

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	AVR
Core Size	8/16-Bit
Speed	32MHz
Connectivity	EBI/EMI, I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	78
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 3.6V
Data Converters	A/D 16x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-VFBGA
Supplier Device Package	100-VFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/atxmega64a1-c7ur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Ordering Information

Ordering Code	Flash (B)	E ²	SRAM	Speed (MHz)	Power Supply	Package ⁽¹⁾⁽²⁾⁽³⁾	Temp
ATxmega128A1-AU	128K + 8K	2 KB	8 KB				
ATxmega128A1-AUR	1200 + 00			100.4			
ATxmega64A1-AU	64K + 4K	2 KB	4 KB			100A	
ATxmega64A1-AUR	04N + 4N	2 ND	4 ND				
ATxmega128A1-CU	128K + 8K	2 KB	8 KB		1.6 - 3.6V	100C1	
ATxmega128A1CUR	120N + ON	2 10	0 ND	32			-40°C - 85°C
ATxmega64A1-CU	64K + 4K	2 KB	4 KB				
ATxmega64A1-CUR	041 + 41	2 10	4 ND				
ATxmega128A1-C7U	128K + 8K	2 KB	8 KB				
ATxmega128A1-C7UR	1200 + 00	2 ND	0 ND			100C2	
ATxmega64A1-C7U	64K + 4K	2 KB	4 KB				
ATxmega64A1-C7UR	0411 7 411						

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information.

2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. For packaging information, see "Packaging information" on page 70.

	Package Type					
100A	100-lead, 14 x 14 x 1.0mm, 0.5mm lead pitch, thin profile plastic quad flat package (TQFP)					
100C1	100-ball, 9 x 9 x 1.2mm body, ball pitch 0.88mm, chip ball grid array (CBGA)					
100C2	100-ball, 7 x 7 x 1.0mm body, ball pitch 0.65mm, very thin fine-pitch ball grid array (VFBGA)					

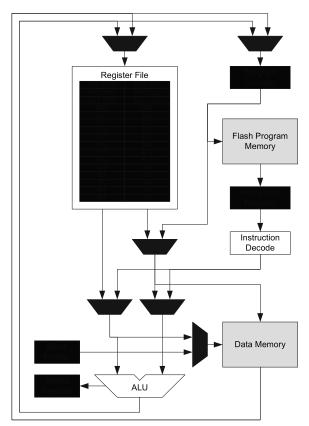
Typical Applications

Industrial control	Climate control	Low power battery applications
Factory automation	RF and ZigBee [®]	Power tools
Building control	Sensor control	HVAC
Board control	Optical	Utility metering
White goods	Medical applications	

7. AVR CPU

7.1 Features

- 8/16-bit high performance AVR RISC Architecture
 - 138 instructions
 - Hardware multiplier
- 32x8-bit registers directly connected to the ALU
- Stack in SRAM
- Stack Pointer accessible in I/O memory space
- Direct addressing of up to 16M Bytes of program and data memory
- True 16/24-bit access to 16/24-bit I/O registers
- Support for 8-, 16- and 32-bit Arithmetic
- Configuration Change Protection of system critical features


7.2 Overview

All Atmel AVR XMEGA devices use the 8/16-bit AVR CPU. The main function of the CPU is to execute the code and perform all calculations. The CPU is able to access memories, perform calculations, control peripherals, and execute the program in the flash memory. Interrupt handling is described in a separate section, refer to "Interrupts and Programmable Multilevel Interrupt Controller" on page 29.

7.3 Architectural Overview

In order to maximize performance and parallelism, the AVR CPU uses a Harvard architecture with separate memories and buses for program and data. Instructions in the program memory are executed with single-level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This enables instructions to be executed on every clock cycle. For details of all AVR instructions, refer to http://www.atmel.com/avr.

Figure 7-1. Block diagram of the AVR CPU architecture.

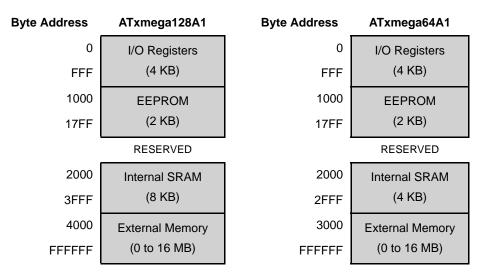
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a register. Single-register operations can also be executed in the ALU. After an arithmetic operation, the status register is updated to reflect information about the result of the operation.

