
Microchip Technology - PIC16C505-20I/P Datasheet

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

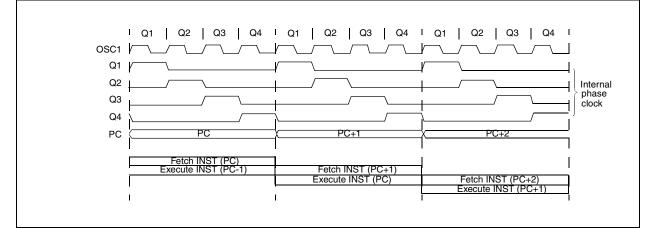
Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	11
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c505-20i-p

Email: info@E-XFL.COM

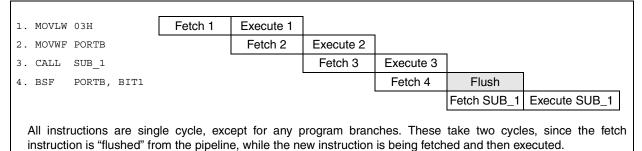
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Clocking Scheme/Instruction Cycle


The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter is incremented every Q1, and the instruction is fetched from program memory and latched into the instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2 and Example 3-1.

3.2 Instruction Flow/Pipelining

An Instruction cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral functions to control the operation of the device (Table 4-1). The Special Function Registers can be classified into two sets. The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets ⁽²⁾
00h	INDF	Uses contents of FSR to address data memory (not a physical register)								xxxx xxxx	uuuu uuuu
01h	TMR0	8-bit real-ti	me clock/c	ounter						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Low order a	Low order 8 bits of PC							1111 1111	1111 1111
03h	STATUS	RBWUF	_	PAO	TO	PD	Z	DC	С	0001 1xxx	q00q quuu ⁽¹⁾
04h	FSR	Indirect dat	a memory	address p	ointer					110x xxxx	11uu uuuu
05h	OSCCAL	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	_	_	1000 00	uuuu uu
N/A	TRISB	—		I/O contro	l registers					11 1111	11 1111
N/A	TRISC	—		I/O contro	l registers					11 1111	11 1111
N/A	OPTION	RBWU	RBPU	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
06h	PORTB	—		RB5	RB4	RB3	RB2	RB1	RB0	xx xxxx	uu uuuu
07h	PORTC	—		RC5	RC4	RC3	RC2	RC1	RC0	xx xxxx	uu uuuu

TABLE 4-1:SPECIAL FUNCTION REGISTER (SFR) SUMMARY

Legend: Shaded cells not used by Port Registers, read as '0', — = unimplemented, read as '0', x = unknown, u = unchanged, q = depends on condition.

Note 1: If reset was due to wake-up on pin change, then bit 7 = 1. All other rests will cause bit 7 = 0.

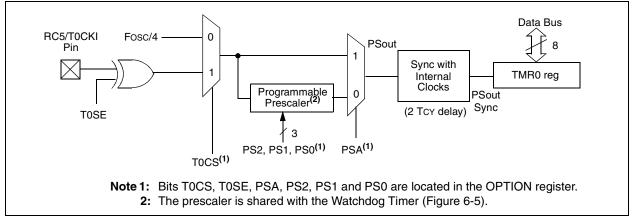
Note 2: Other (non-power-up) resets include external reset through MCLR, watchdog timer and wake-up on pin change reset.

6.0 TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module has the following features:

- 8-bit timer/counter register, TMR0
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
 - Edge select for external clock

Figure 6-1 is a simplified block diagram of the Timer0 module.


Timer mode is selected by clearing the TOCS bit (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit (OPTION<5>). In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The T0SE bit (OPTION<4>) determines the source edge. Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.1.

The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. Section 6.2 details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 6-1.

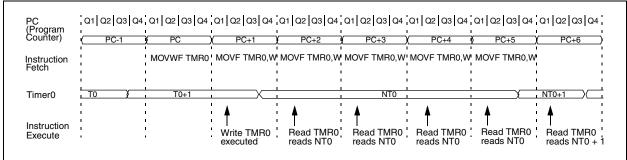

FIGURE 6-1: TIMER0 BLOCK DIAGRAM

FIGURE 6-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE

(Program Counter)	(PC-1	X PC	(PC+1	PC+2	PC+3	(PC+4)	PC+5 (PC+6
nstruction Fetch	1 1 1	MOVWF TMR0	MOVF TMR0,W					
Timer0		Τ0+1 χ	T0+2 X		NTO		NT0+1)	NT0+2
Instruction Executed	1 1 1	1 1 1	Write TMR0	Read TMR0	Read TMR0	Read TMR0	Read TMR0	Read TMR0

FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
01h	TMR0	Timer0 -	8-bit real	-time clo	ck/count	ter				xxxx xxxx	uuuu uuuu
N/A	OPTION	RBWU	RBPU	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
N/A	TRISC	—	_	RC5	RC4	RC3	RC2	RC1	RC0	11 1111	11 1111

Legend: Shaded cells not used by Timer0, - = unimplemented, x = unknown, u = unchanged.

