E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A9
Number of Cores/Bus Width	4 Core, 32-Bit
Speed	1.2GHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, DDR3L, DDR3
Graphics Acceleration	Yes
Display & Interface Controllers	HDMI, Keypad, LCD, LVDS, MIPI/DSI, Parallel
Ethernet	10/100/1000Mbps (1)
SATA	SATA 3Gbps (1)
USB	USB 2.0 + PHY (3), USB 2.0 OTG + PHY (1)
Voltage - I/O	1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-20°C ~ 105°C (TJ)
Security Features	ARM TZ, A-HAB, CAAM, CSU, SJC, SNVS
Package / Case	624-FBGA, FCBGA
Supplier Device Package	624-FCBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6qp5evt2ab

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

```
Modules List
```

3 Modules List

The i.MX 6DualPlus/6QuadPlus processors contain a variety of digital and analog modules. Table 2 describes these modules in alphabetical order.

Block Mnemonic	Block Name	Subsystem	Brief Description
512 x 8 Fuse Box	Electrical Fuse Array	Security	Electrical Fuse Array. Enables to setup Boot Modes, Security Levels, Security Keys, and many other system parameters. The i.MX 6DualPlus/6QuadPlus processors consist of 512x8-bit fuse box accessible through OCOTP_CTRL interface.
APBH-DMA	NAND Flash and BCH ECC DMA Controller	System Control Peripherals	DMA controller used for GPMI2 operation.
ARM	ARM Platform	ARM	The ARM Cortex-A9 platform consists of 4x (four) Cortex-A9 cores version r2p10 and associated sub-blocks, including Level 2 Cache Controller, SCU (Snoop Control Unit), GIC (General Interrupt Controller), private timers, Watchdog, and CoreSight debug modules.
ASRC	Asynchronous Sample Rate Converter	Multimedia Peripherals	The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal associated to an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample rate conversion of up to 10 channels of about -120dB THD+N. The sample rate conversion of each channel is associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to three sampling rate pairs.
AUDMUX	Digital Audio Mux	Multimedia Peripherals	The AUDMUX is a programmable interconnect for voice, audio, and synchronous data routing between host serial interfaces (for example, SSI1, SSI2, and SSI3) and peripheral serial interfaces (audio and voice codecs). The AUDMUX has seven ports with identical functionality and programming models. A desired connectivity is achieved by configuring two or more AUDMUX ports.
BCH40	Binary-BCH ECC Processor	System Control Peripherals	The BCH40 module provides up to 40-bit ECC error correction for NAND Flash controller (GPMI).
CAAM	Cryptographic Accelerator and Assurance Module	Security	CAAM is a cryptographic accelerator and assurance module. CAAM implements several encryption and hashing functions, a run-time integrity checker, and a Pseudo Random Number Generator (PRNG). The pseudo random number generator is certified by Cryptographic Algorithm Validation Program (CAVP) of National Institute of Standards and Technology (NIST). Its DRBG validation number is 94 and its SHS validation number is 1455. CAAM also implements a Secure Memory mechanism. In i.MX 6DualPlus/6QuadPlus processors, the security memory provided is 16 KB.
CCM GPC SRC	Clock Control Module, General Power Controller, System Reset Controller	Clocks, Resets, and Power Control	These modules are responsible for clock and reset distribution in the system, and also for the system power management.

Table 2. i.MX 6DualPlus/6QuadPlus Modules List

Table 2. i.MX 6DualPlus/6QuadPlus Mode	ules List (continued)
--	-----------------------

Block Mnemonic	Block Name	Subsystem	Brief Description
GPU3Dv6	Graphics Processing Unit-3D, ver. 6	Multimedia Peripherals	The GPU2Dv6 provides hardware acceleration for 3D graphics algorithms with sufficient processor power to run desktop quality interactive graphics applications on displays up to HD1080 resolution. The GPU3D provides OpenGL ES 3.0, including extensions, OpenGL ES 2.0, OpenGL ES 1.1, and OpenVG 1.1
GPUVGv2	Vector Graphics Processing Unit, ver. 2	Multimedia Peripherals	OpenVG graphics accelerator provides OpenVG 1.1 support as well as other accelerations, including Real-time hardware curve tesselation of lines, quadratic and cubic Bezier curves, 16x Line Anti-aliasing, and various Vector Drawing functions.
HDMI Tx	HDMI Tx interface	Multimedia Peripherals	The HDMI module provides HDMI standard interface port to an HDMI 1.4 compliant display.
HSI	MIPI HSI interface	Connectivity Peripherals	The MIPI HSI provides a standard MIPI interface to the applications processor.
l ² C-1 l ² C-2 l ² C-3	I ² C Interface	Connectivity Peripherals	I ² C provide serial interface for external devices. Data rates of up to 400 kbps are supported.
IOMUXC	IOMUX Control	System Control Peripherals	This module enables flexible IO multiplexing. Each IO pad has default and several alternate functions. The alternate functions are software configurable.
IPUv3H-1 IPUv3H-2	Image Processing Unit, ver. 3H	Multimedia Peripherals	 IPUv3H enables connectivity to displays and video sources, relevant processing and synchronization and control capabilities, allowing autonomous operation. The IPUv3H supports concurrent output to two display ports and concurrent input from two camera ports, through the following interfaces: Parallel Interfaces for both display and camera Single/dual channel LVDS display interface HDMI transmitter MIPI/DSI transmitter MIPI/CSI-2 receiver The processing includes: Image conversions: resizing, rotation, inversion, and color space conversion A high-quality de-interlacing filter Video/graphics combining Image enhancement: color adjustment and gamut mapping, gamma correction, and contrast enhancement Support for display backlight reduction
КРР	Key Pad Port	Connectivity Peripherals	 KPP Supports 8 x 8 external key pad matrix. KPP features are: Open drain design Glitch suppression circuit design Multiple keys detection Standby key press detection

