

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	36864
Number of I/O	114
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/u1afs250-fg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Fusion Device Family Overview

The FlashPoint tool in the Fusion development software solutions, Libero SoC and Designer, has extensive support for flash memory blocks and FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using the Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

Fusion devices have embedded SRAM blocks along the north and south sides of the device. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be written through a 4-bit port and read as a single bitstream. The SRAM blocks can be initialized from the flash memory blocks or via the device JTAG port (ROM emulation mode), using the UJTAG macro.

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal EMPTY and FULL flags. The embedded FIFO control unit contains the counters necessary for the generation of the read and write address pointers. The SRAM/FIFO blocks can be cascaded to create larger configurations.

Clock Resources

PLLs and Clock Conditioning Circuits (CCCs)

Fusion devices provide designers with very flexible clock conditioning capabilities. Each member of the Fusion family contains six CCCs. In the two larger family members, two of these CCCs also include a PLL; the smaller devices support one PLL.

The inputs of the CCC blocks are accessible from the FPGA core or from one of several inputs with dedicated CCC block connections.

The CCC block has the following key features:

- Wide input frequency range (f_{IN CCC}) = 1.5 MHz to 350 MHz
- Output frequency range ($f_{OUT CCC}$) = 0.75 MHz to 350 MHz
- Clock phase adjustment via programmable and fixed delays from -6.275 ns to +8.75 ns
- Clock skew minimization (PLL)
- Clock frequency synthesis (PLL)
- · On-chip analog clocking resources usable as inputs:
 - 100 MHz on-chip RC oscillator
 - Crystal oscillator

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°
- Output duty cycle = $50\% \pm 1.5\%$
- Low output jitter. Samples of peak-to-peak period jitter when a single global network is used:
 - 70 ps at 350 MHz
 - 90 ps at 100 MHz
 - 180 ps at 24 MHz
 - Worst case < 2.5% × clock period
- Maximum acquisition time = 150 µs
- Low power consumption of 5 mW

Global Clocking

Fusion devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there are on-chip oscillators as well as a comprehensive global clock distribution network.

The integrated RC oscillator generates a 100 MHz clock. It is used internally to provide a known clock source to the flash memory read and write control. It can also be used as a source for the PLLs.

The crystal oscillator supports the following operating modes:

- Crystal (32.768 KHz to 20 MHz)
- Ceramic (500 KHz to 8 MHz)
- RC (32.768 KHz to 4 MHz)

Each VersaTile input and output port has access to nine VersaNets: six main and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via MUXes. The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

Digital I/Os with Advanced I/O Standards

The Fusion family of FPGAs features a flexible digital I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). Fusion FPGAs support many different digital I/O standards, both single-ended and differential.

The I/Os are organized into banks, with four or five banks per device. The configuration of these banks determines the I/O standards supported. The banks along the east and west sides of the device support the full range of I/O standards (single-ended and differential). The south bank supports the Analog Quads (analog I/O). In the family's two smaller devices, the north bank supports multiple single-ended digital I/O standards. In the family's larger devices, the north bank is divided into two banks of digital Pro I/Os, supporting a wide variety of single-ended, differential, and voltage-referenced I/O standards.

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following applications:

- Single-Data-Rate (SDR) applications
- Double-Data-Rate (DDR) applications—DDR LVDS I/O for chip-to-chip communications
- Fusion banks support LVPECL, LVDS, BLVDS, and M-LVDS with 20 multi-drop points.

VersaTiles

The Fusion core consists of VersaTiles, which are also used in the successful ProASIC3 family. The Fusion VersaTile supports the following:

- All 3-input logic functions—LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set and optional enable

Refer to Figure 1-2 for the VersaTile configuration arrangement.

VersaNet Global Networks and Spine Access

The Fusion architecture contains a total of 18 segmented global networks that can access the VersaTiles, SRAM, and I/O tiles on the Fusion device. There are 6 chip (main) global networks that access the entire device and 12 quadrant networks (3 in each quadrant). Each device has a total of 18 globals. These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets, including clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-skew local networks using spines for up to 180 internal/external clocks (in an AFS1500 device) or other high-fanout nets in Fusion devices. Optimal usage of these low-skew networks can result in significant improvement in design performance on Fusion devices.

The nine spines available in a vertical column reside in global networks with two separate regions of scope: the quadrant global network, which has three spines, and the chip (main) global network, which has six spines. Note that there are three quadrant spines in each quadrant of the device. There are four quadrant global network regions per device (Figure 2-12 on page 2-12).

The spines are the vertical branches of the global network tree, shown in Figure 2-11 on page 2-11. Each spine in a vertical column of a chip (main) global network is further divided into two equal-length spine segments: one in the top and one in the bottom half of the die.

Each spine and its associated ribs cover a certain area of the Fusion device (the "scope" of the spine; see Figure 2-11 on page 2-11). Each spine is accessed by the dedicated global network MUX tree architecture, which defines how a particular spine is driven—either by the signal on the global network from a CCC, for example, or another net defined by the user (Figure 2-13). Quadrant spines can be driven from user I/Os on the north and south sides of the die, via analog I/Os configured as direct digital inputs. The ability to drive spines in the quadrant global networks can have a significant effect on system performance for high-fanout inputs to a design.

Details of the chip (main) global network spine-selection MUX are presented in Figure 2-13. The spine drivers for each spine are located in the middle of the die.

Quadrant spines are driven from a north or south rib. Access to the top and bottom ribs is from the corner CCC or from the I/Os on the north and south sides of the device. For details on using spines in Fusion devices, see the application note *Using Global Resources in Actel Fusion Devices*.

Figure 2-13 • Spine-Selection MUX of Global Tree

Real-Time Counter (part of AB macro)

The RTC is a 40-bit loadable counter and used as the primary timekeeping element (Figure 2-29). The clock source, RTCCLK, must come from the CLKOUT signal of the crystal oscillator. The RTC can be configured to reset itself when a count value reaches the match value set in the Match Register.