The ALU is directly connected to the fast-access register file. The 32 x 8-bit general purpose working registers all have single clock cycle access time allowing single-cycle arithmetic logic unit (ALU) operation between registers or between a register and an immediate. Six of the 32 registers can be used as three 16-bit address pointers for program and data space addressing, enabling efficient address calculations.

The memory spaces are linear. The data memory space and the program memory space are two different memory spaces.

The data memory space is divided into I/O registers, SRAM, and external RAM. In addition, the EEPROM can be memory mapped in the data memory.

All I/O status and control registers reside in the lowest 4KB addresses of the data memory. This is referred to as the I/O memory space. The lowest 64 addresses can be accessed directly, or as the data space locations from 0x00 to 0x3F. The rest is the extended I/O memory space, ranging from 0x0040 to 0x0FFF. I/O registers here must be accessed as data space locations using load (LD/LDS/LDD) and store (ST/STS/STD) instructions.


The SRAM holds data. Code execution from SRAM is not supported. It can easily be accessed through the five different addressing modes supported in the AVR architecture. The first SRAM address is 0x2000.

Data addresses 0x1000 to 0x1FFF are reserved for memory mapping of EEPROM.

The program memory is divided in two sections, the application program section and the boot program section. Both sections have dedicated lock bits for write and read/write protection. The SPM instruction that is used for self-programming of the application flash memory must reside in the boot program section. The application section contains an application table section with separate lock bits for write and read/write protection. The application table section can be used for safe storing of nonvolatile data in the program memory.

8.6 EEPROM

XMEGA AU devices have EEPROM for nonvolatile data storage. It is either addressable in a separate data space (default) or memory mapped and accessed in normal data space. The EEPROM supports both byte and page access. Memory mapped EEPROM allows highly efficient EEPROM reading and EEPROM buffer loading. When doing this, EEPROM is accessible using load and store instructions. Memory mapped EEPROM will always start at hexadecimal address 0x1000.

8.7 I/O Memory

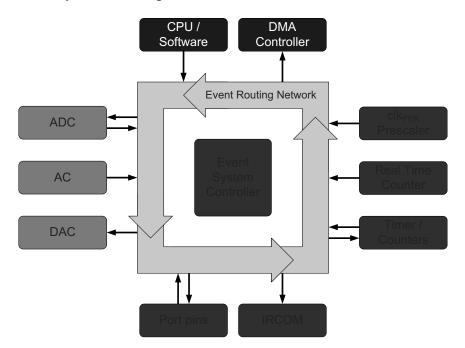
The status and configuration registers for peripherals and modules, including the CPU, are addressable through I/O memory locations. All I/O locations can be accessed by the load (LD/LDS/LDD) and store (ST/STS/STD) instructions, which is used to transfer data between the 32 registers in the register file and the I/O memory. The IN and OUT instructions can address I/O memory locations in the range 0x00 - 0x3F directly. In the address range 0x00 - 0x1F, single- cycle instructions for manipulation and checking of individual bits are available.

The I/O memory address for all peripherals and modules in XMEGA A1U is shown in the "Peripheral Module Address Map" on page 62.

8.7.1 General Purpose I/O Registers

The lowest 16 I/O memory addresses are reserved as general purpose I/O registers. These registers can be used for storing global variables and flags, as they are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

8.8 External Memory


Four ports can be used for external memory, supporting external SRAM, SDRAM, and memory mapped peripherals such as LCD displays. Refer to "EBI – External Bus Interface" on page 47. The external memory address space will always start at the end of internal SRAM.

8.9 Data Memory and Bus Arbitration

Since the data memory is organized as four separate sets of memories, the different bus masters (CPU, DMA controller read and DMA controller write, etc.) can access different memory sections at the same time.

Figure 10-1. Event system block diagram.

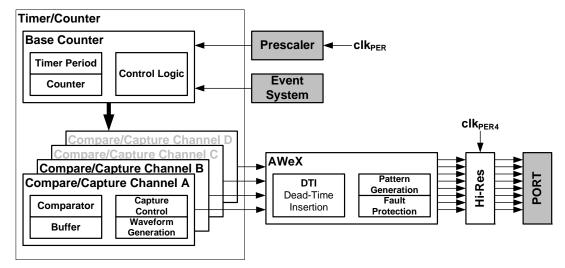
he event routing network consists of eight software-configurable multiplexers that control how events are routed and used. These are called event channels, and allow for up to eight parallel event routing configurations. The maximum routing latency is two peripheral clock cycles. The event system works in both active mode and idle sleep mode.