Parameter Description	Symbol	Min	Тур	Max ¹	Unit	Comment ²
GPIO supplies ¹⁰	NVCC_CSI, NVCC_EIM0, NVCC_EIM1, NVCC_EIM2, NVCC_ENET, NVCC_GPI0, NVCC_GPI0, NVCC_LCD, NVCC_LCD, NVCC_SD1, NVCC_SD2, NVCC_SD3, NVCC_JTAG	1.65	1.8, 2.8, 3.3	3.6	V	Isolation between the NVCC_EIMx and NVCC_SDx different supplies allow them to operate at different voltages within the specified range. Example: NVCC_EIM1 can operate at 1.8 V while NVCC_EIM2 operates at 3.3 V.
	NVCC_LVDS_2P5 ¹¹ NVCC_MIPI	2.25	2.5	2.75	V	_
HDMI supply voltages	HDMI_VP	0.99	1.1	1.3	V	—
	HDMI_VPH	2.25	2.5	2.75	V	-
PCIe supply voltages	PCIE_VP	1.023	1.1	1.3	V	—
	PCIE_VPH	2.325	2.5	2.75	V	—
	PCIE_VPTX	1.023	1.1	1.3	V	—
SATA Supply voltages	SATA_VP	0.99	1.1	1.3	V	—
	SATA_VPH	2.25	2.5	2.75	V	-
Junction temperature	TJ	-20	95	105	°C	See <i>i.MX</i> 6Dual/6Quad Product Lifetime Usage Estimates Application Note, AN4724, for information on product lifetime (power-on years) for this processor.

Table 6. Operating Ranges (continued)

Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set point = (Vmin + the supply tolerance). This results in an optimized power/speed ratio.

² See the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG) for bypass capacitors requirements for each of the *_CAP supply outputs.

- ³ For Quad core system, connect to VDD_ARM_IN. For Dual core system, may be shorted to GND together with VDD_ARM23_CAP to reduce leakage.
- ⁴ VDD_ARM_IN and VDD_SOC_IN must be at least 125 mV higher than the LDO Output Set Point for correct voltage regulation.

⁵ VDD_ARM_CAP must not exceed VDD_CACHE_CAP by more than +50 mV. VDD_CACHE_CAP must not exceed VDD_ARM_CAP by more than 200 mV.

- ⁶ VDD_SOC_CAP and VDD_PU_CAP must be equal.
- ⁷ In LDO enabled mode, the internal LDO output set points must be configured such that the:

VDD_ARM LDO output set point does not exceed the VDD_SOC LDO output set point by more than 100 mV.

VDD_SOC LDO output set point is equal to the VDD_PU LDO output set point.

The VDD_ARM LDO output set point can be lower than the VDD_SOC LDO output set point, however, the minimum output set points shown in this table must be maintained.

- ⁸ In LDO bypassed mode, the external power supply must ensure that VDD_ARM_IN does not exceed VDD_SOC_IN by more than 100 mV. The VDD_ARM_IN supply voltage can be lower than the VDD_SOC_IN supply voltage. The minimum voltages shown in this table must be maintained.
- ⁹ To set VDD_SNVS_IN voltage with respect to Charging Currents and RTC, see the *Hardware Development Guide for i.MX* 6Dual, 6Quad, 6Solo, 6DualLite Families of Applications Processors (IMX6DQ6SDLHDG).

i.MX 6DualPlus/6QuadPlus Applications Processors Consumer Products, Rev. 2, 09/2017

1

Power Supply	Conditions	Maximum C	Unit				
	Conditions	Power Virus	CoreMark	onin			
NVCC_LVDS2P5		NVCC_LVDS2P5 is connected to VDD_HIGH_CAP at the board level. VDD_HIGH_CAP is capable of handing the current required by NVCC_LVDS2P5.					
MISC							
DRAM_VREF	—	1		mA			

¹ i.MX 6DualPlus numbers assume VDD_ARM23_IN and VDD_ARM23_CAP are connected to ground.

² i.MX 6DualPlus numbers assume VDD_ARM23_IN and VDD_ARM23_CAP are connected to ground.

³ The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS_2P5, NVCC_MIPI, or HDMI, PCIe, and SATA VPH supplies).

⁴ Under normal operating conditions, the maximum current on VDD_SNVS_IN is shown Table 8. The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA if the supply is capable of sourcing that current. If less than 1 mA is available, the VDD_SNVS_CAP charge time will increase.

⁵ This is the maximum current per active USB physical interface.

⁶ The DRAM power consumption is dependent on several factors such as external signal termination. DRAM power calculators are typically available from memory vendors which take into account factors such as signal termination. See the *i.MX 6Dual/6Quad Power Consumption Measurement Application Note* (AN4509) for examples of DRAM power consumption during specific use case scenarios.

