

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	
Peripherals	POR, WDT
Number of I/O	11
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c505-04-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16C505 from Microchip Technology is a lowcost, high-performance, 8-bit, fully static, EPROM/ ROM-based CMOS microcontroller. It employs a RISC architecture with only 33 single word/single cycle instructions. All instructions are single cycle (200 μ s) except for program branches, which take two cycles. The PIC16C505 delivers performance an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical resulting in a typical 2:1 code compression over other 8-bit microcontrollers in its class. The easy to use and easy to remember instruction set reduces development time significantly.

The PIC16C505 product is equipped with special features that reduce system cost and power requirements. The Power-On Reset (POR) and Device Reset Timer (DRT) eliminate the need for external reset circuitry. There are five oscillator configurations to choose from, including INTRC internal oscillator mode and the power-saving LP (Low Power) oscillator mode. Power saving SLEEP mode, Watchdog Timer and code protection features improve system cost, power and reliability.

The PIC16C505 is available in the cost-effective One-Time-Programmable (OTP) version, which is suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in OTP microcontrollers, while benefiting from the OTP's flexibility.

The PIC16C505 product is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a 'C' compiler, a low-cost development programmer and a full featured programmer. All the tools are supported on $IBM^{\textcircled{B}}$ PC and compatible machines.

1.1 <u>Applications</u>

The PIC16C505 fits in applications ranging from personal care appliances and security systems to lowpower remote transmitters/receivers. The EPROM technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make this microcontroller perfect for applications with space limitations. Low-cost, low-power, highperformance, ease of use and I/O flexibility make the PIC16C505 very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of "glue" logic and PLD's in larger systems, and coprocessor applications).

TABLE 3-1:	PIC16C505 PINOUT DESCRIPTION
------------	------------------------------

Name	DIP Pin #	SOIC Pin #	l/O/P Type	Buffer Type	Description
RB0	13	13	I/O	TTL/ST	Bi-directional I/O port/ serial programming data. Can be software programmed for internal weak pull-up and wake-up from SLEEP on pin change. This buffer is a Schmitt Trigger input when used in serial programming mode.
RB1	12	12	I/O	TTL/ST	Bi-directional I/O port/ serial programming clock. Can be software programmed for internal weak pull-up and wake-up from SLEEP on pin change. This buffer is a Schmitt Trigger input when used in serial programming mode.
RB2	11	11	I/O	TTL	Bi-directional I/O port.
RB3/MCLR/Vpp	4	4	Ι	TTL/ST	Input port/master clear (reset) input/programming volt- age input. When configured as MCLR, this pin is an active low reset to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation. Can be software programmed for internal weak pull-up and wake-up from SLEEP on pin change. Weak pull- up only when configured as RB3. ST when configured as MCLR.
RB4/OSC2/CLKOUT	3	3	I/O	TTL	Bi-directional I/O port/oscillator crystal output. Con- nections to crystal or resonator in crystal oscillator mode (XT and LP modes only, RB4 in other modes). Can be software programmed for internal weak pull-up and wake-up from SLEEP on pin change. In EXTRC and INTRC modes, the pin output can be configured to CLKOUT, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RB5/OSC1/CLKIN	2	2	I/O	TTL/ST	Bidirectional IO port/oscillator crystal input/external clock source input (RB5 in Internal RC mode only, OSC1 in all other oscillator modes). TTL input when RB5, ST input in external RC oscillator mode.
RC0	10	10	I/O	TTL	Bi-directional I/O port.
RC1	9	9	I/O	TTL	Bi-directional I/O port.
RC2	8	8	I/O	TTL	Bi-directional I/O port.
RC3	7	7	I/O	TTL	Bi-directional I/O port.
RC4	6	6	I/O	TTL	Bi-directional I/O port.
RC5/T0CKI	5	5	I/O	ST	Bi-directional I/O port. Can be configured as T0CKI.
Vdd	1	1	Р	—	Positive supply for logic and I/O pins
Vss	14	14	Р		Ground reference for logic and I/O pins

Legend: I = input, O = output, I/O = input/output, P = power, — = not used, TTL = TTL input, ST = Schmitt Trigger input