13.5 WDT - Watchdog Timer

13.5.1 Features

- Issues a device reset if the timer is not reset before its timeout period
- Asynchronous operation from dedicated oscillator
- 1kHz output of the 32kHz ultra low power oscillator
- 11 selectable timeout periods, from 8ms to 8s
 - Two operation modes:
 - Normal mode
 - Window mode
- Configuration lock to prevent unwanted changes

13.6 Overview


The watchdog timer (WDT) is a system function for monitoring correct program operation. It makes it possible to recover from error situations such as runaway or deadlocked code. The WDT is a timer, configured to a predefined timeout period, and is constantly running when enabled. If the WDT is not reset within the timeout period, it will issue a microcontroller reset. The WDT is reset by executing the WDR (watchdog timer reset) instruction from the application code.

The window mode makes it possible to define a time slot or window inside the total timeout period during which WDT must be reset. If the WDT is reset outside this window, either too early or too late, a system reset will be issued. Compared to the normal mode, this can also catch situations where a code error causes constant WDR execution.

The WDT will run in active mode and all sleep modes, if enabled. It is asynchronous, runs from a CPU-independent clock source, and will continue to operate to issue a system reset even if the main clocks fail.

The configuration change protection mechanism ensures that the WDT settings cannot be changed by accident. For increased safety, a fuse for locking the WDT settings is also available.

The high-resolution (hi-res) extension can be used to increase the waveform output resolution by four or eight times by using an internal clock source running up to four times faster than the peripheral clock. See "Hi-Res - High Resolution Extension" on page 39 for more details.

PORTC, PORTD, PORTE and PORTF each has one Timer/Counter 0 and one Timer/Counter1. Notation of these Timer/Counters are TCC0 (Time/Counter C0), TCC1, TCD0, TCD1, TCE0, TCE1, TCF0, and TCF1, respectively.

18. Hi-Res - High Resolution Extension

18.1 Features

- Increases Waveform Generator resolution by 2-bits (4x)
- Supports Frequency, single- and dual-slope PWM operation
- Supports the AWeX when this is enabled and used for the same Timer/Counter

18.2 Overview

TThe high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output from a timer/counter by four or eight. It can be used for a timer/counter doing frequency, single-slope PWM, or dual-slope PWM generation. It can also be used with the AWeX if this is used for the same timer/counter.

The hi-res extension uses the peripheral 4x clock (ClkPER4). The system clock prescalers must be configured so the peripheral 4x clock frequency is four times higher than the peripheral and CPU clock frequency when the hi-res extension is enabled.

There are four hi-res extensions that each can be enabled for each timer/counters pair on PORTC, PORTD, PORTE and PORTF. The notation of these peripherals are HIRESC, HIRESD, HIRESE and HIRESF, respectively.

26. ADC - 12-bit Analog to Digital Converter

26.1 Features

- Two ADCs with 12-bit resolution
- 2Msps sample rate for each ADC
- Signed and unsigned conversions
- 4 result registers with individual input channel control for each ADC
- 8 single ended inputs for each ADC
- 8x4 differential inputs for each ADC
- 4 internal inputs:
 - Integrated Temperature Sensor
 - DAC Output
 - VCC voltage divided by 10
 - Bandgap voltage
- Software selectable gain of 2, 4, 8, 16, 32 or 64
- Software selectable resolution of 8- or 12-bit.
- Internal or External Reference selection
- Event triggered conversion for accurate timing
- DMA transfer of conversion results
- Interrupt/Event on compare result

26.2 Overview

XMEGA A1 devices have two Analog to Digital Converters (ADC), see Figure 26-1 on page 49. The two ADC modules can be operated simultaneously, individually or synchronized.

The ADC converts analog voltages to digital values. The ADC has 12-bit resolution and is capable of converting up to 2 million samples per second. The input selection is flexible, and both single-ended and differential measurements can be done. For differential measurements an optional gain stage is available to increase the dynamic range. In addition several internal signal inputs are available. The ADC can provide both signed and unsigned results.