⁷ General equation for estimated, maximum power consumption of an IO power supply:

 $Imax = N \times C \times V \times (0.5 \times F)$

Where:

N-Number of IO pins supplied by the power line

C-Equivalent external capacitive load

```
V—IO voltage
```

(0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)

In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.

4.1.6 Low Power Mode Supply Currents

Table 9 shows the current core consumption (not including I/O) of the i.MX 6DualPlus/6QuadPlus processors in selected low power modes.

Mode	Test Conditions	Supply	Typical ¹	Unit
WAIT	 ARM, SoC, and PU LDOs are set to 1.225 V HIGH LDO set to 2.5 V Clocks are gated 	VDD_ARM_IN (1.4 V)	6	mA
HIGH Clock		VDD_SOC_IN (1.4 V)	23	mA
	 DDR is in self refresh PLLs are active in bypass (24 MHz) 	VDD_HIGH_IN (3.0 V)	3.7	mA
•	 PLLs are active in bypass (24 MHz) Supply voltages remain ON 	Total	52	mW

Table 9. Stop Mode Current and Power Consumption

Figure 3. Circuit for Parameters Voh and Vol for I/O Cells

4.6.1 XTALI and RTC_XTALI (Clock Inputs) DC Parameters

Table 21 shows the DC parameters for the clock inputs.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
XTALI high-level DC input voltage	Vih	—	0.8 x NVCC_PLL_OUT	—	NVCC_PLL_OUT	V
XTALI low-level DC input voltage	Vil	—	0	—	0.2	V
RTC_XTALI high-level DC input voltage	Vih	_	0.8	_	1.1 ^(See note 1)	V
RTC_XTALI low-level DC input voltage	Vil	—	0	-	0.2	V
Input capacitance	C _{IN}	Simulated data	—	5	—	pF
XTALI input leakage current at startup	IXTALI_STARTUP	Power-on startup for 0.15 msec with a driven 32 KHz RTC clock @ 1.1 V. ²	_	—	600	μA
DC input current	I _{XTALI_DC}	—	—	—	2.5	μA

¹ This voltage specification must not be exceeded and, as such, is an absolute maximum specification.

² This current draw is present even if an external clock source directly drives XTALI.

NOTE

The Vil and Vih specifications only apply when an external clock source is used. If a crystal is used, Vil and Vih do not apply.

4.6.2 General Purpose I/O (GPIO) DC Parameters

Table 22 shows DC parameters for GPIO pads. The parameters in Table 22 are guaranteed per the operating ranges in Table 6, unless otherwise noted.

Parameters	Symbol	Test Conditions	Min	Мах	Unit
DC input Logic High	Vih(dc)	_	Vref+0.1	OVDD	V
DC input Logic Low	Vil(dc)	_	OVSS	Vref-0.1	V
Differential input Logic High	Vih(diff)	_	0.2	See Note ³	V
Differential input Logic Low	Vil(diff)	_	See Note ³	-0.2	V
Termination Voltage	Vtt	Vtt tracking OVDD/2	0.49 imes OVDD	$0.51 \times OVDD$	V
Input current (no pull-up/down)	lin	Vin = 0 or OVDD	-2.9	2.9	μA
Pull-up/pull-down impedance mismatch	MMpupd	_	-10	10	%
240 Ω unit calibration resolution	Rres	_	_	10	Ω
Keeper circuit resistance	Rkeep	_	105	175	kΩ

Table 25. DDR3/DDR3L I/O DC Electrical Parameters (continued)

 $^1\,$ OVDD – I/O power supply (1.425 V–1.575 V for DDR3 and 1.283 V–1.45 V for DDR3L).

² Vref – DDR3/DDR3L external reference voltage.

³ The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as the limitations for overshoot and undershoot (see Table 31).

4.6.5 LVDS I/O DC Parameters

The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A, *"Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits"* for details.

Table 26 shows the Low Voltage Differential Signalling (LVDS) I/O DC parameters.

Table 26. LVDS I/O DC Parameters

Parameter	Symbol	Test Conditions	Min	Мах	Unit
Output Differential Voltage	V _{OD}	Rload=100 Ω between padP and padN	250	450	mV
Output High Voltage	V _{OH}	I _{OH} = 0 mA	1.25	1.6	
Output Low Voltage	V _{OL}	I _{OL} = 0 mA	0.9	1.25	V
Offset Voltage	V _{OS}	_	1.125	1.375	

4.6.6 MLB 6-Pin I/O DC Parameters

The MLB interface complies with Analog Interface of 6-pin differential Media Local Bus specification version 4.1. See 6-pin differential MLB specification v4.1, "MediaLB 6-pin interface Electrical Characteristics" for details.

NOTE

The MLB 6-pin interface does not support speed mode 8192fs.

Table 27 shows the Media Local Bus (MLB) I/O DC parameters.

Electrical Characteristics

Figure 9. Impedance Matching Load for Measurement

4.9 System Modules Timing

This section contains the timing and electrical parameters for the modules in each i.MX 6DualPlus/6QuadPlus processor.

4.9.1 Reset Timing Parameters

Figure 10 shows the reset timing and Table 38 lists the timing parameters.