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral functions to control the operation of the device (Table 4-1). The Special Function Registers can be classified into two sets. The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets ⁽²⁾
00h	INDF	Uses conte	nts of FSF	to addres	s data me	mory (not a	physical reg	ister)		xxxx xxxx	uuuu uuuu
01h	TMR0	8-bit real-ti	me clock/c	ounter						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Low order	B bits of PC	C						1111 1111	1111 1111
03h	STATUS	RBWUF	_	PAO	TO	PD	Z	DC	С	0001 1xxx	q00q quuu ⁽¹⁾
04h	FSR	Indirect dat	a memory	address p	ointer					110x xxxx	11uu uuuu
05h	OSCCAL	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	_	1000 00	uuuu uu
N/A	TRISB	—		I/O contro	l registers					11 1111	11 1111
N/A	TRISC	_		I/O contro	l registers					11 1111	11 1111
N/A	OPTION	RBWU	RBPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
06h	PORTB	—		RB5	RB4	RB3	RB2	RB1	RB0	xx xxxx	uu uuuu
07h	PORTC	—		RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	uu uuuu

TABLE 4-1:SPECIAL FUNCTION REGISTER (SFR) SUMMARY

Legend: Shaded cells not used by Port Registers, read as '0', — = unimplemented, read as '0', x = unknown, u = unchanged, q = depends on condition.

Note 1: If reset was due to wake-up on pin change, then bit 7 = 1. All other rests will cause bit 7 = 0.

Note 2: Other (non-power-up) resets include external reset through MCLR, watchdog timer and wake-up on pin change reset.

TABLE 5-1: SUMMARY OF PORT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	TRISB	—	_	I/O contro	l registers					11 1111	11 1111
N/A	TRISC	—	_	I/O contro	l registers					11 1111	11 1111
N/A	OPTION	RBWU	RBPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
03h	STATUS	RBWUF	_	PAO	PAO TO PD Z DC C						q00q quuu ⁽¹⁾
06h	PORTB	—	—	RB5	RB5 RB4 RB3 RB2 RB1 RB0						uu uuuu
07h	PORTC			RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	uu uuuu

Legend: Shaded cells not used by Port Registers, read as '0', — = unimplemented, read as '0', x = unknown, u = unchanged, q = depends on condition.

Note 1: If reset was due to wake-up on pin change, then bit 7 = 1. All other rests will cause bit 7 = 0.

5.5 I/O Programming Considerations

5.5.1 BI-DIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU, bit5 to be set and the PORTB value to be written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (say bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Example 5-1 shows the effect of two sequential read-modify-write instructions (e.g., ${\tt BCF}\,,~{\tt BSF},$ etc.) on an I/O port.

A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wiredand"). The resulting high output currents may damage the chip.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

; Initial PORTB Settings ; PORTB<5:3> Inputs ; PORTB<2:0> Outputs ; ; PORTB latch PORTB pins -----; BCF ;--01 -ppp --11 pppp PORTB, 5 BCF PORTB, 4 ;--10 -ppp --11 pppp MOVLW 007h ;

TRIS PORTB

; ;Note that the user may have expected the pin ;values to be --00 pppp. The 2nd BCF caused ;RB5 to be latched as the pin value (High).

;--10 -ppp

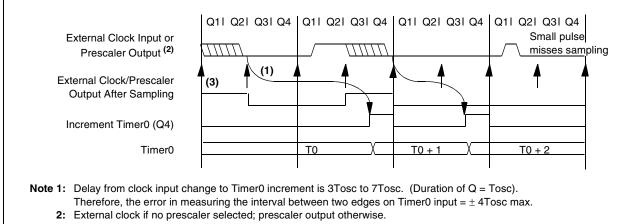
--11 pppp

5.5.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction causes that file to be read into the CPU. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

NOTES:

6.1 Using Timer0 with an External Clock


When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

6.1.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-4). Therefore, it is necessary for T0CKI to be high for at least 2T0sc (and a small RC delay of 20 ns) and low for at least 2T0sc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

6.1.2 TIMER0 INCREMENT DELAY

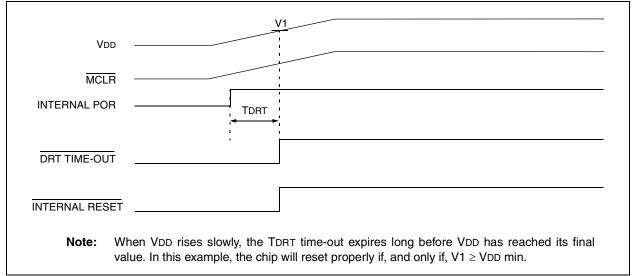

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-4 shows the delay from the external clock edge to the timer incrementing.

FIGURE 6-4: TIMER0 TIMING WITH EXTERNAL CLOCK

3: The arrows indicate the points in time where sampling occurs.