The RTC is part of the Analog Block (AB) macro. The RTC is configured by the analog configuration MUX (ACM). Each address contains one byte of data. The circuitry in the RTC is powered by VCC33A, so the RTC can be used in standby mode when the 1.5 V supply is not present.

Figure 2-29 • RTC Block Diagram

Signal Name	Width	Direction	Function
RTCCLK	1	In	Must come from CLKOUT of XTLOSC.
RTCXTLMODE[1:0]	2	Out	Controlled by xt_mode in CTRL_STAT. Signal must connect to the RTC_MODE signal in XTLOSC, as shown in Figure 2-27.
RTCXTLSEL	1	Out	Controlled by xtal_en from CTRL_STAT register. Signal must connect to RTC_MODE signal in XTLOSC in Figure 2-27.
RTCMATCH	1	Out	Match signal for FPGA
			0 – Counter value does not equal the Match Register value.
			1 – Counter value equals the Match Register value.
RTCPSMMATCH	1	Out	Same signal as RTCMATCH. Signal must connect to RTCPSMMATCH in VRPSM, as shown in Figure 2-27.

The 40-bit counter can be preloaded with an initial value as a starting point by the Counter Register. The count from the 40-bit counter can be read through the same set of address space. The count comes from a Read-Hold Register to avoid data changing during read. When the counter value equals the Match Register value, all Match Bits Register values will be 0xFFFFFFFFF. The RTCMATCH and RTCPSMMATCH signals will assert. The 40-bit counter can be configured to automatically reset to 0x000000000 when the counter value equals the Match Register value. The automatic reset does not apply if the Match Register value is 0x000000000. The RTCCLK has a prescaler to divide the clock by 128 before it is used for the 40-bit counter. Below is an example of how to calculate the OFF time.

Read Next Operation

The Read Next operation is a feature by which the next block relative to the block in the Block Buffer is read from the FB Array while performing reads from the Block Buffer. The goal is to minimize wait states during consecutive sequential Read operations.

The Read Next operation is performed in a predetermined manner because it does look-ahead reads. The general look-ahead function is as follows:

- Within a page, the next block fetched will be the next in linear address.
- When reading the last data block of a page, it will fetch the first block of the next page.
- When reading spare pages, it will read the first block of the next sector's spare page.
- Reads of the last sector will wrap around to sector 0.
- · Reads of Auxiliary blocks will read the next linear page's Auxiliary block.

When an address on the ADDR input does not agree with the predetermined look-ahead address, there is a time penalty for this access. The FB will be busy finishing the current look-ahead read before it can start the next read. The worst case is a total of nine BUSY cycles before data is delivered.

The Non-Pipe Mode and Pipe Mode waveforms for Read Next operations are illustrated in Figure 2-40 and Figure 2-41.

Figure 2-40 • Read Next Waveform (Non-Pipe Mode, 32-bit access)

Figure 2-41 • Read Next WaveForm (Pipe Mode, 32-bit access)

The AEMPTY flag is asserted when the difference between the write address and the read address is less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY flag will be asserted when a read causes the difference between the write address and the read address to drop to 200. It will stay asserted until that difference rises above 200. Note that the FIFO can be configured with different read and write widths; in this case, the AFVAL setting is based on the number of write data entries and the AEVAL setting is based on the number of software and 256×18, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL. The number of words must be multiplied by 8 and 16, instead of 9 and 18. The SmartGen tool automatically uses the proper values. To avoid halfwords being written or read, which could happen if different read and write aspect ratios are specified, the FIFO will assert FULL or EMPTY as soon as at least a minimum of one word cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read, the FIFO will remain in the empty state when the first word is written. This occurs even if the FIFO is not completely empty, because in this case, a complete word cannot be read. The same is applicable in the full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The FULL flag will remain asserted because a complete word cannot be written at this point.

Table 2-36 describes each pin in the Analog Block. Each function within the Analog Block will be explained in detail in the following sections.

Table 2-36 • Analog Block Pin Description

Signal Name	Number of Bits	Direction	Function	Location of Details
VAREF	1	Input/Output	Voltage reference for ADC	ADC
ADCGNDREF	1	Input	External ground reference	ADC
MODE[3:0]	4	Input	ADC operating mode	ADC
SYSCLK	1	Input	External system clock	
TVC[7:0]	8	Input	Clock divide control	ADC
STC[7:0]	8	Input	Sample time control	ADC
ADCSTART	1	Input	Start of conversion	ADC
PWRDWN	1	Input	ADC comparator power-down if 1. When asserted, the ADC will stop functioning, and the digital portion of the analog block will continue operating. This may result in invalid status flags from the analog block. Therefore, Microsemi does not recommend asserting the PWRDWN pin.	ADC
ADCRESET	1	Input	ADC resets and disables Analog Quad – active high	ADC
BUSY	1	Output	1 – Running conversion	ADC
CALIBRATE	1	Output	1 – Power-up calibration	ADC
DATAVALID	1	Output	1 – Valid conversion result	ADC
RESULT[11:0]	12	Output	Conversion result	ADC
TMSTBINT	1	Input	Internal temp. monitor strobe	ADC
SAMPLE	1	Output	 1 – An analog signal is actively being sampled (stays high during signal acquisition only) 0 – No analog signal is being sampled 	ADC
VAREFSEL	1	Input	0 = Output internal voltage reference (2.56 V) to VAREF 1 = Input external voltage reference	ADC
	_		from VAREF and ADCGNDREF	
CHNUMBER[4:0]	5	Input	Analog input channel select	Input multiplexer
ACMCLK	1	Input	ACM clock	ACM
ACMWEN	1	Input	ACM write enable – active high	ACM
ACMRESET	1	Input	ACM reset – active low	ACM
ACMWDATA[7:0]	8	Input	ACM write data	ACM
ACMRDATA[7:0]	8	Output	ACM read data	ACM
ACMADDR[7:0]	8	Input	ACM address	ACM
CMSTB0 to CMSTB9	10	Input	Current monitor strobe – 1 per quad, active high	Analog Quad

ADC Terminology

Conversion Time

Conversion time is the interval between the release of the hold state (imposed by the input circuitry of a track-and-hold) and the instant at which the voltage on the sampling capacitor settles to within one LSB of a new input value.