Figure 10. Reset Timing Diagram

Table	38.	Reset	Timing	Parameters
-------	-----	-------	--------	------------

ID	Parameter	Min	Max	Unit
CC1	Duration of SRC_POR_B to be qualified as valid	1		XTALOSC_RTC_ XTALI cycle

4.9.2 WDOG Reset Timing Parameters

Figure 11 shows the WDOG reset timing and Table 39 lists the timing parameters.

WDOG1_B (Output)

Figure 11. WDOG1_B Timing Diagram

Table 39. WDOG1_B Timing Parameters

ID	Parameter	Min	Max	Unit
CC3	Duration of WDOG1_B Assertion	1		XTALOSC_RTC_ XTALI cycle

NOTE

XTALOSC_RTC_XTALI is approximately 32 kHz. XTALOSC_RTC_XTALI cycle is one period or approximately 30 μs.

NOTE

WDOG1_B output signals (for each one of the Watchdog modules) do not have dedicated pins, but are muxed out through the IOMUX. See the IOMUX manual for detailed information.

Figure 16. Muxed Address/Data (A/D) Mode, Synchronous Write Access, WSC=6,ADVA=0, ADVN=1, and ADH=1

NOTE

In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the data bus.

Figure 22. DTACK Mode Read Access (DAP=0)

Figure 32. NAND_DQS/NAND_DQ Read Valid Window

ID	Parameter		Timin T = GPMI Clo	g ck Cycle	Unit
			Min	Мах	
NF18	NAND_CEx_B access time	tCE	CE_DELAY × T -	0.79 [see ²]	ns
NF19	NAND_CEx_B hold time	tCH	0.5 × tCK - 0.6	63 [see ²]	ns
NF20	Command/address NAND_DATAxx setup time	tCAS	$0.5 imes tCK \cdot$	0.05	ns
NF21	Command/address NAND_DATAxx hold time	tCAH	0.5 × tCK - 1.23		ns
NF22	clock period	tCK	_		ns
NF23	preamble delay	tPRE	PRE_DELAY × T - 0.29 [see ²]		ns
NF24	postamble delay	tPOST	POST_DELAY × T - 0.78 [see ²]		ns
NF25	NAND_CLE and NAND_ALE setup time	tCALS	$0.5 imes tCK \cdot$	0.86	ns
NF26	NAND_CLE and NAND_ALE hold time	tCALH	$0.5 imes tCK \cdot$	0.37	ns
NF27	NAND_CLK to first NAND_DQS latching transition	tDQSS	T - 0.41 [s	ee ²]	ns
NF28	Data write setup	tDS	0.25 × tCK	- 0.35	—
NF29	Data write hold	tDH	0.25 × tCK - 0.85		—
NF30	NAND_DQS/NAND_DQ read setup skew	tDQSQ	—	2.06	—
NF31	NAND_DQS/NAND_DQ read hold skew	tQHS	_	1.95	—

Table 45. Source Synchronous Mode Timing Parameters¹

¹ The GPMI source synchronous mode output timing can be controlled by the module's internal registers GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.

² T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).

Figure 32 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. For Source Synchronous mode, the typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6DualPlus/6QuadPlus reference manual (IMX6DQPRM)). Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. However, if the board delay is large enough and cannot be ignored, the delay value should be made larger to compensate the board delay.

Symbol	Parameter	Condition	Min	Тур	Max	Unit					
R _T	Termination resistance	_	45	50	55	Ω					
	TMDS drivers DC specifications										
V _{OFF}	Single-ended standby voltage	$RT = 50 \Omega$	avddt	mds ± [·]	10 mV	mV					
V _{SWING}	Single-ended output swing voltage	definitions, see the first two figures above. Compliance point TP1 as defined in the HDMI specification, version 1.3a, section 4.2.4.	400	_	600	mV					
V _H Single-ended output high voltage For definition, see the secondIf attached sink supports TMD or = 165 MHz		If attached sink supports TMDSCLK < or = 165 MHz	avddt	mds ± [·]	10 mV	mV					
	figure above.	If attached sink supports TMDSCLK > 165 MHz	avddtmds – 200 mV	—	avddtmds + 10 mV	mV					
V _L Single-ended output low voltage For definition, see the second		If attached sink supports TMDSCLK < or = 165 MHz	avddtmds – 600 mV	_	avddtmds – 400mV	mV					
	ngure above.	If attached sink supports TMDSCLK > 165 MHz	avddtmds – 700 mV	—	avddtmds - 400 mV	mV					
R _{term}	Differential source termination load (inside HDMI 3D Tx PHY) Although the HDMI 3D Tx PHY includes differential source termination, the user-defined value is set for each single line (for illustration, see the third figure above). Note: R _{TERM} can also be configured to be open and not present on TMDS channels.		50		200	Ω					
		Hot plug detect specifications									
HPD ^{VH}	Hot plug detect high range	_	2.0		5.3	V					
VHPD	Hot plug detect low range	—	0		0.8	V					
HPD	Hot plug detect input impedance	_	10	_	_	kΩ					
HPD t	Hot plug detect time delay	_	_	_	100	μs					

Table 59. Electrical Characteristics (continued)

4.12.8 Switching Characteristics

Table 60 describes switching characteristics for the HDMI 3D Tx PHY. Figure 53 to Figure 57 illustrate various parameters specified in table.

NOTE

All dynamic parameters related to the TMDS line drivers' performance imply the use of assembly guidelines.

Table 65 shows timing characteristics of signals presented in Figure 63 and Figure 64.

ID	Parameter	Symbol	Value	Description	
IP5	Display interface clock period	Tdicp	(see ¹)	Display interface clock IPP_DISP_CLK	ns
IP6	Display pixel clock period	Tdpcp	DISP_CLK_PER_PIXEL × Tdicp	Time of translation of one pixel to display, DISP_CLK_PER_PIXEL—number of pixel components in one pixel (1. <i>n</i>). The DISP_CLK_PER_PIXEL is virtual parameter to define display pixel clock period. The DISP_CLK_PER_PIXEL is received by DC/DI one access division to <i>n</i> components.	ns
IP7	Screen width time	Tsw	(SCREEN_WIDTH) × Tdicp	SCREEN_WIDTH—screen width in, interface clocks. horizontal blanking included. The SCREEN_WIDTH should be built by suitable DI's counter ² .	ns
IP8	HSYNC width time	Thsw	(HSYNC_WIDTH)	HSYNC_WIDTH—Hsync width in DI_CLK with 0.5 DI_CLK resolution. Defined by DI's counter.	ns
IP9	Horizontal blank interval 1	Thbi1	$\operatorname{BGXP} imes\operatorname{Tdicp}$	BGXP—width of a horizontal blanking before a first active data in a line (in interface clocks). The BGXP should be built by suitable DI's counter.	ns
IP10	Horizontal blank interval 2	Thbi2	(SCREEN_WIDTH – BGXP – FW) × Tdicp	Width a horizontal blanking after a last active data in a line (in interface clocks) FW—with of active line in interface clocks. The FW should be built by suitable DI's counter.	ns
IP12	Screen height	Tsh	(SCREEN_HEIGHT) X Tsw	SCREEN_HEIGHT— screen height in lines with blanking. The SCREEN_HEIGHT is a distance between 2 VSYNCs. The SCREEN_HEIGHT should be built by suitable DI's counter.	ns
IP13	VSYNC width	Tvsw	VSYNC_WIDTH	VSYNC_WIDTH—Vsync width in DI_CLK with 0.5 DI_CLK resolution. Defined by DI's counter.	ns
IP14	Vertical blank interval 1	Tvbi1	BGYP × Tsw	BGYP—width of first Vertical blanking interval in line. The BGYP should be built by suitable DI's counter.	ns
IP15	Vertical blank interval 2	Tvbi2	(SCREEN_HEIGHT – BGYP – FH) × Tsw	Width of second vertical blanking interval in line. The FH should be built by suitable DI's counter.	ns

Table 65. Synchronous Display Interface Timing Characteristics (Pixel Level)

4.12.11 LVDS Display Bridge (LDB) Module Parameters

The LVDS interface complies with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD 644-A, "Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits."

Parameter	Symbol	Test Condition	Min	Max	Units		
Differential Voltage Output Voltage	V _{OD}	100 Ω Differential load	250	450	mV		
Output Voltage High	Voh	100 Ω differential load (0 V Diff—Output High Voltage static)		1.6	V		
Output Voltage Low	Vol	100 Ω differential load (0 V Diff—Output Low Voltage static)		Vol 100 Ω differential load (0 V Diff—Output Low Voltage static)		1.25	V
Offset Static Voltage	V _{OS}	Two 49.9 Ω resistors in series between N-P terminal, with output in either Zero or One state, the voltage measured between the 2 resistors.		1.375	V		
VOS Differential	V _{OSDIFF}	Difference in $V_{\mbox{\scriptsize OS}}$ between a One and a Zero state	-50	50	mV		
Output short-circuited to GND	ISA ISB	With the output common shorted to GND	-24	24	mA		
VT Full Load Test	VTLoad	100 Ω Differential load with a 3.74 k Ω load between GND and I/O supply voltage	247	454	mV		

Table 67. LVDS Display Bridge (LDB) Electrical Specification

4.12.12 MIPI D-PHY Timing Parameters

This section describes MIPI D-PHY electrical specifications, compliant with MIPI CSI-2 version 1.0, D-PHY specification Rev. 1.0 (for MIPI sensor port x4 lanes) and MIPI DSI Version 1.01, and D-PHY specification Rev. 1.0 (and also DPI version 2.0, DBI version 2.0, DSC version 1.0a at protocol layer) (for MIPI display port x2 lanes).

4.12.12.1 Electrical and Timing Information

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit		
Input DC Specifications—Apply to DSI_CLK_P/_N and DSI_DATA_P/_N Inputs								
VI	Input signal voltage range	Transient voltage range is limited from -300 mV to 1600 mV	-50	_	1350	mV		
V _{LEAK}	Input leakage current	VGNDSH(min) = VI = VGNDSH(max) + VOH(absmax) Lane module in LP Receive Mode	-10		10	mA		
V _{GNDSH}	Ground Shift	_	-50	—	50	mV		
V _{OH(absmax)}	Maximum transient output voltage level	_		—	1.45	V		
t _{voh(absmax)}	Maximum transient time above VOH(absmax)	_	—	—	20	ns		