FIGURE 7-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME

7.5 Device Reset Timer (DRT)

In the PIC16C505, the DRT runs any time the device is powered up. DRT runs from RESET and varies based on oscillator selection and reset type (see Table 7-5).

The DRT operates on an internal RC oscillator. The processor is kept in RESET as long as the DRT is active. The DRT delay allows VDD to rise above VDD min. and for the oscillator to stabilize.

Oscillator circuits based on crystals or ceramic resonators require a certain time after power-up to establish a stable oscillation. The on-chip DRT keeps the device in a RESET condition for approximately 18 ms after MCLR has reached a logic high (VIHMCLR) level. Thus, programming RB3/MCLR/VPP as MCLR and using an external RC network connected to the MCLR input is not required in most cases, allowing for savings in cost-sensitive and/or space restricted applications, as well as allowing the use of the RB3/MCLR/VPP pin as a general purpose input.

The Device Reset time delay will vary from chip to chip due to VDD, temperature and process variation. See AC parameters for details.

The DRT will also be triggered upon a Watchdog Timer time-out. This is particularly important for applications using the WDT to wake from SLEEP mode automatically.

Reset sources are POR, MCLR, WDT time-out and Wake-up on pin change. (See Section 7.9.2, Notes 1, 2, and 3, page 37.)

7.6 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the external RC oscillator of the RB5/OSC1/CLKIN pin and the internal 4 MHz oscillator. That means that the WDT will run even if the main processor clock has been stopped, for example, by execution of a SLEEP instruction. During normal operation or SLEEP, a WDT reset or wake-up reset generates a device RESET.

The $\overline{\text{TO}}$ bit (STATUS<4>) will be cleared upon a Watchdog Timer reset.

The WDT can be permanently disabled by programming the configuration bit WDTE as a '0' (Section 7.1). Refer to the PIC16C505 Programming Specifications to determine how to access the configuration word.

TABLE 7-5: DRT (DEVICE RESET TIMER PERIOD)

,							
Oscillator Configuration	POR Reset	Subsequent Resets					
IntRC & ExtRC	18 ms (typical)	300 μs (typical)					
HS, XT & LP	18 ms (typical)	18 ms (typical)					

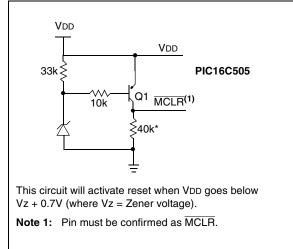
7.7 <u>Time-Out Sequence, Power Down,</u> and Wake-up from SLEEP Status Bits (TO/PD/RBWUF)

The $\overline{\text{TO}}$, $\overline{\text{PD}}$, and RBWUF bits in the STATUS register can be tested to determine if a RESET condition has been caused by a power-up condition, a $\overline{\text{MCLR}}$ or Watchdog Timer (WDT) reset.

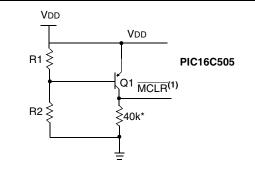
TABLE 7-7:	TO/PD/RBWUF STATUS
	AFTER RESET

RBWUF	TO	PD	RESET caused by				
0	0	0	WDT wake-up from SLEEP				
0	0	u	WDT time-out (not from SLEEP)				
0	1	0	MCLR wake-up from SLEEP				
0	1	1	Power-up				
0	u	u	MCLR not during SLEEP				
1	1	0	Wake-up from SLEEP on pin change				

Legend: u = unchanged


Note 1: The TO, PD, and RBWUF bits maintain their status (u) until a reset occurs. A low-pulse on the MCLR input does not change the TO, PD, and RBWUF status bits.

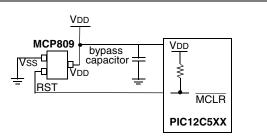
7.8 Reset on Brown-Out


A brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a brown-out.

To reset PIC16C505 devices when a brown-out occurs, external brown-out protection circuits may be built, as shown in Figure 7-12 and Figure 7-13.

FIGURE 7-12: BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 7-13: BROWN-OUT PROTECTION CIRCUIT 2



This brown-out circuit is less expensive, although less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$

Note 1: Pin must be confirmed as \overline{MCLR} .

FIGURE 7-14: BROWN-OUT PROTECTION CIRCUIT 3

This brown-out protection circuit employs Microchip Technology's MCP809 microcontroller supervisor. There are 7 different trip point selections to accommodate 5V to 3V systems.