This is a pipeline ADC. A pipeline ADC consists of several consecutive stages, where each stage convert one part of the result. The pipeline design enables high sample rate at low clock speeds, and remove limitations on samples speed versus propagation delay. This also means that a new analog voltage can be sampled and a new ADC measurement started while other ADC measurements are ongoing.

ADC measurements can either be started by application software or an incoming event from another peripheral in the device. Four different result registers with individual input selection (MUX selection) are provided to make it easier for the application to keep track of the data. Each result register and MUX selection pair is referred to as an ADC Channel. It is possible to use DMA to move ADC results directly to memory or peripherals when conversions are done.

Both internal and external analog reference voltages can be used. An accurate internal 1.0V reference is available.

An integrated temperature sensor is available and the output from this can be measured with the ADC. The output from the DAC, VCC/10 and the Bandgap voltage can also be measured by the ADC.

32. Instruction Set Summary

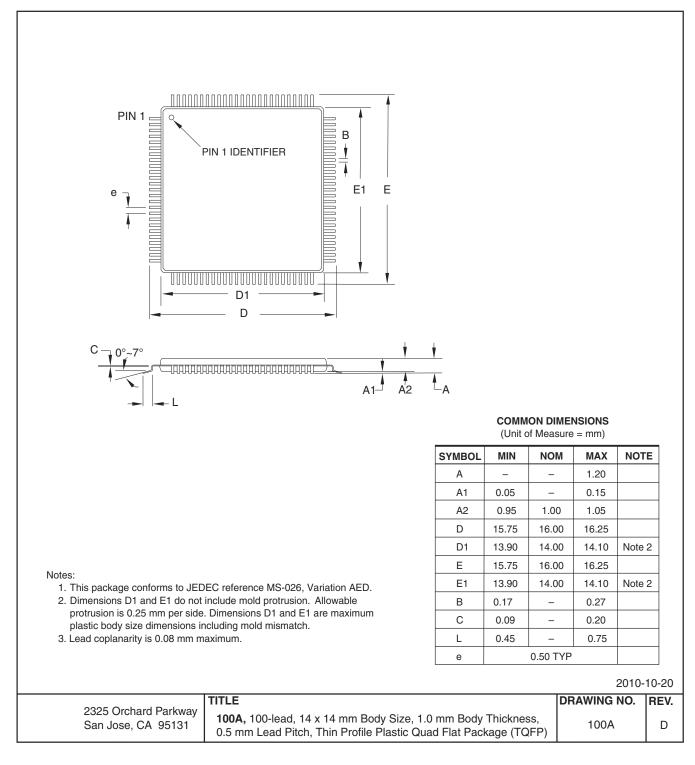
Mnemonics	Operands	Description	Operation			Flags	#Clocks
		Arithmetic	and Logic Instructions				
ADD	Rd, Rr	Add without Carry	Rd	←	Rd + Rr	Z,C,N,V,S,H	1
ADC	Rd, Rr	Add with Carry	Rd	←	Rd + Rr + C	Z,C,N,V,S,H	1
ADIW	Rd, K	Add Immediate to Word	Rd	~	Rd + 1:Rd + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract without Carry	Rd	~	Rd - Rr	Z,C,N,V,S,H	1
SUBI	Rd, K	Subtract Immediate	Rd	←	Rd - K	Z,C,N,V,S,H	1
SBC	Rd, Rr	Subtract with Carry	Rd	~	Rd - Rr - C	Z,C,N,V,S,H	1
SBCI	Rd, K	Subtract Immediate with Carry	Rd	←	Rd - K - C	Z,C,N,V,S,H	1
SBIW	Rd, K	Subtract Immediate from Word	Rd + 1:Rd	~	Rd + 1:Rd - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND	Rd	←	Rd ● Rr	Z,N,V,S	1
ANDI	Rd, K	Logical AND with Immediate	Rd	~	Rd • K	Z,N,V,S	1
OR	Rd, Rr	Logical OR	Rd	←	Rd v Rr	Z,N,V,S	1
ORI	Rd, K	Logical OR with Immediate	Rd	~	Rd v K	Z,N,V,S	1
EOR	Rd, Rr	Exclusive OR	Rd	←	Rd ⊕ Rr	Z,N,V,S	1
СОМ	Rd	One's Complement	Rd	~	\$FF - Rd	Z,C,N,V,S	1
NEG	Rd	Two's Complement	Rd	←	\$00 - Rd	Z,C,N,V,S,H	1
SBR	Rd,K	Set Bit(s) in Register	Rd	←	Rd v K	Z,N,V,S	1
CBR	Rd,K	Clear Bit(s) in Register	Rd	←	Rd ● (\$FFh - K)	Z,N,V,S	1
INC	Rd	Increment	Rd	~	Rd + 1	Z,N,V,S	1
DEC	Rd	Decrement	Rd	~	Rd - 1	Z,N,V,S	1
TST	Rd	Test for Zero or Minus	Rd	~	Rd • Rd	Z,N,V,S	1
CLR	Rd	Clear Register	Rd	~	Rd ⊕ Rd	Z,N,V,S	1
SER	Rd	Set Register	Rd	~	\$FF	None	1
MUL	Rd,Rr	Multiply Unsigned	R1:R0	←	Rd x Rr (UU)	Z,C	2
MULS	Rd,Rr	Multiply Signed	R1:R0	←	Rd x Rr (SS)	Z,C	2
MULSU	Rd,Rr	Multiply Signed with Unsigned	R1:R0	~	Rd x Rr (SU)	Z,C	2
FMUL	Rd,Rr	Fractional Multiply Unsigned	R1:R0	~	Rd x Rr<<1 (UU)	Z,C	2
FMULS	Rd,Rr	Fractional Multiply Signed	R1:R0	←	Rd x Rr<<1 (SS)	Z,C	2
FMULSU	Rd,Rr	Fractional Multiply Signed with Unsigned	R1:R0	~	Rd x Rr<<1 (SU)	Z,C	2
DES	К	Data Encryption	if (H = 0) then R15:R0 else if (H = 1) then R15:R0	← ←	Encrypt(R15:R0, K) Decrypt(R15:R0, K)		1/2
		Bran	ch Instructions				
RJMP	k	Relative Jump	PC	~	PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC(15:0) PC(21:16)	← ←	Z, 0	None	2
EIJMP		Extended Indirect Jump to (Z)	PC(15:0) PC(21:16)	← ←	Z, EIND	None	2
JMP	k	Jump	PC	~	k	None	3