DNL – Differential Non-Linearity

For an ideal ADC, the analog-input levels that trigger any two successive output codes should differ by one LSB (DNL = 0). Any deviation from one LSB in defined as DNL (Figure 2-83).

Figure 2-83 • Differential Non-Linearity (DNL)

ENOB – Effective Number of Bits

ENOB specifies the dynamic performance of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists only of quantization of noise. As the input frequency increases, the overall noise (particularly in the distortion components) also increases, thereby reducing the ENOB and SINAD (also see "Signal-to-Noise and Distortion Ratio (SINAD)".) ENOB for a full-scale, sinusoidal input waveform is computed using EQ 12.

$$ENOB = \frac{SINAD - 1.76}{6.02}$$

EQ 12

FS Error – Full-Scale Error

Full-scale error is the difference between the actual value that triggers that transition to full-scale and the ideal analog full-scale transition value. Full-scale error equals offset error plus gain error.

Analog Quad ACM Description

Table 2-56 maps out the ACM space associated with configuration of the Analog Quads within the Analog Block. Table 2-56 shows the byte assignment within each quad and the function of each bit within each byte. Subsequent tables will explain each bit setting and how it corresponds to a particular configuration. After 3.3 V and 1.5 V are applied to Fusion, Analog Quad configuration registers are loaded with default settings until the initialization and configuration state machine changes them to user-defined settings.

Table	2-56 •	Analog	Quad	Bvte /	Assianme	nt
1 4010	200	Analog	auuu .		Rooiginno	

Byte	Bit	Signal (Bx)	Function	Default Setting
Byte 0	0	B0[0]	Scaling factor control – prescaler	Highest voltage range
(AV)	1	B0[1]		
	2	B0[2]	-	
	3	B0[3]	Analog MUX select	Prescaler
	4	B0[4]	Current monitor switch	Off
	5	B0[5]	Direct analog input switch	Off
	6	B0[6]	Selects V-pad polarity	Positive
	7	B0[7]	Prescaler op amp mode	Power-down
Byte 1	0	B1[0]	Scaling factor control – prescaler	Highest voltage range
(AC)	1	B1[1]		
	2	B1[2]		
	3	B1[3]	Analog MUX select	Prescaler
	4	B1[4]		
	5	B1[5]	Direct analog input switch	Off
	6	B1[6]	Selects C-pad polarity	Positive
	7	B1[7]	Prescaler op amp mode	Power-down
Byte 2	0	B2[0]	Internal chip temperature monitor *	Off
(AG)	1	B2[1]	Spare	-
	2	B2[2]	Current drive control	Lowest current
	3	B2[3]		
	4	B2[4]	Spare	-
	5	B2[5]	Spare	-
	6	B2[6]	Selects G-pad polarity	Positive
	7	B2[7]	Selects low/high drive	Low drive
Byte 3	0	B3[0]	Scaling factor control – prescaler	Highest voltage range
(AT)	1	B3[1]	-	
	2	B3[2]	-	
	3	B3[3]	Analog MUX select	Prescaler
	4	B3[4]		
	5	B3[5]	Direct analog input switch	Off
	6	B3[6]	_	-
	7	B3[7]	Prescaler op amp mode	Power-down

Note: *For the internal temperature monitor to function, Bit 0 of Byte 2 for all 10 Quads must be set.

Table 2-71 • Fusion Standard and Advanced I/O Features

I/O Bank Voltage (typical)	Minibank Voltage (typical)	LVTTL/LVCMOS 3.3 V	LVCMOS 2.5 V	LVCMOS 1.8 V	LVCMOS 1.5 V	3.3 V PCI / PCI-X	GTL + (3.3 V)	GTL + (2.5 V)	GTL (3.3 V)	GTL (2.5 V)	HSTL Class I and II (1.5 V)	SSTL2 Class I and II (2.5 V)	SSTL3 Class I and II (3.3 V)	LVDS (2.5 V ± 5%)	LVPECL (3.3 V)
3.3 V	-														
	0.80 V														
	1.00 V														
	1.50 V														
2.5 V	-														
	0.80 V														
	1.00 V														
	1.25 V														
1.8 V	-														
1.5 V	-														
	0.75 V														

Note: White box: Allowable I/O standard combinations Gray box: Illegal I/O standard combinations

Table 2-78 • Fusion Standard I/O Standards—OUT_DRIVE Settings

		OUT_DRIVE (mA)												
I/O Standards	2	4	6	8	Slew									
LVTTL/LVCMOS 3.3 V	3	3	3	3	High	Low								
LVCMOS 2.5 V	3	3	3	3	High	Low								
LVCMOS 1.8 V	3	3	-	-	High	Low								
LVCMOS 1.5 V	3	_	-	-	High	Low								

Table 2-79 • Fusion Advanced I/O Standards—SLEW and OUT_DRIVE Settings

		OUT_DRIVE (mA)												
I/O Standards	2	4	6	8	12	16	Slew							
LVTTL/LVCMOS 3.3 V	3	3	3	3	3	3	High	Low						
LVCMOS 2.5 V	3	3	3	3	3	-	High	Low						
LVCMOS 1.8 V	3	3	3	3	-	-	High	Low						
LVCMOS 1.5 V	3	3	_	_	_	_	High	Low						

Table 2-	.80 • Fu	sion Pro	I/O Sta	ndards-	-SLEW a	nd OUT	DRIVE Set	tings

I/O Standards	2	4	6	8	12	16	24	Slew		
LVTTL/LVCMOS 3.3 V	3	3	3	3	3	3	3	High	Low	
LVCMOS 2.5 V	3	3	3	3	3	3	3	High	Low	
LVCMOS 2.5 V/5.0 V	3	3	3	3	3	3	3	High	Low	
LVCMOS 1.8 V	3	3	3	3	3	3	-	High	Low	
LVCMOS 1.5 V	3	3	3	3	3	-	_	High	Low	

Table 2-92 • Summary of I/O Timing Characteristics – Software Default SettingsCommercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,Worst-Case VCCI = I/O Standard DependentApplicable to Pro I/Os

I/O Standard	Drive Strength (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (Ohm)	t DOUT	top	t _{DIN}	tpy	t _{PY} S	teour	tzı	тt	tız	tHz	tzıs	tzHS	Units
3.3 V LVTTL/ 3.3 V LVCMOS	12 mA	High	35	-	0.49	2.74	0.03	0.90	1.17	0.32	2.79	2.14	2.45	2.70	4.46	3.81	ns
2.5 V LVCMOS	12 mA	High	35	-	0.49	2.80	0.03	1.13	1.24	0.32	2.85	2.61	2.51	2.61	4.52	4.28	ns
1.8 V LVCMOS	12 mA	High	35	_	0.49	2.83	0.03	1.08	1.42	0.32	2.89	2.31	2.79	3.16	4.56	3.98	ns
1.5 V LVCMOS	12 mA	High	35	_	0.49	3.30	0.03	1.27	1.60	0.32	3.36	2.70	2.96	3.27	5.03	4.37	ns
3.3 V PCI	Per PCI spec	High	10	25 ²	0.49	2.09	0.03	0.78	1.25	0.32	2.13	1.49	2.45	2.70	3.80	3.16	ns
3.3 V PCI-X	Per PCI-X spec	High	10	25 ²	0.49	2.09	0.03	0.77	1.17	0.32	2.13	1.49	2.45	2.70	3.80	3.16	ns
3.3 V GTL	20 mA	High	10	25	0.49	1.55	0.03	2.19	_	0.32	1.52	1.55	0.00	0.00	3.19	3.22	ns
2.5 V GTL	20 mA	High	10	25	0.49	1.59	0.03	1.83	-	0.32	1.61	1.59	0.00	0.00	3.28	3.26	ns
3.3 V GTL+	35 mA	High	10	25	0.49	1.53	0.03	1.19	_	0.32	1.56	1.53	0.00	0.00	3.23	3.20	ns
2.5 V GTL+	33 mA	High	10	25	0.49	1.65	0.03	1.13	_	0.32	1.68	1.57	0.00	0.00	3.35	3.24	ns
HSTL (I)	8 mA	High	20	50	0.49	2.37	0.03	1.59	_	0.32	2.42	2.35	0.00	0.00	4.09	4.02	ns
HSTL (II)	15 mA	High	20	25	0.49	2.26	0.03	1.59	_	0.32	2.30	2.03	0.00	0.00	3.97	3.70	ns
SSTL2 (I)	17 mA	High	30	50	0.49	1.59	0.03	1.00	_	0.32	1.62	1.38	0.00	0.00	3.29	3.05	ns
SSTL2 (II)	21 mA	High	30	25	0.49	1.62	0.03	1.00	-	0.32	1.65	1.32	0.00	0.00	3.32	2.99	ns
SSTL3 (I)	16 mA	High	30	50	0.49	1.72	0.03	0.93	-	0.32	1.75	1.37	0.00	0.00	3.42	3.04	ns
SSTL3 (II)	24 mA	High	30	25	0.49	1.54	0.03	0.93	_	0.32	1.57	1.25	0.00	0.00	3.24	2.92	ns
LVDS	24 mA	High	_	_	0.49	1.57	0.03	1.36	_	_	_	_	_	_	_	_	ns
LVPECL	24 mA	High	-	-	0.49	1.60	0.03	1.22	1	_	_	-	-	_	_	-	ns

Notes:

1. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values.

2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-123 on page 2-197 for connectivity. This resistor is not required during normal operation.

IEEE 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/Os" section on page 2-132 for more details.

Timing Characteristics

Table 2-186 • JTAG 1532

Commercial Temperature Range Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{DISU}	Test Data Input Setup Time		0.57	0.67	ns
t _{DIHD}	Test Data Input Hold Time		1.13	1.33	ns
t _{TMSSU}	Test Mode Select Setup Time	0.50	0.57	0.67	ns
t _{TMDHD}	Test Mode Select Hold Time	1.00	1.13	1.33	ns
t _{TCK2Q}	Clock to Q (data out)	6.00	6.80	8.00	ns
t _{RSTB2Q}	Reset to Q (data out)	20.00	22.67	26.67	ns
F _{TCKMAX}	TCK Maximum Frequency	25.00	22.00	19.00	MHz
t _{TRSTREM}	ResetB Removal Time	0.00	0.00	0.00	ns
t _{TRSTREC}	ResetB Recovery Time	0.20	0.23	0.27	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	TBD	TBD	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Parameter	Description	Conditions	Temp.	Min	Тур	Мах	Unit
ICC ¹	1.5 V quiescent current	Operational standby ⁴ ,	T _J = 25°C		4.8	10	mA
		VCC = 1.575 V	T _J = 85°C		8.2	30	mA
			T _J = 100°C		15	50	mA
		Standby mode ⁵ or Sleep mode ⁶ , VCC = 0 V			0	0	μA
ICC33 ²	3.3 V analog supplies	Operational standby ⁴ ,	T _J = 25°C		9.8	13	mA
	current	VCC33 = 3.63 V	T _J = 85°C		9.8	14	mA
			T _J = 100°C		10.8	15	mA
		Operational standby, only	T _J = 25°C		0.29	2	mA
		Analog Quad and –3.3 V output ON, VCC33 = 3.63 V	T _J = 85°C		0.31	2	mA
			T _J = 100°C		0.45	2	mA
		Standby mode ⁵ , VCC33 = 3.63V	T _J = 25°C		2.9	3.0	mA
			T _J = 85°C		2.9	3.1	mA
			T _J = 100°C		3.5	6	mA
		Sleep mode ⁶ , VCC33 = 3.63 V	T _J = 25°C		19	18	μA
			T _J = 85°C		19	20	μA
			T _J = 100°C		24	25	μA
ICCI ³	I/O quiescent current	Operational standby ⁶ , VCCIx = 3.63 V	T _J = 25°C		266	437	μA
			T _J = 85°C		266	437	μA
			T _J = 100°C		266	437	μΑ
IJTAG	JTAG I/O quiescent current	Operational standby ⁴ ,	T _J = 25°C		80	100	μA
		VJIAG = 3.63 V	T _J = 85°C		80	100	μΑ
			T _J = 100°C		80	100	μA
		Standby mode ⁵ or Sleep mode ⁶ , VJTAG = 0 V			0	0	μA