INCF	Increment f							
Syntax:	[label] INCF f,d							
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$							
Operation:	(f) + 1 \rightarrow (dest)							
Status Affected:	Z							
Encoding:	0010 10df ffff							
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.							
Words:	1							
Cycles:	1							
Example:	INCF CNT, 1							
Before Instru CNT Z After Instruct CNT Z	= 0xFF = 0							

	Increment f, Skip if 0						
Syntax:	[label] INCFSZ f,d						
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$						
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0						
Status Affected:	None						
Encoding:	0011 11df ffff						
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.						
	If the result is 0, then the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two cycle instruction.						
Words:	1						
Cycles:	1(2)						
Example:	HERE INCFSZ CNT, 1 GOTO LOOP						
	CONTINUE •						
	uction						
Before Instru							
Before Instru PC	= address (HERE)						

RLF	Rotate Left f through Carry	RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RLF f,d	Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$
Operation:	See description below	Operation:	See description below
Status Affected:	С	Status Affected:	С
Encoding:	0011 01df ffff	Encoding:	0011 00df ffff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in regis- ter 'f'.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in reg- ister 'f'.
	C register 'f'		C register 'f'
Words:	1	Words:	1
Cycles:	1	Cycles:	1
Example:	RLF REG1,0	Example:	RRF REG1,0
Before Instru REG1 C After Instruc REG1 W C	= 1110 0110 = 0	Before Instru REG1 C After Instruc REG1 W C	= 1110 0110 = 0

9.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

9.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

9.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

9.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

9.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

10.3 DC CHARACTERISTICS:

PIC16C505-04 (Commercial, Industrial, Extended) PIC16C505-20(Commercial, Industrial, Extended) PIC16LC505-04 (Commercial, Industrial)

	I	PIC16L	.C505-04	(Com	mercial	, Indu	strial)				
							ss otherwise specified)				
		Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ (commercial)									
DC CHA	ARACTERISTICS	$\label{eq:constraint} \begin{array}{l} -40^\circ C \leq TA \leq +85^\circ C \mbox{ (industrial)} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ (extended)} \\ \end{array}$ Operating voltage VDD range as described in DC spec Section 10.1 and									
		Section		ו טט י	ange as c	lescribe	ed in DC spec Section 10.1 and				
Param	Characteristic	Sym Min Typ† Max Units Conditions									
No.	onaraoteristic	Oyin		1 YPI	Max	Onits	Conditions				
	Input Low Voltage										
	I/O ports	VIL									
D030	with TTL buffer	VIL	Vss	_	0.8V	v	For all $4.5 \le VDD \le 5.5V$				
D030A			VSS	_	0.15VDD	-	otherwise				
D031	with Schmitt Trigger buffer		VSS	_	0.2VDD	v					
D032	MCLR, RC5/T0CKI		VSS	_	0.2VDD	v					
DUUL	(in EXTRC mode)		¥00		0.2000	v					
D033	OSC1 (in XT, HS and LP)		Vss	_	0.3VDD	v	Note1				
2000	Input High Voltage				0.07.55	-					
	I/O ports	VIH		_							
D040	with TTL buffer		2.0	_	Vdd	v	$4.5 \leq VDD \leq 5.5V$				
D040A			0.25VDD	_	Vdd	v					
			+ 0.8VDD				otherwise				
D041	with Schmitt Trigger buffer		0.8Vdd	—	Vdd	V	For entire VDD range				
D042	MCLR, RC5/T0CKI		0.8Vdd	—	Vdd	V					
D042A	OSC1 (XT, HS and LP)		0.7Vdd	—	Vdd	V	Note1				
D043	OSC1 (in EXTRC mode)		0.9Vdd	_	Vdd	V					
D070	GPIO weak pull-up current (Note 4)	IPUR	50	250	400	μA	VDD = 5V, VPIN = VSS				
	Input Leakage Current (Notes 2, 3)										
D060	I/O ports	lı∟	—	—	±1	μA	$Vss \leq VPIN \leq VDD$, Pin at				
							hi-impedance				
D061	GP3/MCLRI (Note 5)		—	—	±30	μΑ	$Vss \le VPIN \le VDD$				
D061A	GP3/MCLRI (Note 6)		—	—	±5	μΑ	$Vss \le VPIN \le VDD$				
D063	OSC1		—	—	±5	μΑ	$Vss \leq VPIN \leq VDD, XT, HS and LP$				
							osc configuration				
	Output Low Voltage										
D080	I/O ports/CLKOUT	VOL	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V,				
							–40°C to +85°C				
D080A			—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5 V,				
Dage							-40°C to +125°C				
D083	OSC2		—	-	0.6	V	IOL = 1.6 mA, VDD = 4.5 V,				
Dacat					0.0		-40°C to +85°C				
D083A			_	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V,				
							–40°C to +125°C				