7.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance, or one with series resonance.

Figure 7-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 7-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

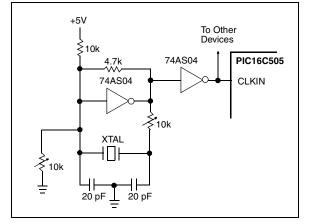
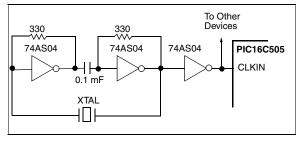



Figure 7-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 7-4: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

7.2.4 EXTERNAL RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used.

Figure 7-5 shows how the R/C combination is connected to the PIC16C505. For Rext values below 2.2 k Ω , the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g., 1 M Ω) the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

The Electrical Specifications section shows RC frequency variation from part to part due to normal process variation. The variation is larger for larger values of R (since leakage current variation will affect RC frequency more for large R) and for smaller values of C (since variation of input capacitance will affect RC frequency more).

Also, see the Electrical Specifications section for variation of oscillator frequency due to VDD for given Rext/Cext values, as well as frequency variation due to operating temperature for given R, C and VDD values.

FIGURE 7-5: EXTERNAL RC OSCILLATOR MODE

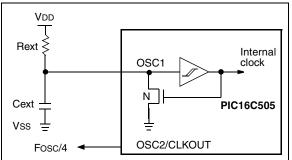


FIGURE 7-7: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

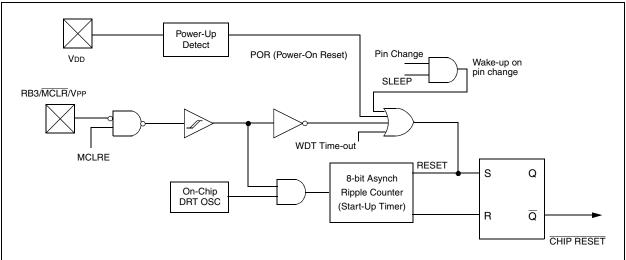


FIGURE 7-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR PULLED LOW)

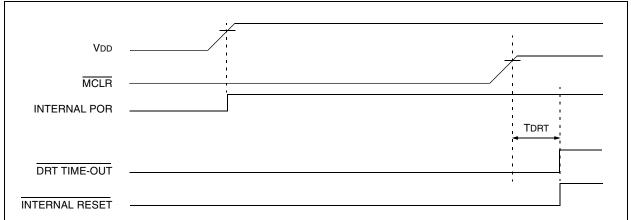
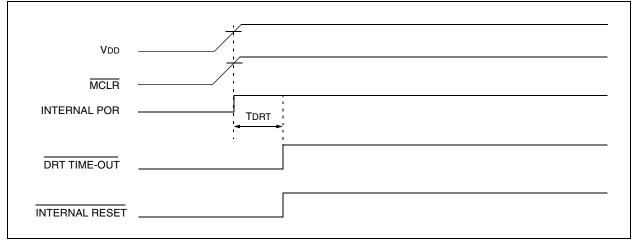
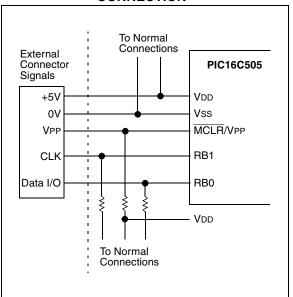



FIGURE 7-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME

7.12 In-Circuit Serial Programming


The PIC16C505 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

The device is placed into a program/verify mode by holding the RB1 and RB0 pins low while raising the $\overline{\text{MCLR}}$ (VPP) pin from VIL to VIHH (see programming specification). RB1 becomes the programming clock and RB0 becomes the programming data. Both RB1 and RB0 are Schmitt Trigger inputs in this mode.