Mnemonics	Operands	Description	Operation			Flags	#Clocks
RCALL	k	Relative Call Subroutine	PC	←	PC + k + 1	None	2 / 3 ⁽¹⁾
ICALL		Indirect Call to (Z)	PC(15:0) PC(21:16)	← ←	Z, 0	None	2 / 3 ⁽¹⁾
EICALL		Extended Indirect Call to (Z)	PC(15:0) PC(21:16)	← ←	Z, EIND	None	3(1)
CALL	k	call Subroutine	PC	←	k	None	3 / 4 ⁽¹⁾
RET		Subroutine Return	PC	~	STACK	None	4 / 5 ⁽¹⁾
RETI		Interrupt Return	PC	←	STACK	I	4 / 5 ⁽¹⁾
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC	~	PC + 2 or 3	None	1/2/3
СР	Rd,Rr	Compare	Rd - Rr			Z,C,N,V,S,H	1
CPC	Rd,Rr	Compare with Carry	Rd - Rr - C			Z,C,N,V,S,H	1
CPI	Rd,K	Compare with Immediate	Rd - K			Z,C,N,V,S,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b) = 0) PC	~	PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register Set	if (Rr(b) = 1) PC	←	PC + 2 or 3	None	1/2/3
SBIC	A, b	Skip if Bit in I/O Register Cleared	if (I/O(A,b) = 0) PC	←	PC + 2 or 3	None	2/3/4
SBIS	A, b	Skip if Bit in I/O Register Set	If (I/O(A,b) =1) PC	←	PC + 2 or 3	None	2/3/4
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC	←	PC + k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC	←	PC + k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC	←	PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC	←	PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC	~	PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC	←	PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC	~	PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC	←	PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC	←	PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC	←	PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC	~	PC + k + 1	None	1/2
BRLT	k	Branch if Less Than, Signed	if (N \oplus V= 1) then PC	←	PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC	←	PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC	←	PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC	~	PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC	←	PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC	←	PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC	←	PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC	←	PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC	←	PC + k + 1	None	1/2
		Data Tr	ansfer Instructions				
MOV	Rd, Rr	Copy Register	Rd	←	Rr	None	1
MOVW	Rd, Rr	Copy Register Pair	Rd+1:Rd	←	Rr+1:Rr	None	1