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

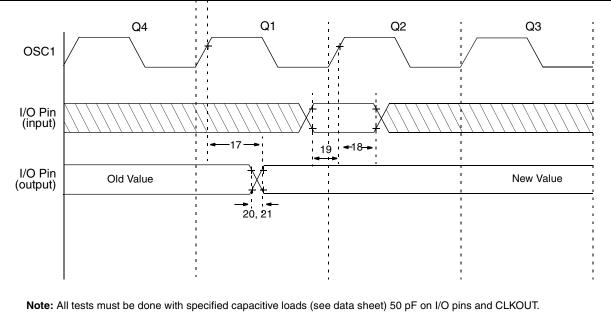
Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C505 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: Does not include GP3. For GP3 see parameters D061 and D061A.

5: This spec. applies to GP3/MCLR configured as external MCLR and GP3/MCLR configured as input with internal pull-up enabled.


6: This spec. applies when GP3/MCLR is configured as an input with pull-up disabled. The leakage current of the MCLR circuit is higher than the standard I/O logic.

VDD (Volts)	Temperature (°C)	Min	Тур	Max	Units
		RB0/R	B1/RB4		
2.5	-40	38K	42K	63K	W
	25	42K	48K	63K	W
	85	42K	49K	63K	W
	125	50K	55K	63K	W
5.5	-40	15K	17K	20K	W
	25	18K	20K	23K	W
	85	19K	22K	25K	W
	125	22K	24K	28K	W
		R	B3		
2.5	-40	285K	346K	417K	W
	25	343K	414K	532K	W
	85	368K	457K	532K	W
	125	431K	504K	593K	W
5.5	-40	247K	292K	360K	W
	25	288K	341K	437K	W
	85	306K	371K	448K	W
	125	351K	407K	500K	W

TABLE 10-1: PULL-UP RESISTOR RANGES - PIC16C505

* These parameters are characterized but not tested.

FIGURE 10-6: I/O TIMING - PIC16C505

TABLE 10-4:	TIMING REQUIREMENTS - PIC16C505

AC Characteristics		$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \ (commercial) \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \ (industrial) \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \ (extended) \\ \mbox{Operating Voltage VDD range is described in Section 10.1} \end{array}$					
Parameter No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid ^(2,3)	—	_	100*	ns	
18	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time) ⁽²⁾	TBD	—	_	ns	
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	TBD	—	_	ns	
20	TioR	Port output rise time ⁽³⁾	—	10	25**	ns	
21	TioF	Port output fall time ⁽³⁾	_	10	25**	ns	

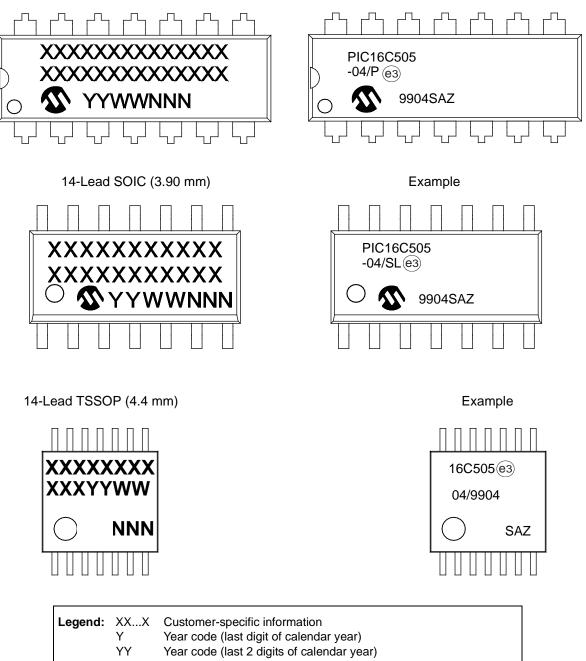
* These parameters are characterized but not tested.

** These parameters are design targets and are not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: Measurements are taken in EXTRC mode.

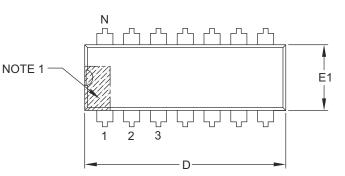
3: See Figure 10-4 for loading conditions.