Table 3-10 • AFS250 Quiescent Supply Cu	urrent Characteristics
---	------------------------

Notes:

1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.

2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, and ICCI2.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTA G = VPUMP = 0 V.

QN180

Note: The die attach paddle center of the package is tied to ground (GND).

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/default.aspx.

FG256					
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function	
K9	VCC	VCC	VCC	VCC	
K10	GND	GND	GND	GND	
K11	NC	GDC2/IO57PPB1V0	GDC2/IO57PPB2V0	GDC2/IO84PPB2V0	
K12	GND	GND	GND	GND	
K13	NC	GDA0/IO54NDB1V0	GDA0/IO54NDB2V0	GDA0/IO81NDB2V0	
K14	NC	GDA2/IO55PPB1V0	GDA2/IO55PPB2V0	GDA2/IO82PPB2V0	
K15	VCCIB1	VCCIB1	VCCIB2	VCCIB2	
K16	NC	GDB1/IO53PPB1V0	GDB1/IO53PPB2V0	GDB1/IO80PPB2V0	
L1	NC	GEC1/IO63PDB3V0	GEC1/IO63PDB4V0	GEC1/IO90PDB4V0	
L2	NC	GEC0/IO63NDB3V0	GEC0/IO63NDB4V0	GEC0/IO90NDB4V0	
L3	NC	GEB1/IO62PDB3V0	GEB1/IO62PDB4V0	GEB1/IO89PDB4V0	
L4	NC	GEB0/IO62NDB3V0	GEB0/IO62NDB4V0	GEB0/IO89NDB4V0	
L5	NC	IO60NDB3V0	IO60NDB4V0	IO87NDB4V0	
L6	NC	GEC2/IO60PDB3V0	GEC2/IO60PDB4V0	GEC2/IO87PDB4V0	
L7	GNDA	GNDA	GNDA	GNDA	
L8	AC0	AC0	AC2	AC2	
L9	AV2	AV2	AV4	AV4	
L10	AC3	AC3	AC5	AC5	
L11	PTEM	PTEM	PTEM	PTEM	
L12	TDO	TDO	TDO	TDO	
L13	VJTAG	VJTAG	VJTAG	VJTAG	
L14	NC	IO57NPB1V0	IO57NPB2V0	IO84NPB2V0	
L15	GDB2/IO41PPB1V0	GDB2/IO56PPB1V0	GDB2/IO56PPB2V0	GDB2/IO83PPB2V0	
L16	NC	IO55NPB1V0	IO55NPB2V0	IO82NPB2V0	
M1	GND	GND	GND	GND	
M2	NC	GEA1/IO61PDB3V0	GEA1/IO61PDB4V0	GEA1/IO88PDB4V0	
M3	NC	GEA0/IO61NDB3V0	GEA0/IO61NDB4V0	GEA0/IO88NDB4V0	
M4	VCCIB3	VCCIB3	VCCIB4	VCCIB4	
M5	NC	IO58NPB3V0	IO58NPB4V0	IO85NPB4V0	
M6	NC	NC	AV0	AV0	
M7	NC	NC	AC1	AC1	
M8	AG1	AG1	AG3	AG3	
M9	AC2	AC2	AC4	AC4	
M10	AC4	AC4	AC6	AC6	
M11	NC	AG5	AG7	AG7	
M12	VPUMP	VPUMP	VPUMP	VPUMP	
M13	VCCIB1	VCCIB1	VCCIB2	VCCIB2	
M14	TMS	TMS	TMS	TMS	

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function M15 TRST TRST TRST TRST TRST M16 GND GND GND GND GND N1 GEB2/IO42PD83V0 GEB2/IO59PDB3V0 GEB2/IO59PDB4V0 GEB2/IO68PDB4V0 N2 GEA2/IO42PD83V0 GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 N3 NC GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG3 AG3 AG3 N8 AG3 AG3 AG5 AG5 N9 AV3 AV3 AV5 AV5 N10 AG4 AG6 AG6 N11 NC NC AC8 AC8 N11 NC NC AC8 AC8	FG256					
M15 TRST TRST TRST TRST M16 GND GND GND GND GND N1 GEB2/IO42PDB3V0 GEB2/IO59PDB3V0 GEB2/IO59PDB4V0 GEB2/IO58PDB4V0 GEB2/IO58PDB4V0 N2 GEA2/IO42NDB3V0 IO59NDB3V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 N3 NC GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 GEA2/IO58PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP VCC15A N6 NC NC AG0 AG0 AG3 N6 NC NC AG3 AC3 AC3 N8 AG3 AG3 AG5 AV5 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA N13 VCC33A VCC33A VCC33A VCC3VM N14 VCCNVM VCCNVM VCC	Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function	
M16 GND GND GND GND N1 GEB2/IO42PDB3V0 GEB2/IO59PDB3V0 GEB2/IO59PDB4V0 GEB2/IO80PDB4V0 N2 GEA2/IO42NDB3V0 IO59NDB3V0 GEA2/IO58PPB4V0 GEA2/IO86PDB4V0 N3 NC GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO85PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG0 AG0 N7 AC1 AC1 AC3 AC3 N8 AG3 AG3 AV5 AV5 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA GNDA N13 VCC33A VCC33A VCC33A VCC33A N14 VCCNVM VCCNVM VCCNVM VCCNVM N15 TCK TCK TCK TCK <td>M15</td> <td>TRST</td> <td>TRST</td> <td>TRST</td> <td>TRST</td>	M15	TRST	TRST	TRST	TRST	
N1 GEB2/IO42PDB3V0 GEB2/IO59PDB3V0 GEB2/IO59PDB4V0 GEB2/IO68PDB4V0 N2 GEA2/IO42NDB3V0 IO59NDB3V0 IO59NDB4V0 IO68NDB4V0 N3 NC GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO68PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG0 AG0 N7 AC1 AC1 AC3 AC3 N8 AG3 AG3 AG5 AG6 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA N13 VCC33A VCC33A VCC33A VCC33A N14 VCCNVM VCCNVM VCCNVM VCCNVM N15 TCK TCK TCK TCK N16 TDI TDI TDI P1	M16	GND	GND	GND	GND	
N2 GEA2/IO42NDB3V0 IO59NDB3V0 IO59NDB4V0 IO86NDB4V0 N3 NC GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO68PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG0 AG0 N7 AC1 AC1 AC3 AC3 N8 AG3 AG3 AG5 AG5 N9 AV3 AV3 AV5 AV5 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA GNDA N13 VCC33A VCC33A	N1	GEB2/IO42PDB3V0	GEB2/IO59PDB3V0	GEB2/IO59PDB4V0	GEB2/IO86PDB4V0	
N3 NC GEA2/IO58PPB3V0 GEA2/IO58PPB4V0 GEA2/IO85PPB4V0 N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC33PMP N6 NC NC AG0 AG0 N7 AC1 AC1 AC3 AC3 N8 AG3 AG3 AG5 AG5 N9 AV3 AV3 AV5 AV5 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA N13 VCC33A VCC33A VCC33A VCC33A N14 VCCNVM VCCNVM VCCNVM VCCNVM N15 TCK TCK TCK TCK N16 TDI TDI TDI TDI P1 VCCNVM VCCNVM VCCNVM VCCNVM P2 GNDNVM GNDA	N2	GEA2/IO42NDB3V0	IO59NDB3V0	IO59NDB4V0	IO86NDB4V0	
N4 VCC33PMP VCC33PMP VCC33PMP VCC33PMP N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG0 AG0 N7 AC1 AC1 AC3 AC3 N8 AG3 AG3 AG5 AG5 N9 AV3 AV3 AV5 AV5 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N12 GNDA GNDA GNDA GNDA GNDA N13 VCC33A VCC33A VCC33A VCC33A N14 VCCNVM VCCNVM VCCNVM VCCNVM N15 TCK TCK TCK TCK N16 TDI TDI TDI TDI P1 VCCNVM VCCNVM VCCNVM P2 GNDNVM GNDA GNDA GNDA P4 NC NC AC0 AC0 <	N3	NC	GEA2/IO58PPB3V0	GEA2/IO58PPB4V0	GEA2/IO85PPB4V0	
N5 VCC15A VCC15A VCC15A VCC15A N6 NC NC AG0 AG0 N7 AC1 AC1 AC3 AC3 N8 AG3 AG3 AG5 AG5 N9 AV3 AV3 AV5 AV5 N10 AG4 AG4 AG6 AG6 N11 NC NC AC8 AC8 N13 VCC33A VCC33A VCC33A VCC33A N14 VCCNVM VCCNVM VCCNVM VCCNVM N15 TCK TCK TCK TCK N16 TDI TDI TDI TDI P1 VC	N4	VCC33PMP	VCC33PMP	VCC33PMP	VCC33PMP	
N6NCNCAG0AG0N7AC1AC1AC3AC3N8AG3AG3AG5AG5N9AV3AV3AV5AV5N10AG4AG4AG6AG6N11NCNCAC8AC8N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDAGNDAGNDAP4NCNCAC0P5NCNCAG1P6NCNCAG1P7AG0AG2AG2AG2AG2AG2AG2AG2P1NCNCAV1AV1P1NCP1NCNCAG0AG0AG2AG2AG2AG2AG3AG2AG4AG4AG2AG2AG2AG2AG2AG2AG2AG2AG3AG2AG2AG2AG2AG2AG3AG3AG4AG4AG4AG2AG2AG2AG2AG3AG3AG3AG3AG3AG3AG4AG4AG4 <td< td=""><td>N5</td><td>VCC15A</td><td>VCC15A</td><td>VCC15A</td><td>VCC15A</td></td<>	N5	VCC15A	VCC15A	VCC15A	VCC15A	
N7AC1AC1AC3AC3N8AG3AG3AG5AG5N9AV3AV3AV5AV5N10AG4AG4AG6AG6N11NCNCAC8AC8N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDAGNDAGNDAP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAC1P6NCNCAC2AG0AG2AG2AG2AG2AG2AG0AG0AG2P10NCAC5AC7AC7P11NCNCAG8AG8P12NCNCAG8AG8	N6	NC	NC	AG0	AG0	
N8AG3AG3AG5AG5N9AV3AV3AV3AV5AV5N10AG4AG4AG6AG6N11NCNCAC8AC8N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDNVMGNDAGNDAP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAC1P6NCNCAG2P8AG2AG2AG4P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAV8P12NCNCAC8AG8AG8	N7	AC1	AC1	AC3	AC3	
N9AV3AV3AV5AV5N10AG4AG4AG6AG6N11NCNCAC8AG8N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDNVMGNDAGNDAP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAC1P6NCNCAG2P8AG2AG2AG2P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAC8P12NCNCAC7P11NCNCAC8P12NCNCAG8AG8	N8	AG3	AG3	AG5	AG5	
N10AG4AG4AG6AG6N11NCNCAC8AC8N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDNVMGNDAGNDAP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAG1P6NCNCAG2P8AG2AG2AG2P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAV8P12NCNCAC8AG8AG8AG8	N9	AV3	AV3	AV5	AV5	
N11NCNCAC8AC8N12GNDAGNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAC1P7AG0AG2AG2P8AG2AG2AG4P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAV8P12NCNCAC8	N10	AG4	AG4	AG6	AG6	
N12GNDAGNDAGNDAGNDAN13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAG1P6NCNCAG2P8AG2AG2AG4P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAV8P12NCNCAC8AG8AG8	N11	NC	NC	AC8	AC8	
N13VCC33AVCC33AVCC33AVCC33AN14VCCNVMVCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAP4NCNCAC0P5NCNCAG1P6NCNCAG2P8AG2AG2P9GNDAGNDAGNDAP10NCAC5AC7P11NCNCAV8P12NCNCAG8AG8AG8	N12	GNDA	GNDA	GNDA	GNDA	
N14VCCNVMVCCNVMVCCNVMN15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAV1AV1P7AG0AG2AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCNCAG8AV8P12NCNCAC8AG8	N13	VCC33A	VCC33A	VCC33A	VCC33A	
N15TCKTCKTCKTCKN16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAV1AV1P7AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAC8AV8P12NCNCAG8AG8	N14	VCCNVM	VCCNVM	VCCNVM	VCCNVM	
N16TDITDITDITDIP1VCCNVMVCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAG2AG2P8AG2AG2AG2AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAC8AG8P12NCNCAG8AG8	N15	TCK	TCK	TCK	TCK	
P1VCCNVMVCCNVMVCCNVMVCCNVMP2GNDNVMGNDNVMGNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAV1AV1P7AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAG8AG8	N16	TDI	TDI	TDI	TDI	
P2GNDNVMGNDNVMGNDNVMGNDNVMP3GNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAV1AV1P7AG0AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAC8AV8P12NCNCAG8AG8	P1	VCCNVM	VCCNVM	VCCNVM	VCCNVM	
P3GNDAGNDAGNDAGNDAP4NCNCAC0AC0P5NCNCAG1AG1P6NCNCAV1AV1P7AG0AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAC8AG8	P2	GNDNVM	GNDNVM	GNDNVM	GNDNVM	
P4NCNCAC0AC0P5NCNCNCAG1AG1P6NCNCAV1AV1P7AG0AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAG8AG8	P3	GNDA	GNDA	GNDA	GNDA	
P5NCNCAG1AG1P6NCNCAV1AV1P7AG0AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAG8AG8	P4	NC	NC	AC0	AC0	
P6NCNCAV1AV1P7AG0AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAG8AG8	P5	NC	NC	AG1	AG1	
P7AG0AG0AG2AG2P8AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAG8AG8	P6	NC	NC	AV1	AV1	
P8AG2AG2AG2AG4AG4P9GNDAGNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAG8AG8	P7	AG0	AG0	AG2	AG2	
P9GNDAGNDAGNDAGNDAP10NCAC5AC7AC7P11NCNCAV8AV8P12NCNCAG8AG8	P8	AG2	AG2	AG4	AG4	
P10 NC AC5 AC7 AC7 P11 NC NC AV8 AV8 P12 NC NC AG8 AG8	P9	GNDA	GNDA	GNDA	GNDA	
P11 NC NC AV8 AV8 P12 NC NC AG8 AG8	P10	NC	AC5	AC7	AC7	
P12 NC NC AG8 AG8	P11	NC	NC	AV8	AV8	
	P12	NC	NC	AG8	AG8	
P13 NC NC AV9 AV9	P13	NC	NC	AV9	AV9	
P14 ADCGNDREF ADCGNDREF ADCGNDREF ADCGNDREF	P14	ADCGNDREF	ADCGNDREF	ADCGNDREF	ADCGNDREF	
P15 PTBASE PTBASE PTBASE PTBASE PTBASE	P15	PTBASE	PTBASE	PTBASE	PTBASE	
P16 GNDNVM GNDNVM GNDNVM GNDNVM	P16	GNDNVM	GNDNVM	GNDNVM	GNDNVM	
R1 VCCIB3 VCCIB3 VCCIB4 VCCIB4	R1	VCCIB3	VCCIB3	VCCIB4	VCCIB4	
R2 PCAP PCAP PCAP PCAP PCAP	R2	PCAP	PCAP	PCAP	PCAP	
R3 NC NC AT1 AT1	R3	NC	NC	AT1	AT1	
R4 NC NC ATO ATO	R4	NC	NC	AT0	AT0	

Package Pin Assignments

FG484			FG484			
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function	
V3	VCCIB4	VCCIB4	W16	GNDA	GNDA	
V4	GEA1/IO61PDB4V0	GEA1/IO88PDB4V0	W17	AV9	AV9	
V5	GEA0/IO61NDB4V0	GEA0/IO88NDB4V0	W18	VCCIB2	VCCIB2	
V6	GND	GND	W19	NC	IO68PPB2V0	
V7	VCC33PMP	VCC33PMP	W20	ТСК	ТСК	
V8	NC	NC	W21	GND	GND	
V9	VCC33A	VCC33A	W22	NC	IO76PPB2V0	
V10	AG4	AG4	Y1	GEC2/IO60PDB4V0	GEC2/IO87PDB4V0	
V11	AT4	AT4	Y2	IO60NDB4V0	IO87NDB4V0	
V12	ATRTN2	ATRTN2	Y3	GEA2/IO58PDB4V0	GEA2/IO85PDB4V0	
V13	AT5	AT5	Y4	IO58NDB4V0	IO85NDB4V0	
V14	VCC33A	VCC33A	Y5	NCAP	NCAP	
V15	NC	NC	Y6	AC0	AC0	
V16	VCC33A	VCC33A	Y7	VCC33A	VCC33A	
V17	GND	GND	Y8	AC1	AC1	
V18	TMS	TMS	Y9	AC2	AC2	
V19	VJTAG	VJTAG	Y10	VCC33A	VCC33A	
V20	VCCIB2	VCCIB2	Y11	AC3	AC3	
V21	TRST	TRST	Y12	AC6	AC6	
V22	TDO	TDO	Y13	VCC33A	VCC33A	
W1	NC	IO93PDB4V0	Y14	AC7	AC7	
W2	GND	GND	Y15	AC8	AC8	
W3	NC	IO93NDB4V0	Y16	VCC33A	VCC33A	
W4	GEB2/IO59PDB4V0	GEB2/IO86PDB4V0	Y17	AC9	AC9	
W5	IO59NDB4V0	IO86NDB4V0	Y18	ADCGNDREF	ADCGNDREF	
W6	AV0	AV0	Y19	PTBASE	PTBASE	
W7	GNDA	GNDA	Y20	GNDNVM	GNDNVM	
W8	AV1	AV1	Y21	VCCNVM	VCCNVM	
W9	AV2	AV2	Y22	VPUMP	VPUMP	
W10	GNDA	GNDA				
W11	AV3	AV3				
W12	AV6	AV6				
W13	GNDA	GNDA				
W14	AV7	AV7				
W15	AV8	AV8				

Datasheet Information

Revision	Changes				
v2.0, Revision 1 (July 2009)	The MicroBlade and Fusion datasheets have been combined. Pigeon Point information is new.	N/A			
	CoreMP7 support was removed since it is no longer offered.				
	–F was removed from the datasheet since it is no longer offered.				
	The operating temperature was changed from ambient to junction to better reflect actual conditions of operations.				
	Commercial: 0°C to 85°C				
	Industrial: –40°C to 100°C				
	The version number category was changed from Preliminary to Production, which means the datasheet contains information based on final characterization. The version number changed from Preliminary v1.7 to v2.0.				
	The "Integrated Analog Blocks and Analog I/Os" section was updated to include a reference to the "Analog System Characteristics" section in the <i>Device Architecture</i> chapter of the datasheet, which includes Table 2-46 • Analog Channel Specifications and specific voltage data.	1-4			
	The phrase "Commercial-Case Conditions" in timing table titles was changed to "Commercial Temperature Range Conditions."	N/A			
	The "Crystal Oscillator" section was updated significantly. Please review carefully.	2-20			
	The "Real-Time Counter (part of AB macro)" section was updated significantly. Please review carefully.	2-33			
	There was a typo in Table 2-19 • Flash Memory Block Pin Names for the ERASEPAGE description; it was the same as DISCARDPAGE. As as a result, the ERASEPAGE description was updated.	2-40			
	The $t_{\mbox{FMAXCLKNVM}}$ parameter was updated in Table 2-25 \bullet Flash Memory Block Timing.	2-52			
	Table 2-31 • RAM4K9 and Table 2-32 • RAM512X18 were updated.	2-66			
	In Table 2-36 • Analog Block Pin Description, the Function description for PWRDWN was changed from "Comparator power-down if 1"	2-78			
	to "ADC comparator power-down if 1. When asserted, the ADC will stop functioning, and the digital portion of the analog block will continue operating. This may result in invalid status flags from the analog block. Therefore, Microsemi does not recommend asserting the PWRDWN pin."				
	Figure 2-75 • Gate Driver Example was updated.	2-91			
	The "ADC Operation" section was updated. Please review carefully.	2-104			
	Figure 2-92 • Intra-Conversion Timing Diagram and Figure 2-93 • Injected Conversion Timing Diagram are new.	2-113			
	The "Typical Performance Characteristics" section is new.	2-115			
	Table 2-49 • Analog Channel Specifications was significantly updated.	2-117			
	Table 2-50 • ADC Characteristics in Direct Input Mode was significantly updated.	2-120			
	In Table 2-52 • Calibrated Analog Channel Accuracy 1,2,3, note 2 was updated.	2-123			
	In Table 2-53 • Analog Channel Accuracy: Monitoring Standard Positive Voltages, note 1 was updated.	2-124			
	In Table 2-54 • ACM Address Decode Table for Analog Quad, bit 89 was removed.	2-126			

Fusion Family of Mixed Signal FPGAs

Revision	Changes	Page	
Advance v0.6 (continued)	The "Analog-to-Digital Converter Block" section was updated with the following statement: "All results are MSB justified in the ADC."		
	The information about the ADCSTART signal was updated in the "ADC Description" section.		
	Table 2-46 · Analog Channel Specifications was updated.		
	Table 2-47 · ADC Characteristics in Direct Input Mode was updated.		
	Table 2-51 • ACM Address Decode Table for Analog Quad was updated.	2-127	
	In Table 2-53 • Analog Quad ACM Byte Assignment, the Function and Default Setting for Bit 6 in Byte 3 was updated.	2-130	
	The "Introduction" section was updated to include information about digital inputs, outputs, and bibufs.	2-133	
	In Table 2-69 • Fusion Pro I/O Features, the programmable delay descriptions were updated for the following features:	2-137	
	Single-ended receiver		
	Voltage-referenced differential receiver		
	The "liker I/O Naming Convention" section was undeted to include "V/" and "r"	2 150	
	descriptions	2-159	
	The "VCC33PMP Analog Power Supply (3.3 V)" section was updated to include information about avoiding high current draw.	2-224	
	The "VCCNVM Flash Memory Block Power Supply (1.5 V)" section was updated to include information about avoiding high current draw.	2-224	
	The "VMVx I/O Supply Voltage (quiet)" section was updated to include this statement: VMV and VCCI must be connected to the same power supply and V_{CCI} pins within a given I/O bank.	2-185	
	The "PUB Push Button" section was updated to include information about leaving the pin floating if it is not used.	2-228	
	The "PTBASE Pass Transistor Base" section was updated to include information about leaving the pin floating if it is not used.	2-228	
	The "PTEM Pass Transistor Emitter" section was updated to include information about leaving the pin floating if it is not used.	2-228	
	The heading was incorrect in the "208-Pin PQFP" table. It should be AFS250 and not AFS090.	3-8	