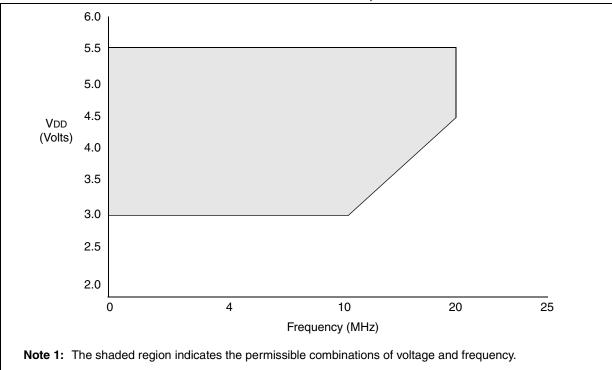
After reset, a 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C505 Programming Specifications.

A typical in-circuit serial programming connection is shown in Figure 7-15.

FIGURE 7-15: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

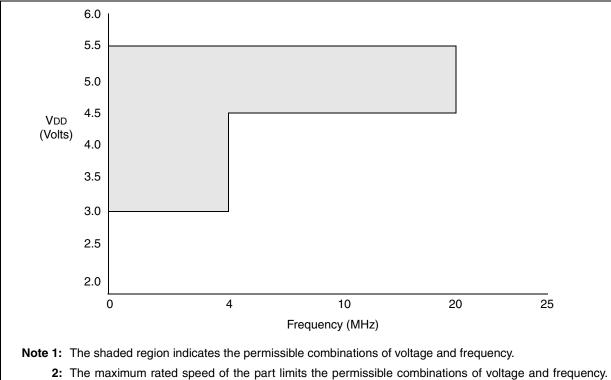
ADDWF	Add W and f						
Syntax:	[label] ADDWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$						
Operation:	$(W) + (f) \to (dest)$						
Status Affected:	C, DC, Z						
Encoding:	0001 11df ffff						
Description:	Add the contents of the W register and register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is '1', the result is stored back in reg- ister 'f'.						
Words:	1						
Cycles:	1						
Example:	ADDWF FSR, 0						
Before Instru W = FSR = After Instruct W = FSR =	0x17 0xC2 tion 0xD9						

ANDLW	And liter	al with W	v				
Syntax:	[<i>label</i>] ANDLW k						
Operands:	$0 \le k \le 255$						
Operation:	(W).AND. (k) \rightarrow (W)						
Status Affected:	Z						
Encoding:	1110	kkkk	kkkk				
Description:	The conte AND'ed v The resulter.	vith the e	ight-bit lit	eral 'k'.			
Words:	1						
Cycles:	1						
Example:	ANDLW	0x5F					
Before Instru W =	oxA3						
After Instruct W =	ion 0x03						


ANDWF	AND W with f						
Syntax:	[label] ANDWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$						
Operation:	(W) .AND. (f) \rightarrow (dest)						
Status Affected:	Z						
Encoding:	0001 01df ffff						
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example:	ANDWF FSR, 1						
Before Instru W = FSR = After Instruct W = FSR =	0x17 0xC2 iion 0x17						

BCF	Bit Clear	r f						
Syntax:	[label]	BCF f,t)					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$							
Operation:	$0 \rightarrow (f < b >)$							
Status Affected:	None							
Encoding:	0100	0100 bbbf ffff						
Description:	Bit 'b' in r	egister 'f'	is cleare	d.				
Words:	1							
Cycles:	1							
Example:	BCF	FLAG_REG	5, 7					
20.0.0	Before Instruction FLAG_REG = 0xC7							
After Instruc FLAG_R	tion EG = 0x47	7						

INCF	Increment f							
Syntax:	[label] INCF f,d							
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$							
Operation:	(f) + 1 \rightarrow (dest)							
Status Affected:	Z							
Encoding:	0010 10df ffff							
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.							
Words:	1							
Cycles:	1							
Example:	INCF CNT, 1							
Before Instru CNT Z After Instruct CNT Z	= 0xFF = 0							


	Increment f, Skip if 0					
Syntax:	[label] INCFSZ f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0					
Status Affected:	None					
Encoding:	0011 11df ffff					
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result i placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, then the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two cycle instruction.					
Words:	1					
Cycles:	1(2)					
Example:	HERE INCFSZ CNT, 1 GOTO LOOP					
	CONTINUE •					
	uction					
Before Instru						
Before Instru PC	= address (HERE)					

2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

Please reference the Product Identification System section for the maximum rated speed of the parts.