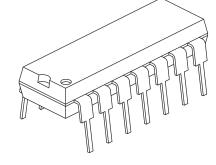

NOTES:

Example

12.0 PACKAGING INFORMATION

12.1 Package Marking Information

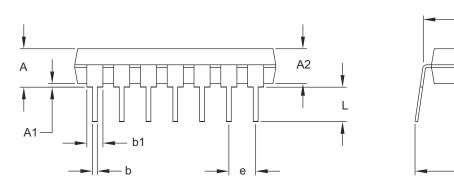

14-Lead PDIP (300 mil)



	YY	Year code (last 2 digits of calendar year)			
	WW	Week code (week of January 1 is week '01')			
	NNN	Alphanumeric traceability code			
	e3	Pb-free JEDEC designator for Matte Tin (Sn)			
	*	This package is Pb-free. The Pb-free JEDEC designator ((e3))			
		can be found on the outer packaging for this package.			
Note:	In the eve	ent the full Microchip part number cannot be marked on one line, it will			
	be carried over to the next line, thus limiting the number of availabl				
	characters for customer-specific information.				

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Е

eВ

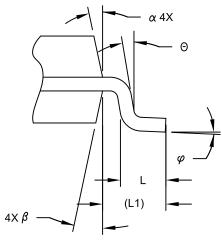
С

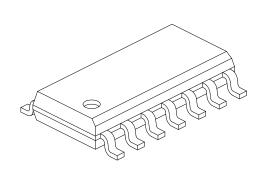
	INCHES			
Dimensior	Dimension Limits		NOM	MAX
Number of Pins	Ν	14		
Pitch	е		.100 BSC	
Top to Seating Plane	А	—	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.735	.750	.775
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

2. § Significant Characteristic.


3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		14	
Pitch	е		1.27 BSC	
Overall Height	Α	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	-	0.25
Overall Width	E	6.00 BSC		
Molded Package Width	E1	3.90 BSC		
Overall Length	D	8.65 BSC		
Chamfer (Optional)	h	0.25	-	0.50
Foot Length	L	0.40	-	1.27
Footprint	L1		1.04 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.10	-	0.25
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2

INDEX

Α	
ALU	7
Applications	
Architectural Overview	
Assembler	
MPASM Assembler	
В	
-	
Block Diagram	
On-Chip Reset Circuit	
Timer0 TMR0/WDT Prescaler	
Watchdog Timer Brown-Out Protection Circuit	
C	
C Compilers	
MPLAB C18	52
CAL0 bit	16
CAL1 bit	16
CAL2 bit	16
CAL3 bit	16
CALFST bit	16
CALSLW bit	16
Carry	
Clocking Scheme	
Code Protection	27, 37
Configuration Bits	
Configuration Word	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	85
D	
DC and AC Characteristics	69
Development Support	
Device Varieties	
Digit Carry	
E	
-	
Errata	2
F	
Family of Devices	
PIC16C505	4
FSR	18
1	
I/O Interfacing	10
I/O Ports	
I/O Programming Considerations	
ID Locations	
INDF	
Indirect Data Addressing	
Instruction Cycle	
Instruction Flow/Pipelining	
Instruction Set Summary	
Internet Address	

L	
Loading of PC 1	7
Μ	
Memory Organization 1	1
Data Memory 1	
Program Memory 1	
Microchip Internet Web Site	
MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB Integrated Development Environment Software 5 MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	
MPLINK Object Linker/MPLIB Object Librarian	
0	
OPTION Register1	5
OSC selection	
OSCCAL Register	
Oscillator Configurations	
Oscillator Types	
HS24	8
LP	8
RC	-
XT24	8
P	
Package Marking Information	3
Packaging Information	3
POR	
Device Reset Timer (DRT) 27, 3	
PD	
Power-On Reset (POR)	
PORTB	
Power-Down Mode	
Prescaler	
Program Counter	
Q	
Q cycles	0
R	
RC Oscillator	0
Read Modify Write	-
Reader Response	
Register File Map	
Registers	
Special Function 1	3
Reset 2	
Reset on Brown-Out	
Revision History	1
S	
SLEEP	7
Software Simulator (MPLAB SIM) 55	3
Special Features of the CPU 2	
Special Function Registers 1	
Stack	
STATUS	
STATUS Register 1	4
T	
Timer0	_
Switching Prescaler Assignment	
Timer0	
Timer0 (TMR0) Module	
TMR0 with External Clock	
Timing Parameter Symbology and Load Conditions	
TRIS Registers	

NOTES: