset error is expressed in LSB or input
voltage.

Total Channel Error

Total Channel Error is defined as the total error measured compared to the ideal value. Total Channel
Error is the sum of gain error and offset error combined. Figure 2-68 shows how Total Channel Error is
measured.

Total Channel Error is defined as the difference between the actual ADC output and ideal ADC output. In
the example shown in Figure 2-68, the Total Channel Error would be a negative number.

Figure 2-68 • Total Channel Error Example
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Fusion Family of Mixed Signal FPGAs
Current Monitor
The Fusion Analog Quad is an excellent element for voltage- and current-monitoring applications. In
addition to supporting the same functionality offered by the AV pad, the AC pad can be configured to
monitor current across an external sense resistor (Figure 2-70). To support this current monitor function,
a differential amplifier with 10x gain passes the amplified voltage drop between the AV and AC pads to
the ADC. The amplifier enables the user to use very small resistor values, thereby limiting any impact on
the circuit. This function of the AC pad does not limit AV pad operation. The AV pad can still be
configured for use as a direct voltage input or scaled through the AV prescaler independently of it’s use
as an input to the AC pad’s differential amplifier. 

Figure 2-70 • Analog Quad Current Monitor Configuration
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Fusion Family of Mixed Signal FPGAs
Analog-to-Digital Converter Block
At the heart of the Fusion analog system is a programmable Successive Approximation Register (SAR)
ADC. The ADC can support 8-, 10-, or 12-bit modes of operation. In 12-bit mode, the ADC can resolve
500 ksps. All results are MSB-justified in the ADC. The input to the ADC is a large 32:1 analog input
multiplexer. A simplified block diagram of the Analog Quads, analog input multiplexer, and ADC is shown
in Figure 2-79. The ADC offers multiple self-calibrating modes to ensure consistent high performance
both at power-up and during runtime. 

Figure 2-79 • ADC Block Diagram
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Fusion Family of Mixed Signal FPGAs
ADC Terminology
Conversion Time
Conversion time is the interval between the release of the hold state (imposed by the input circuitry of a
track-and-hold) and the instant at which the voltage on the sampling capacitor settles to within one LSB
of a new input value.

DNL – Differential Non-Linearity 
For an ideal ADC, the analog-input levels that trigger any two successive output codes should differ by
one LSB (DNL = 0). Any deviation from one LSB in defined as DNL (Figure 2-83).

ENOB – Effective Number of Bits
ENOB specifies the dynamic performance of an ADC at a specific input frequency and sampling rate. An
ideal ADC’s error consists only of quantization of noise. As the input frequency increases, the overall
noise (particularly in the distortion components) also increases, thereby reducing the ENOB and SINAD
(also see “Signal-to-Noise and Distortion Ratio (SINAD)”.) ENOB for a full-scale, sinusoidal input
waveform is computed using EQ 12.

EQ 12

FS Error – Full-Scale Error
Full-scale error is the difference between the actual value that triggers that transition to full-scale and the
ideal analog full-scale transition value. Full-scale error equals offset error plus gain error.

Figure 2-83 • Differential Non-Linearity (DNL)
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Device Architecture
Analog System Characteristics  

Table 2-49 • Analog Channel Specifications 
Commercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise), 
Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter Description Condition Min. Typ. Max. Units

Voltage Monitor Using Analog Pads AV, AC and AT (using prescaler)

Input Voltage 
(Prescaler)

Refer to Table 3-2 on page 3-3

VINAP Uncalibrated Gain and 
Offset Errors

Refer to Table 2-51 on 
page 2-122

Calibrated Gain and 
Offset Errors

Refer to Table 2-52 on 
page 2-123

Bandwidth1 100 KHz

Input Resistance Refer to Table 3-3 on page 3-4

Scaling Factor Prescaler modes (Table 2-57 on 
page 2-130)