 Table 68. Electrical and Timing Information

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit
t _{CDC}	DDR CLK duty cycle	$t_{CDC} = t_{CPH} / P_{DDRCLK}$		50	_	%
t _{CPH}	DDR CLK high time			1	_	UI
t _{CPL}	DDR CLK low time	_		1		UI
_	DDR CLK / DATA Jitter	_		75	_	ps pk-pk
t _{SKEW[PN]}	Intra-Pair (Pulse) skew	_	_	0.075		UI
t _{SKEW[TX]}	Data to Clock Skew	_	0.350		0.650	UI
t _r	Differential output signal rise time	20% to 80%, RL = 50 Ω	150	_	0.3UI	ps
t _f	Differential output signal fall time	20% to 80%, RL = 50 Ω	150	_	0.3UI	ps
$\Delta V_{CMTX(HF)}$	Common level variation above 450 MHz	80 Ω<= RL< = 125 Ω		_	15	mV _{rms}
$\Delta V_{CMTX(LF)}$	Common level variation between 50 MHz and 450 MHz	80 Ω<= RL< = 125 Ω	—	_	25	mV _p
	LP Line Drive	ers AC Specifications				
t _{rlp,} t _{flp}	Single ended output rise/fall time	15% to 85%, $C_L{<}70~\text{pF}$		—	25	ns
t _{reo}	—	30% to 85%, C_L <70 pF	_		35	ns
$\delta V/\delta t_{SR}$	Signal slew rate	15% to 85%, C_L <70 pF	_		120	mV/ns
CL	Load capacitance	_	0	_	70	pF
	HS Line Recei	iver AC Specifications				
t _{SETUP[RX]}	Data to Clock Receiver Setup time	—	0.15		_	UI
t _{HOLD[RX]}	Clock to Data Receiver Hold time	_	0.15	_	_	UI
$\Delta V_{CMRX(HF)}$	Common mode interference beyond 450 MHz	_	—	_	200	mVpp
$\Delta V_{CMRX(LF)}$	Common mode interference between 50 MHz and 450 MHz	_	-50		50	mVpp
C _{CM}	Common mode termination		_	_	60	pF
	LP Line Recei	iver AC Specifications				
e _{SPIKE}	Input pulse rejection	_		_	300	Vps
T _{MIN}	Minimum pulse response	_	50	_		ns
V _{INT}	Pk-to-Pk interference voltage	_		_	400	mV
f _{INT}	Interference frequency	_	450	_	_	MHz
	Model Parameters used for Drive	r Load switching perform	ance eval	uation		
C _{PAD}	Equivalent Single ended I/O PAD capacitance.	_	_	_	1	pF
C _{PIN}	Equivalent Single ended Package + PCB capacitance.	_		—	2	pF

Table 69. Electrical and Timing Information (continued)

4.12.13.3 Receiver Real-Time Data Flow

Figure 76. Synchronized Data Flow Transmission with WAKE

4.12.13.5 Stream Transmission Mode Frame Transfer

Table 73. MLB	256/512 Fs	Timing	Parameters	(continued)
---------------	------------	--------	------------	-------------

Parameter	Symbol	Min	Мах	Unit	Comment
Bus Hold from MLB_CLK low	t _{mdzh}	4		ns	
Transmitter MLBSIG (MLBDAT) output valid from transition of MLBCLK (low-to-high)	Tdelay	_	10.75	_	ns

¹ The controller can shut off MLB_CLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a runt pulse can occur on MLB_CLK.

² MLB_CLK low/high time includes the pulse width variation.

³ The MediaLB driver can release the MLB_DATA/MLB_SIG line as soon as MLB_CLK is low; however, the logic state of the final driven bit on the line must remain on the bus for t_{mdzh}. Therefore, coupling must be minimized while meeting the maximum load capacitance listed.

Ground = 0.0 V; load capacitance = 40 pF; MediaLB speed = 1024 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as listed in Table 74; unless otherwise noted.

Parameter	Symbol	Min	Max	Unit	Comment
MLB_CLK Operating Frequency ¹	f _{mck}	45.056	51.2	MHz	1024xfs at 44.0 kHz 1024xfs at 50.0 kHz
MLB_CLK rise time	t _{mckr}	_	1	ns	V _{IL} TO V _{IH}
MLB_CLK fall time	t _{mckf}		1	ns	V _{IH} TO V _{IL}
MLB_CLK low time	t _{mckl}	6.1	_	ns	(see ²)
MLB_CLK high time	t _{mckh}	9.3	_	ns	—
MLB_SIG/MLB_DATA receiver input valid to MLB_CLK falling	t _{dsmcf}	1	_	ns	_
MLB_SIG/MLB_DATA receiver input hold from MLB_CLK low	t _{dhmcf}	t _{mdzh}	—	ns	_
MLB_SIG/MLB_DATA output high impedance from MLB_CLK low	t _{mcfdz}	0	t _{mckl}	ns	(see ³)
Bus Hold from MLB_CLK low	t _{mdzh}	2	—	ns	—
Transmitter MLBSIG (MLBDAT) output valid from transition of MLBCLK (low-to-high)	Tdelay	_	6	ns	_

Table 74. MLB 1024 Fs Timing Parameters

¹ The controller can shut off MLB_CLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a runt pulse can occur on MLB_CLK.

² MLB_CLK low/high time includes the pulse width variation.

³ The MediaLB driver can release the MLB_DATA/MLB_SIG line as soon as MLB_CLK is low; however, the logic state of the final driven bit on the line must remain on the bus for t_{mdzh}. Therefore, coupling must be minimized while meeting the maximum load capacitance listed.

Table 75 lists the MediaLB 6-pin interface timing characteristics, and Figure 82 shows the MLB 6-pin delay, setup, and hold times.

i.MX 6DualPlus/6QuadPlus Applications Processors Consumer Products, Rev. 2, 09/2017

Figure 87. JTAG_TRST_B Timing Diagram

ID	Baramatar ^{1,2}	All Freq	Unit		
1D		Min	Max		
SJ0	JTAG_TCK frequency of operation 1/(3xT _{DC}) ¹	0.001	22	MHz	
SJ1	JTAG_TCK cycle time in crystal mode	45	_	ns	
SJ2	JTAG_TCK clock pulse width measured at V_M^2	22.5	_	ns	
SJ3	JTAG_TCK rise and fall times	_	3	ns	
SJ4	Boundary scan input data set-up time	5	_	ns	
SJ5	Boundary scan input data hold time	24	-	ns	
SJ6	JTAG_TCK low to output data valid	_	40	ns	
SJ7	JTAG_TCK low to output high impedance	_	40	ns	
SJ8	JTAG_TMS, JTAG_TDI data set-up time	5	_	ns	
SJ9	JTAG_TMS, JTAG_TDI data hold time	25	_	ns	
SJ10	JTAG_TCK low to JTAG_TDO data valid	_	44	ns	
SJ11	JTAG_TCK low to JTAG_TDO high impedance	_	44	ns	
SJ12	JTAG_TRST_B assert time	100	_	ns	
SJ13	JTAG_TRST_B set-up time to JTAG_TCK low	40	_	ns	

Table 79. JTAG Timir	ŋd
----------------------	----

¹ T_{DC} = target frequency of SJC

² V_{M} = mid-point voltage

4.12.19 SPDIF Timing Parameters

The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.

Table 80 and Figure 88 and Figure 89 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.

Package Information and Contact Assignments

				Out of Reset Condition ¹									
Ball Name	Ball	Power Group	Ball Type	Default Mode (Reset Mode)	Default Function (Signal Name)	Input/Output	Value ²						
LVDS0_TX1_P	U3	NVCC_LVDS_2P5	LVDS	ALT0	LVDS0_TX1_P	Input	Keeper						
LVDS0_TX2_N	V2	NVCC_LVDS_2P5	LVDS	—	LVDS0_TX2_N	—							
LVDS0_TX2_P	V1	NVCC_LVDS_2P5	LVDS	ALT0	LVDS0_TX2_P	Input	Keeper						
LVDS0_TX3_N	W2	NVCC_LVDS_2P5	LVDS	_	LVDS0_TX3_N	—							
LVDS0_TX3_P	W1	NVCC_LVDS_2P5	LVDS	ALT0	LVDS0_TX3_P	Input	Keeper						
LVDS1_CLK_N	Y3	NVCC_LVDS_2P5	LVDS	_	LVDS1_CLK_N	—	—						
LVDS1_CLK_P	Y4	NVCC_LVDS_2P5	LVDS	ALT0	LVDS1_CLK_P	Input	Keeper						
LVDS1_TX0_N	Y1	NVCC_LVDS_2P5	LVDS	_	LVDS1_TX0_N	—	_						
LVDS1_TX0_P	Y2	NVCC_LVDS_2P5	LVDS	ALT0	LVDS1_TX0_P	Input	Keeper						
LVDS1_TX1_N	AA2	NVCC_LVDS_2P5	LVDS	_	LVDS1_TX1_N	—							
LVDS1_TX1_P	AA1	NVCC_LVDS_2P5	LVDS	ALT0	LVDS1_TX1_P	Input	Keeper						
LVDS1_TX2_N	AB1	NVCC_LVDS_2P5	LVDS	—	LVDS1_TX2_N	—							
LVDS1_TX2_P	AB2	NVCC_LVDS_2P5	LVDS	ALT0	LVDS1_TX2_P	Input	Keeper						
LVDS1_TX3_N	AA3	NVCC_LVDS_2P5	LVDS	_	LVDS1_TX3_N	—							
LVDS1_TX3_P	AA4	NVCC_LVDS_2P5	LVDS	ALT0	LVDS1_TX3_P	Input	Keeper						
MLB_CN	A11	VDD_HIGH_CAP	LVDS	_	MLB_CLK_N	—	—						
MLB_CP	B11	VDD_HIGH_CAP	LVDS	_	MLB_CLK_P	—	—						
MLB_DN	B10	VDD_HIGH_CAP	LVDS	—	MLB_DATA_N	—	_						
MLB_DP	A10	VDD_HIGH_CAP	LVDS	—	MLB_DATA_P	—	—						
MLB_SN	A9	VDD_HIGH_CAP	CAP LVDS —		MLB_SIG_N	—	_						
MLB_SP	B9	VDD_HIGH_CAP	LVDS	—	MLB_SIG_P	—	_						
NANDF_ALE	A16	NVCC_NANDF	GPIO	ALT5	GPIO6_IO08	Input	PU (100K)						
NANDF_CLE	C15	NVCC_NANDF	GPIO	ALT5	GPIO6_IO07	Input	PU (100K)						
NANDF_CS0	F15	NVCC_NANDF	GPIO	ALT5	GPIO6_IO11	Input	PU (100K)						
NANDF_CS1	C16	NVCC_NANDF	GPIO	ALT5	GPIO6_IO14	Input	PU (100K)						
NANDF_CS2	A17	NVCC_NANDF	GPIO	ALT5	GPIO6_IO15	Input	PU (100K)						
NANDF_CS3	D16	NVCC_NANDF	GPIO	ALT5	GPIO6_IO16	Input	PU (100K)						
NANDF_D0	A18	NVCC_NANDF	GPIO	ALT5	GPIO2_IO00	Input	PU (100K)						
NANDF_D1	C17	NVCC_NANDF	GPIO	ALT5	GPIO2_IO01	Input	PU (100K)						
NANDF_D2	F16	NVCC_NANDF	GPIO	ALT5	GPIO2_IO02	Input	PU (100K)						
NANDF_D3	D17	NVCC_NANDF	GPIO	ALT5	GPIO2_IO03	Input	PU (100K)						
NANDF_D4	A19	NVCC_NANDF	GPIO	ALT5	GPIO2_IO04	Input	PU (100K)						
NANDF_D5	B18	NVCC_NANDF	GPIO	ALT5	GPIO2_IO05	Input	PU (100K)						
NANDF_D6	E17	NVCC_NANDF	GPIO	ALT5	GPIO2_IO06	Input	PU (100K)						
NANDF_D7	C18	NVCC_NANDF	GPIO	ALT5	GPIO2_IO07	Input	PU (100K)						
NANDF_RB0	B16	NVCC_NANDF	GPIO	ALT5	GPIO6_IO10	Input	PU (100K)						