Mnemonics	Operands	Description	Operation			Flags	#Clocks
SPM	Z+	Store Program Memory and Post-Increment by 2	(RAMPZ:Z) Z	← ←	R1:R0, Z + 2	None	-
IN	Rd, A	In From I/O Location	Rd	~	I/O(A)	None	1
OUT	A, Rr	Out To I/O Location	I/O(A)	←	Rr	None	1
PUSH	Rr	Push Register on Stack	STACK	~	Rr	None	1 ⁽¹⁾
POP	Rd	Pop Register from Stack	Rd	~	STACK	None	2(1)
	1	Bit and	Bit-test Instructions				
LSL	Rd	Logical Shift Left	Rd(n+1) Rd(0) C	↓ ↓ ↓	Rd(n), 0, Rd(7)	Z,C,N,V,H	1
LSR	Rd	Logical Shift Right	Rd(n) Rd(7) C	$\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \end{array}$	Rd(n+1), 0, Rd(0)	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	Rd(0) Rd(n+1) C	↓ ↓ ↓ ↓	C, Rd(n), Rd(7)	Z,C,N,V,H	1
ROR	Rd	Rotate Right Through Carry	Rd(7) Rd(n) C	$\downarrow \uparrow \uparrow$	C, Rd(n+1), Rd(0)	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	Rd(n)	~	Rd(n+1), n=06	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)	\leftrightarrow	Rd(74)	None	1
BSET	s	Flag Set	SREG(s)	~	1	SREG(s)	1
BCLR	S	Flag Clear	SREG(s)	~	0	SREG(s)	1
SBI	A, b	Set Bit in I/O Register	I/O(A, b)	~	1	None	1
CBI	A, b	Clear Bit in I/O Register	I/O(A, b)	~	0	None	1
BST	Rr, b	Bit Store from Register to T	Т	←	Rr(b)	Т	1
BLD	Rd, b	Bit load from T to Register	Rd(b)	~	т	None	1
SEC		Set Carry	С	←	1	С	1
CLC		Clear Carry	С	~	0	С	1
SEN		Set Negative Flag	N	←	1	N	1
CLN		Clear Negative Flag	N	←	0	N	1
SEZ		Set Zero Flag	Z	~	1	Z	1
CLZ		Clear Zero Flag	Z	~	0	Z	1
SEI		Global Interrupt Enable	I	~	1	I	1
CLI		Global Interrupt Disable	I	~	0	I	1
SES		Set Signed Test Flag	S	←	1	S	1
CLS		Clear Signed Test Flag	S	←	0	S	1
SEV		Set Two's Complement Overflow	V	~	1	V	1
CLV		Clear Two's Complement Overflow	V	~	0	V	1
SET		Set T in SREG	Т	←	1	Т	1
CLT		Clear T in SREG	т	~	0	т	1
SEH		Set Half Carry Flag in SREG	Н	←	1	н	1
CLH		Clear Half Carry Flag in SREG	н	←	0	Н	1

Mnemonics	Operands	Description	Operation	Flags	#Clocks		
MCU Control Instructions							
BREAK		Break	(See specific descr. for BREAK)	None	1		
NOP		No Operation		None	1		
SLEEP		Sleep	(see specific descr. for Sleep)	None	1		
WDR		Watchdog Reset	(see specific descr. for WDR)	None	1		

Notes:


: 1. Cycle times for Data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface.

2. One extra cycle must be added when accessing Internal SRAM.

33. Packaging information

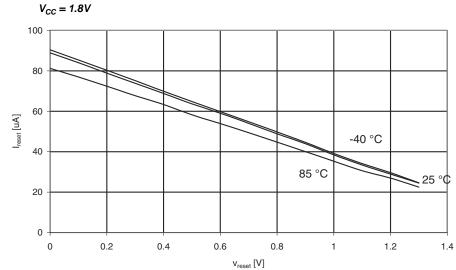
34.6 DAC Characteristics

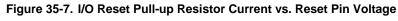
Symbol	Parameter	Condition		Min	Тур	Max	Units
INL	Integral Non-Linearity	V _{CC} = 1.6-3.6V	VREF = Ext. ref		5		LSB
DNL	Differential Neg Linearity	V - 1626V	VREF = Ext. ref		0.6	<±1	LSB
DINL	Differential Non-Linearity	V _{CC} = 1.6-3.6V	VREF= AV _{CC}		0.6		
F _{clk}	Conversion rate		I			1000	ksps
AREF	External reference voltage			1.1		AV _{CC} -0.6	V
	Reference input impedance				>10		MΩ
	Max output voltage	R_{load} =100k Ω			AV _{CC} *0.98		V
	Min output voltage	R_{load} =100k Ω		0.01		V	