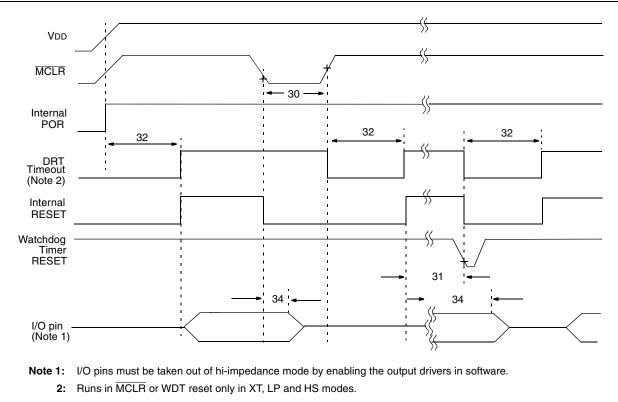
10.3 DC CHARACTERISTICS:

PIC16C505-04 (Commercial, Industrial, Extended) PIC16C505-20(Commercial, Industrial, Extended) PIC16LC505-04 (Commercial, Industrial)

	I	PIC16L	.C505-04	(Com	mercial	, Indu	strial)
							ss otherwise specified)
		Operati	ing tempera	ature			+70°C (commercial)
DC CHA	ARACTERISTICS						85°C (industrial)
		Oporati	ing voltage	Voor			125°C (extended) ed in DC spec Section 10.1 and
		Section		י טט י	ange as c	lescribe	ed in DC spec Section 10.1 and
Param	Characteristic	Section	Min	Typt	Max	Conditions	
No.	onaraoteristic	Oyin		1 YPI	Max	Units	Conditions
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer	VIL	Vss	_	0.8V	v	For all $4.5 \le VDD \le 5.5V$
D030A			VSS	_	0.15VDD	-	otherwise
D031	with Schmitt Trigger buffer		VSS	_	0.2VDD	v	
D032	MCLR, RC5/T0CKI		VSS	_	0.2VDD	v	
DUUL	(in EXTRC mode)		¥00		0.2000	v	
D033	OSC1 (in XT, HS and LP)		Vss	_	0.3VDD	v	Note1
2000	Input High Voltage				0.0755	-	
	I/O ports	VIH		_			
D040	with TTL buffer		2.0	_	Vdd	v	$4.5 \leq VDD \leq 5.5V$
D040A			0.25VDD	_	Vdd	v	
			+ 0.8VDD				otherwise
D041	with Schmitt Trigger buffer		0.8Vdd	—	Vdd	v	For entire VDD range
D042	MCLR, RC5/T0CKI		0.8Vdd	—	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	—	Vdd	V	Note1
D043	OSC1 (in EXTRC mode)		0.9Vdd	_	Vdd	V	
D070	GPIO weak pull-up current (Note 4)	IPUR	50	250	400	μA	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	—	—	±1	μA	$Vss \leq VPIN \leq VDD$, Pin at
							hi-impedance
D061	GP3/MCLRI (Note 5)		—	—	±30	μΑ	$Vss \le VPIN \le VDD$
D061A	GP3/MCLRI (Note 6)		—	—	±5	μΑ	$Vss \le VPIN \le VDD$
D063	OSC1		—	—	±5	μΑ	$Vss \leq VPIN \leq VDD, XT, HS and LP$
							osc configuration
	Output Low Voltage						
D080	I/O ports/CLKOUT	VOL	—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V,
							–40°C to +85°C
D080A			—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5 V,
Dage							-40°C to +125°C
D083	OSC2		—	-	0.6	V	IOL = 1.6 mA, VDD = 4.5 V,
Dacat					0.0		-40°C to +85°C
D083A			_	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V,
							–40°C to +125°C

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C505 be driven with external clock in RC mode.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: Does not include GP3. For GP3 see parameters D061 and D061A.

5: This spec. applies to GP3/MCLR configured as external MCLR and GP3/MCLR configured as input with internal pull-up enabled.

6: This spec. applies when GP3/MCLR is configured as an input with pull-up disabled. The leakage current of the MCLR circuit is higher than the standard I/O logic.

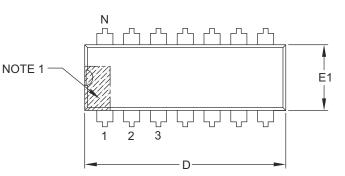
FIGURE 10-7: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING - PIC16C505

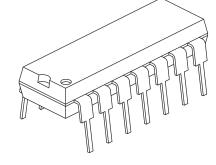
TABLE 10-5: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER - PIC16C505

AC Charac	teristics	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ (commercial)} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ (industrial)} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ (extended)} \\ \mbox{Operating Voltage VDD range is described in Section 10.1} \end{array}$							
Parameter No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions		
30	TmcL	MCLR Pulse Width (low)	2000*		—	ns	VDD = 5.0 V		
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9*	18*	30*	ms	VDD = 5.0 V (Commercial)		
32	Tdrt	Device Reset Timer Period(2)	9*	18*	30*	ms	VDD = 5.0 V (Commercial)		
34	Tioz	I/O Hi-impedance from MCLR Low	_	_	2000*	ns			

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

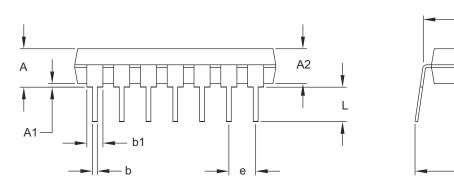

TABLE 10-6: DRT (DEVICE RESET TIMER PERIOD - PIC16C505


Oscillator Configuration	POR Reset	Subsequent Resets
IntRC & ExtRC	18 ms (typical)	300 μs (typical)
XT, HS & LP	18 ms (typical)	18 ms (typical)

NOTES:

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Е

eВ

С

	Units		INCHES	
Dimensior	n Limits	MIN	NOM	MAX
Number of Pins	Ν		14	
Pitch	е	.100 BSC		
Top to Seating Plane	А	—	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.735	.750	.775
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

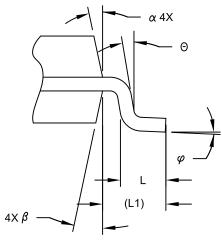
1. Pin 1 visual index feature may vary, but must be located with the hatched area.

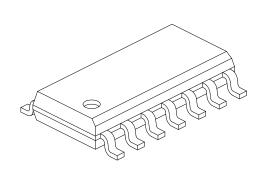
2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B


14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

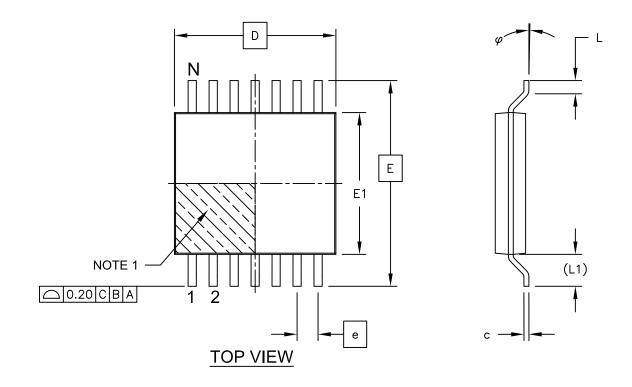
Microchip Technology Drawing No. C04-065C Sheet 1 of 2

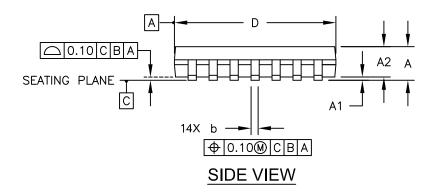
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	Units	MILLIMETERS		S
Dimension Lir	nits	MIN	NOM	MAX
Number of Pins	N		14	
Pitch	е	1.27 BSC		
Overall Height	Α	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff §	A1	0.10	-	0.25
Overall Width	E		6.00 BSC	
Molded Package Width	E1	3.90 BSC		
Overall Length	D		8.65 BSC	
Chamfer (Optional)	h	0.25	-	0.50
Foot Length	L	0.40	-	1.27
Footprint	L1		1.04 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.10	-	0.25
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

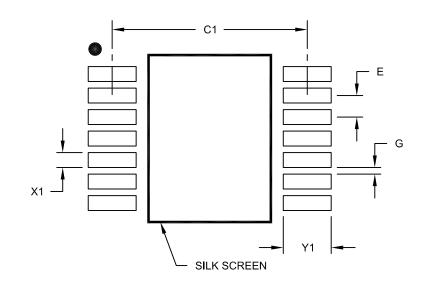

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-087C Sheet 1 of 2

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimensio	on Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	C1		5.90	
Contact Pad Width (X14)	X1			0.45
Contact Pad Length (X14)	Y1			1.45
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2087A

PIC18F66K80 FAMILY

NOTES:

W

Wake-up from SLEEP	
Watchdog Timer (WDT)	
Period	35
Programming Considerations	
WWW Address	
WWW, On-Line Support	2
Z	
Zero bit	7