Sample Time 10 µs

Current Monitor Using Analog Pads AV and AC

VRSM1 Maximum Differential 
Input Voltage

VAREF / 10 mV

Resolution Refer to "Current Monitor" 
section

Common Mode Range  – 10.5 to +12 V

CMRR Common Mode 
Rejection Ratio

DC – 1 KHz 60 dB

1 KHz - 10 KHz 50 dB

> 10 KHz 30 dB

tCMSHI Strobe High time ADC 
conv. 
time

200 µs

tCMSHI Strobe Low time 5 µs

tCMSHI Settling time 0.02 µs

Accuracy Input differential voltage > 50 mV  –2 –(0.05 x 
VRSM) to +2 + 
(0.05 x VRSM)

mV

Notes:

1. VRSM is the maximum voltage drop across the current sense resistor.
2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no

reliability concern on digital inputs as long as VIND does not exceed these limits.

3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.

4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance
allowed across the AT pins is 500 pF.

5. The temperature offset is a fixed positive value.

6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on
voltage on the pad.

7. When using SmartGen Analog System Builder, CalibIP is required to obtain specified offset. For further details on
CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA
Fabric User Guide.
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Fusion Family of Mixed Signal FPGAs
Analog Configuration MUX
The ACM is the interface between the FPGA, the Analog Block configurations, and the real-time counter.
Microsemi Libero SoC will generate IP that will load and configure the Analog Block via the ACM.
However, users are not limited to using the Libero SoC IP. This section provides a detailed description of
the ACM's register map, truth tables for proper configuration of the Analog Block and RTC, as well as
timing waveforms so users can access and control the ACM directly from their designs. 

The Analog Block contains four 8-bit latches per Analog Quad that are initialized through the ACM.
These latches act as configuration bits for Analog Quads. The ACM block runs from the core voltage
supply (1.5 V).

Access to the ACM is achieved via 8-bit address and data busses with enables. The pin list is provided in
Table 2-36 on page 2-78. The ACM clock speed is limited to a maximum of 10 MHz, more than sufficient
to handle the low-bandwidth requirements of configuring the Analog Block and the RTC (sub-block of the
Analog Block).

Table 2-54 decodes the ACM address space and maps it to the corresponding Analog Quad and
configuration byte for that quad.

Table 2-54 • ACM Address Decode Table for Analog Quad

ACMADDR [7:0] in 
Decimal Name Description

Associated 
Peripheral

0 – – Analog Quad

1 AQ0 Byte 0 Analog Quad

2 AQ0 Byte 1 Analog Quad

3 AQ0 Byte 2 Analog Quad

4 AQ0 Byte 3 Analog Quad

5 AQ1 Byte 0 Analog Quad

.

.

.

.

.

.

.

.

.

Analog Quad

36 AQ8 Byte 3 Analog Quad

37 AQ9 Byte 0 Analog Quad

38 AQ9 Byte 1 Analog Quad

39 AQ9 Byte 2 Analog Quad

40 AQ9 Byte 3 Analog Quad

41 Undefined Analog Quad

.

.

.

.

.

.

Undefined Analog Quad

63 Undefined RTC

64 COUNTER0 Counter bits 7:0 RTC

65 COUNTER1 Counter bits 15:8 RTC

66 COUNTER2 Counter bits 23:16 RTC

67 COUNTER3 Counter bits 31:24 RTC

68 COUNTER4 Counter bits 39:32 RTC

72 MATCHREG0 Match register bits 7:0 RTC
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Fusion Family of Mixed Signal FPGAs
Table 2-68 • I/O Bank Support by Device

I/O Bank AFS090 AFS250 AFS600 AFS1500

Standard I/O N N – –

Advanced I/O E, W E, W E, W E, W

Pro I/O – – N N

Analog Quad S S S S

Note: E = East side of the device
W = West side of the device
N = North side of the device
S = South side of the device

Table 2-69 • Fusion VCCI Voltages and Compatible Standards

VCCI (typical) Compatible Standards

3.3 V LVTTL/LVCMOS 3.3, PCI 3.3, SSTL3 (Class I and II),* GTL+ 3.3, GTL 3.3,* LVPECL

2.5 V LVCMOS 2.5, LVCMOS 2.5/5.0, SSTL2 (Class I and II),* GTL+ 2.5,* GTL 2.5,* LVDS, BLVDS, M-
LVDS

1.8 V LVCMOS 1.8

1.5 V LVCMOS 1.5, HSTL (Class I),* HSTL (Class II)*

Note: *I/O standard supported by Pro I/O banks.

Table 2-70 • Fusion VREF Voltages and Compatible Standards*

VREF (typical)  Compatible Standards

1.5 V SSTL3 (Class I and II)

1.25 V SSTL2 (Class I and II)

1.0 V GTL+ 2.5, GTL+ 3.3

0.8 V GTL 2.5, GTL 3.3

0.75 V HSTL (Class I), HSTL (Class II)

Note: *I/O standards supported by Pro I/O banks.
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Fusion Family of Mixed Signal FPGAs
User I/O Naming Convention
Due to the comprehensive and flexible nature of Fusion device user I/Os, a naming scheme is used to
show the details of the I/O (Figure 2-113 on page 2-158 and Figure 2-114 on page 2-159). The name
identifies to which I/O bank it belongs, as well as the pairing and pin polarity for differential I/Os.

I/O Nomenclature =  Gmn/IOuxwByVz

Gmn is only used for I/Os that also have CCC access—i.e., global pins. 

G = Global

m = Global pin location associated with each CCC on the device: A (northwest corner), B (northeast corner), C
(east middle), D (southeast corner), E (southwest corner), and F (west middle). 

n = Global input MUX and pin number of the associated Global location m, either A0, A1, A2, B0, B1, B2, C0, C1,
or C2. Figure 2-22 on page 2-25 shows the three input pins per clock source MUX at CCC location m.

u = I/O pair number in the bank, starting at 00 from the northwest I/O bank and proceeding in a clockwise
direction.

x = P (Positive) or N (Negative) for differential pairs, or R (Regular – single-ended) for the I/Os that support single-
ended and voltage-referenced I/O standards only. U (Positive-LVDS only) or V (Negative-LVDS only) restrict
the I/O differential pair from being selected as an LVPECL pair.

w = D (Differential Pair), P (Pair), or S (Single-Ended). D (Differential Pair) if both members of the pair are bonded
out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both members of the pair are
bonded out but do not meet the adjacency requirement; or S (Single-Ended) if the I/O pair is not bonded out.
For Differential (D) pairs, adjacency for ball grid packages means only vertical or horizontal. Diagonal
adjacency does not meet the requirements for a true differential pair.

B = Bank

y = Bank number (0–3). The Bank number starts at 0 from the northwest I/O bank and proceeds in a clockwise
direction.

V = Reference voltage

z = Minibank number

Figure 2-113 • Naming Conventions of Fusion Devices with Three Digital I/O Banks
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Device Architecture
Table 2-115 • 2.5 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 2.3 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

4 mA  Std. 0.66 8.66 0.04 1.31 0.43 7.83 8.66 2.68 2.30 10.07 10.90  ns 

 –1 0.56 7.37 0.04 1.11 0.36 6.66 7.37 2.28 1.96 8.56 9.27  ns 

 –2 0.49 6.47 0.03 0.98 0.32 5.85 6.47 2.00 1.72 7.52 8.14  ns 

8 mA  Std. 0.66 5.17 0.04 1.31 0.43 5.04 5.17 3.05 3.00 7.27 7.40  ns 

 –1 0.56 4.39 0.04 1.11 0.36 4.28 4.39 2.59 2.55 6.19 6.30  ns 

 –2 0.49 3.86 0.03 0.98 0.32 3.76 3.86 2.28 2.24 5.43 5.53  ns 

12 mA  Std. 0.66 3.56 0.04 1.31 0.43 3.63 3.43 3.30 3.44 5.86 5.67  ns 

 –1 0.56 3.03 0.04 1.11 0.36 3.08 2.92 2.81 2.92 4.99 4.82  ns 

 –2 0.49 2.66 0.03 0.98 0.32 2.71 2.56 2.47 2.57 4.38 4.23  ns 

16 mA  Std. 0.66 3.35 0.04 1.31 0.43 3.41 3.06 3.36 3.55 5.65 5.30  ns 

 –1 0.56 2.85 0.04 1.11 0.36 2.90 2.60 2.86 3.02 4.81 4.51  ns 

 –2 0.49 2.50 0.03 0.98 0.32 2.55 2.29 2.51 2.65 4.22 3.96  ns 

24 mA  Std. 0.66 3.56 0.04 1.31 0.43 3.63 3.43 3.30 3.44 5.86 5.67  ns 

 –1 0.56 3.03 0.04 1.11 0.36 3.08 2.92 2.81 2.92 4.99 4.82  ns 

 –2 0.49 2.66 0.03 0.98 0.32 2.71 2.56 2.47 2.57 4.38 4.23  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Table 2-116 • 2.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 2.3 V
Applicable to Standard I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  Units 

2 mA  Std. 0.66 11.00 0.04 1.29 0.43 10.37 11.00 2.03 1.83  ns 

 –1 0.56 9.35 0.04 1.10 0.36 8.83 9.35 1.73 1.56  ns 

 –2 0.49 8.21 0.03 0.96 0.32 7.75 8.21 1.52 1.37  ns 

4 mA  Std. 0.66 11.00 0.04 1.29 0.43 10.37 11.00 2.03 1.83  ns 

 –1 0.56 9.35 0.04 1.10 0.36 8.83 9.35 1.73 1.56  ns 

 –2 0.49 8.21 0.03 0.96 0.32 7.75 8.21 1.52 1.37  ns 

6 mA  Std. 0.66 7.50 0.04 1.29 0.43 7.36 7.50 2.39 2.46  ns 

 –1 0.56 6.38 0.04 1.10 0.36 6.26 6.38 2.03 2.10  ns 

 –2 0.49 5.60 0.03 0.96 0.32 5.49 5.60 1.78 1.84  ns 

8 mA  Std. 0.66 7.50 0.04 1.29 0.43 7.36 7.50 2.39 2.46  ns 

 –1 0.56 6.38 0.04 1.10 0.36 6.26 6.38 2.03 2.10  ns 

 –2 0.49 5.60 0.03 0.96 0.32 5.49 5.60 1.78 1.84  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
Voltage Referenced I/O Characteristics
3.3 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier
input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.  

Timing Characteristics  

Table 2-138 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

20 mA3 –0.3 VREF – 0.05 VREF + 0.05 3.6 0.4 – 20 20 181 268 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-124 • AC Loading

Table 2-139 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)

VREF – 0.05 VREF + 0.05 0.8 0.8 1.2 10

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point

10 pF

25GTL

VTT

Table 2-140 • 3.3 V GTL
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 3.0 V, VREF = 0.8 V

Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

 Std. 0.66 2.08 0.04 2.93 0.43 2.04 2.08 4.27 4.31 ns

 –1 0.56 1.77 0.04 2.50 0.36 1.73 1.77 3.63 3.67 ns

 –2 0.49 1.55 0.03 2.19 0.32 1.52 1.55 3.19 3.22 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
TMS Test Mode Select

The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an
internal weak pull-up resistor on the TMS pin. 

TRST Boundary Scan Reset Pin

The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan
circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-
down resistor could be included to ensure the TAP is held in reset mode. The resistor values must be
chosen from Table 2-183 and must satisfy the parallel resistance value requirement. The values in
Table 2-183 correspond to the resistor recommended when a single device is used and to the equivalent
parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entering an undesired JTAG state. In such
cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500  to 1 k will satisfy the requirements.

Special Function Pins

NC No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be
left floating with no effect on the operation of the device.

DC Don't Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

NCAP Negative Capacitor

Negative Capacitor is where the negative terminal of the charge pump capacitor is connected. A
capacitor, with a 2.2 µF recommended value, is required to connect between PCAP and NCAP.

PCAP Positive Capacitor

Positive Capacitor is where the positive terminal of the charge pump capacitor is connected. A capacitor,
with a 2.2 µF recommended value, is required to connect between PCAP and NCAP.

PUB Push Button

Push button is the connection for the external momentary switch used to turn on the 1.5 V voltage
regulator and can be floating if not used.

PTBASE Pass Transistor Base

Pass Transistor Base is the control signal of the voltage regulator. This pin should be connected to the
base of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if
not used.

PTEM Pass Transistor Emitter

Pass Transistor Emitter is the feedback input of the voltage regulator.

This pin should be connected to the emitter of the external pass transistor used with the 1.5 V internal
voltage regulator and can be floating if not used.

XTAL1 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or
external clock input. When using an external crystal or ceramic oscillator, external capacitors are also
recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the
case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the
XTAL2 pin should be left floating.
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DC and Power Characteristics
PS-CELL = NS-CELL * (PAC5 + (1 / 2) * PAC6) * FCLK

NS-CELL is the number of VersaTiles used as sequential modules in the design. When a multi-tile
sequential cell is used, it should be accounted for as 1.

1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

PS-CELL = 0 W

Combinatorial Cells Dynamic Contribution—PC-CELL

Operating Mode

PC-CELL = NC-CELL* (1 / 2) * PAC7 * FCLK

NC-CELL is the number of VersaTiles used as combinatorial modules in the design.

1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

PC-CELL = 0 W

Routing Net Dynamic Contribution—PNET

Operating Mode

PNET = (NS-CELL + NC-CELL) * (1 / 2) * PAC8 * FCLK

NS-CELL is the number VersaTiles used as sequential modules in the design.

NC-CELL is the number of VersaTiles used as combinatorial modules in the design.

1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-16 on page 3-27.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

PNET = 0 W

I/O Input Buffer Dynamic Contribution—PINPUTS

Operating Mode

PINPUTS = NINPUTS * (2 / 2) * PAC9 * FCLK

NINPUTS is the number of I/O input buffers used in the design.

2 is the I/O buffer toggle rate—guidelines are provided in Table 3-16 on page 3-27.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

PINPUTS = 0 W

I/O Output Buffer Dynamic Contribution—POUTPUTS

Operating Mode

POUTPUTS = NOUTPUTS * (2 / 2) * 1 * PAC10 * FCLK

NOUTPUTS is the number of I/O output buffers used in the design.

2 is the I/O buffer toggle rate—guidelines are provided in Table 3-16 on page 3-27.

1 is the I/O buffer enable rate—guidelines are provided in Table 3-17 on page 3-27.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

POUTPUTS = 0 W
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Fusion Family of Mixed Signal FPGAs
H13 GND GND

H14 VCCIB1 VCCIB1

H15 GND GND

H16 GND GND

H17 NC IO53NDB2V0

H18 IO38PDB2V0 IO57PDB2V0

H19 GCA2/IO39PDB2V0 GCA2/IO59PDB2V0

H20 VCCIB2 VCCIB2

H21 IO37NDB2V0 IO54NDB2V0

H22 IO37PDB2V0 IO54PDB2V0

J1 NC IO112PPB4V0

J2 IO76NDB4V0 IO113NDB4V0

J3 GFB2/IO74PDB4V0 GFB2/IO109PDB4V0

J4 GFA2/IO75PDB4V0 GFA2/IO110PDB4V0

J5 NC IO112NPB4V0

J6 NC IO104PDB4V0

J7 NC IO111PDB4V0

J8 VCCIB4 VCCIB4

J9 GND GND

J10 VCC VCC

J11 GND GND

J12 VCC VCC

J13 GND GND

J14 VCC VCC

J15 VCCIB2 VCCIB2

J16 GCB2/IO40PDB2V0 GCB2/IO60PDB2V0

J17 NC IO58NDB2V0

J18 IO38NDB2V0 IO57NDB2V0

J19 IO39NDB2V0 IO59NDB2V0

J20 GCC2/IO41PDB2V0 GCC2/IO61PDB2V0

J21 NC IO55PSB2V0

J22 IO42PDB2V0 IO56PDB2V0

K1 GFC2/IO73PDB4V0 GFC2/IO108PDB4V0

K2 GND GND

K3 IO74NDB4V0 IO109NDB4V0

FG484

Pin 
Number AFS600 Function AFS1500 Function

K4 IO75NDB4V0 IO110NDB4V0

K5 GND GND

K6 NC IO104NDB4V0

K7 NC IO111NDB4V0

K8 GND GND

K9 VCC VCC

K10 GND GND

K11 VCC VCC

K12 GND GND

K13 VCC VCC

K14 GND GND

K15 GND GND

K16 IO40NDB2V0 IO60NDB2V0

K17 NC IO58PDB2V0

K18 GND GND

K19 NC IO68NPB2V0

K20 IO41NDB2V0 IO61NDB2V0

K21 GND GND

K22 IO42NDB2V0 IO56NDB2V0

L1 IO73NDB4V0 IO108NDB4V0

L2 VCCOSC VCCOSC

L3 VCCIB4 VCCIB4

L4 XTAL2 XTAL2

L5 GFC1/IO72PDB4V0 GFC1/IO107PDB4V0

L6 VCCIB4 VCCIB4

L7 GFB1/IO71PDB4V0 GFB1/IO106PDB4V0

L8 VCCIB4 VCCIB4

L9 GND GND

L10 VCC VCC

L11 GND GND

L12 VCC VCC

L13 GND GND

L14 VCC VCC

L15 VCCIB2 VCCIB2

L16 IO48PDB2V0 IO70PDB2V0

FG484

Pin 
Number AFS600 Function AFS1500 Function
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Datasheet Information
v2.0, Revision 1
(continued)

Table 3-6 • Package Thermal Resistance was updated to include new data. 3-7

In EQ 4 to EQ 6, the junction temperature was changed from 110°C to 100°C. 3-8 to 3-8

Table 3-8 • AFS1500 Quiescent Supply Current Characteristics through Table 3-11 •
AFS090 Quiescent Supply Current Characteristics are new and have replaced the
Quiescent Supply Current Characteristics (IDDQ) table.

3-10 to 
3-16

In Table 3-14 • Different Components Contributing to the Dynamic Power
Consumption in Fusion Devices, the power supply for PAC9 and PAC10 were
changed from VMV/VCC to VCCI.

3-22

In Table 3-15 • Different Components Contributing to the Static Power Consumption
in Fusion Devices, the power supply for PDC7 and PDC8 were changed from
VMV/VCC to VCCI. PDC1 was updated from TBD to 18.

3-23

The "QN108" table was updated to remove the duplicates of pins B12 and B34. 4-2

Preliminary v1.7
(October 2008)

The version number category was changed from Advance to Preliminary, which
means the datasheet contains information based on simulation and/or initial
characterization. The information is believed to be correct, but changes are possible.

For the VIL and VIH parameters, 0.30 * VCCI was changed to 0.35 * VCCI and 0.70
* VCCI was changed to 0.65 * VCCI in Table 2-126 • Minimum and Maximum DC
Input and Output Levels.

2-193

The version number category was changed from Advance to Preliminary, which
means the datasheet contains information based on simulation and/or initial
characterization. The information is believed to be correct, but changes are possible. 

N/A

The following updates were made to Table 2-141 • Minimum and Maximum DC Input
and Output Levels:

Temperature Digital Output

213 00 1111 1101

283 01 0001 1011

358 01 0110 0110 – only the digital output was updated.
Temperature 358 remains in the temperature column.

2-200

In Advance v1.2, the "VAREF Analog Reference Voltage" pin description was
significantly updated but the change was not noted in the change table.

2-225

Advance v1.6
(August 2008)

The title of the datasheet changed from Actel Programmable System Chips to Actel
Fusion Mixed Signal FPGAs. In addition, all instances of programmable system chip
were changed to mixed signal FPGA.

N/A

The references to the Peripherals User’s Guide in the "No-Glitch MUX (NGMUX)"
section and "Voltage Regulator Power Supply Monitor (VRPSM)" section were
changed to Fusion Handbook.

2-32, 2-42

Advance v1.5
(July 2008)

The following bullet was updated from High-Voltage Input Tolerance: ±12 V to High-
Voltage Input Tolerance: 10.5 V to 12 V.

I

The following bullet was updated from Programmable 1, 3, 10, 30 µA and 25 mA
Drive Strengths to Programmable 1, 3, 10, 30 µA and 20 mA Drive Strengths.

I
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