34.7 Analog Comparator Characteristics

Table 34-8.	Analog C	omparator	characteristics.
-------------	----------	-----------	------------------

Symbol	Parameter	Condition	Condition		Тур	Max	Units
V _{off}	Input Offset Voltage	V _{CC} = 1.6 - 3.6V			<±5		mV
l _{ik}	Input Leakage Current	V _{CC} = 1.6 - 3.6V		< 1000		pА	
V _{hys1}	Hysteresis, No	V _{CC} = 1.6 - 3.6V		0		mV	
V _{hys2}	Hysteresis, Small	V _{CC} = 1.6 - 3.6V	mode = HS		25		mV
V _{hys3}	Hysteresis, Large	V _{CC} = 1.6 - 3.6V	mode = HS		50		mV
		V _{CC} = 3.0V, T= 85°C	mode = HS			100	
t _{delay}	Propagation delay	V _{CC} = 1.6 - 3.6V	mode = HS		70		ns
		V _{CC} = 1.6 - 3.6V	mode = LP		140		


34.8 Bandgap Characteristics


Table 34-9. Bandgap voltage characteristics.

Symbol	Parameter	Condition	Min	Тур	Max	Units
	Bandgap startup time	As reference for ADC or DAC	1 Clk_PER + 2.5µs			μs
	Bandgap voltage			1.1		V

35.5 Pin Pull-up

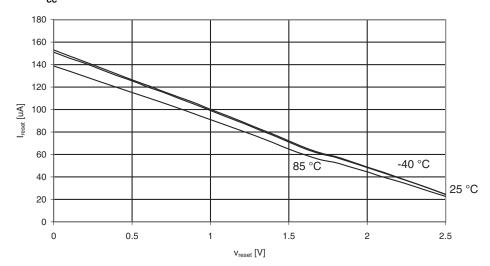


Figure 35-11.I/O Pin Input Threshold Voltage vs. $\rm V_{\rm CC}$

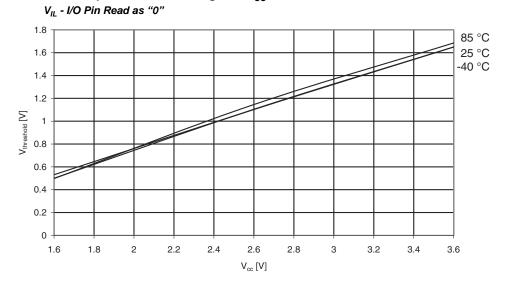
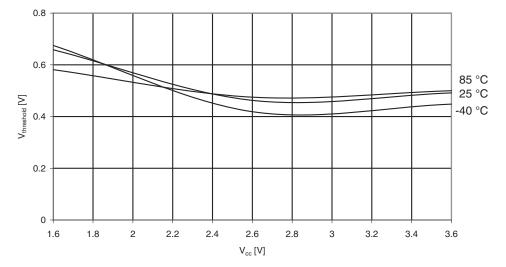
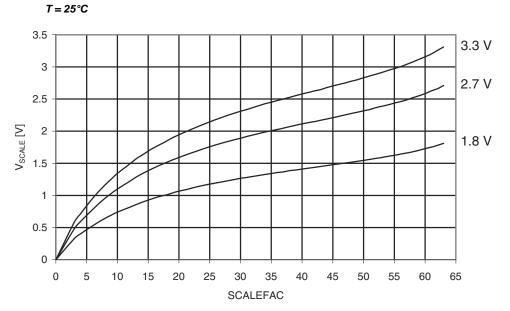



Figure 35-12.I/O Pin Input Hysteresis vs. V_{CC.}

- TWI START condition at bus timeout will cause transaction to be dropped
- TWI Data Interrupt Flag erroneously read as set
- WDR instruction inside closed window will not issue reset

1. Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously

If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then selected/deselected as input for another AC, the first comparator will be affected for up to 1 μ s and could potentially give a wrong comparison result.


Problem fix/Workaround

If the Bandgap is required for both ACs simultaneously, configure the input selection for both ACs before enabling any of them.

2. VCC voltage scaler for AC is non-linear

The 6-bit VCC voltage scaler in the Analog Comparators is non-linear.

Figure 36-1. Analog Comparator Voltage Scaler vs. Scalefac

Problem fix/Workaround

Use external voltage input for the analog comparator if accurate voltage levels are needed

3. The ADC has up to ±2 LSB inaccuracy

The ADC will have up to ± 2 LSB inaccuracy, visible as a saw-tooth pattern on the input voltage/ output value transfer function of the ADC. The inaccuracy increases with increasing voltage reference reaching ± 2 LSB with 3V reference.

32. Accessing EBI address space with PREBI set will lock Bus Master

If EBI Power Reduction Bit is set while EBI is enabled, accessing external memory could result in bus hang-up, blocking all further access to all data memory.

Problem fix/Workaround

Ensure that EBI is disabled before setting EBI Power Reduction bit.

33. RTC Counter value not correctly read after sleep

If the RTC is set to wake up the device on RTC Overflow and bit 0 of RTC CNT is identical to bit 0 of RTC PER as the device is entering sleep, the value in the RTC count register can not be read correctly within the first prescaled RTC clock cycle after wakeup. The value read will be the same as the value in the register when entering sleep.

The same applies if RTC Compare Match is used as wake-up source.

Problem fix/Workaround

Wait at least one prescaled RTC clock cycle before reading the RTC CNT value.

34. Pending asynchronous RTC-interrupts will not wake up device

Asynchronous Interrupts from the Real-Time-Counter that is pending when the sleep instruction is executed, will be ignored until the device is woken from another source or the source triggers again.

Problem fix/Workaround

None.

35. TWI, the minimum I²C SCL low time could be violated in Master Read mode

If the TWI is in Master Read mode and issues a Repeated Start on the bus, this will immediately release the SCL line even if one complete SCL low period has not passed. This means that the minimum SCL low time in the I2C specification could be violated.

Problem fix/Workaround

If this is a problem in the application, ensure in software that the Repeated Start is never issued before one SCL low time has passed.

36. TWI address-mask feature is non-functional

The address-mask feature is non-functional, so the TWI can not perform hardware address match on more than one address.

Problem fix/Workaround

If the TWI must respond to multiple addresses, enable Promiscuous Mode for the TWI to respond to all address and implement the address-mask function in software.

36.2 ATxmega64A1 and ATxmega128A1 rev. G

- Bootloader Section in Flash is non-functional
- Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously
- DAC is nonlinear and inaccurate when reference is above 2.4V
- ADC gain stage output range is limited to 2.4 V
- The ADC has up to ±2 LSB inaccuracy
- TWI, a general address call will match independent of the R/W-bit value
- TWI, the minimum I²C SCL low time could be violated in Master Read mode
- Setting HIRES PR bit makes PWM output unavailable
- EEPROM erase and write does not work with all System Clock sources
- BOD will be enabled after any reset
- Propagation delay analog Comparator increasing to 2 ms at -40°C
- Sampled BOD in Active mode will cause noise when bandgap is used as reference
- Default setting for SDRAM refresh period too low
- Flash Power Reduction Mode can not be enabled when entering sleep mode
- Enabling Analog Comparator B output will cause JTAG failure
- JTAG enable does not override Analog Comparator B output
- Bandgap measurement with the ADC is non-functional when V_{CC} is below 2.7V
- DAC refresh may be blocked in S/H mode
- Inverted I/O enable does not affect Analog Comparator Output
- Both DFLLs and both oscillators has to be enabled for one to work

1. Bootloader Section in Flash is non-functional

The Bootloader Section is non-functional, and bootloader or application code cannot reside in this part of the Flash.

Problem fix/Workaround

None, do not use the Bootloader Section.

2. Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously

If the Bandgap voltage is selected as input for one Analog Comparator (AC) and then selected/deselected as input for the another AC, the first comparator will be affected for up to 1 us and could potentially give a wrong comparison result.

Problem fix/Workaround

If the Bandgap is required for both ACs simultaneously, configure the input selection for both ACs before enabling any of them.

3. DAC is nonlinear and inaccurate when reference is above 2.4V

Using the DAC with a reference voltage above 2.4V give inaccurate output when converting codes that give below 0.75V output:

• ±20 LSB for continuous mode