Table 96. 21 x 21 mm Functional Contact Assignments (continued)

6.2.5 21 x 21 mm, 0.8 mm Pitch Ball Map

Table 98 shows the FCPBGA 21 x 21 mm, 0.8 mm pitch ball map.

	٢	2	З	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
A		PCIE_REXT	PCIE_TXM	GND	FA_ANA	USB_OTG_DP	XTALI	GND	MLB_SN	MLB_DP	MLB_CN	SATA_TXP	GND	SATA_RXM	SD3_DAT2	NANDF_ALE	NANDF_CS2	NANDF_D0	NANDF_D4	SD4_DAT3	SD1_DAT0	SD2_DAT0	SD2_DAT2	RGMII_TD3	GND
B	PCIE_RXM	PCIE_RXP	PCIE_TXP	GND	VDD_FA	USB_OTG_DN	XTALO	USB_OTG_CHD_B	MLB_SP	MLB_DN	MLB_CP	SATA_TXM	SD3_CMD	SATA_RXP	SD3_DAT3	NANDF_RB0	SD4_CMD	NANDF_D5	SD4_DAT1	SD4_DAT6	SD1_CMD	SD2_DAT3	RGMII_RD1	RGMII_RD2	RGMII_RXC
υ	GND	JTAG_TRSTB	JTAG_TMS	GND	CLK2_N	GND	CLK1_N	GPANAIO	RTC_XTALO	GND	POR_B	BOOT_MODE0	SD3_DAT5	SATA_REXT	NANDF_CLE	NANDF_CS1	NANDF_D1	NANDF_D7	SD4_DAT5	SD1_DAT1	SD2_CLK	RGMII_TD0	RGMII_TX_CTL	RGMII_RD0	EIM_D16
٩	CSI_D1M	CSI_D1P	GND	CSI_REXT	CLK2_P	GND	CLK1_P	GND	RTC_XTALI	USB_H1_VBUS	PMIC_ON_REQ	ONOFF	SD3_DAT4	SD3_CLK	SD3_RST	NANDF_CS3	NANDF_D3	SD4_DAT0	SD4_DAT7	SD1_CLK	RGMII_TXC	RGMII_RX_CTL	RGMII_RD3	EIM_D18	EIM_D23
ш	CSI_D2M	CSI_D2P	CSI_D0P	CSI_DOM	GND	GND	GND	NVCC_PLL_OUT	USB_OTG_VBUS	USB_H1_DP	TAMPER	TEST_MODE	SD3_DAT6	SD3_DAT0	NANDF_WP_B	SD4_CLK	NANDF_D6	SD4_DAT4	SD1_DAT2	SD2_DAT1	RGMII_TD2	EIM_EB2	EIM_D22	EIM_D26	EIM_D27
Ŀ	CSI_D3P	CSI_D3M	CSI_CLK0P	CSI_CLK0M	GND	GND	GND	GND	VDDUSB_CAP	USB_H1_DN	PMIC_STBY_REQ	BOOT_MODE1	SD3_DAT7	SD3_DAT1	NANDF_CS0	NANDF_D2	SD4_DAT2	SD1_DAT3	SD2_CMD	RGMII_TD1	EIM_D17	EIM_D24	EIM_EB3	EIM_A22	EIM_A24
IJ	DSI_D0P	DSI_DOM	GND	DSI_REXT	JTAG_TDI	JTAG_TDO	PCIE_VPH	PCIE_VPTX	VDD_SNVS_CAP	GND	VDD_SNVS_IN	SATA_VPH	SATA_VP	NVCC_SD3	NVCC_NANDF	NVCC_SD1	NVCC_SD2	NVCC_RGMII	GND	EIM_D20	EIM_D19	EIM_D25	EIM_D28	EIM_A17	EIM_A19