

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	OTP
EEPROM Size	•
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	•
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc505t-04-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16C505 from Microchip Technology is a lowcost, high-performance, 8-bit, fully static, EPROM/ ROM-based CMOS microcontroller. It employs a RISC architecture with only 33 single word/single cycle instructions. All instructions are single cycle (200 μ s) except for program branches, which take two cycles. The PIC16C505 delivers performance an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical resulting in a typical 2:1 code compression over other 8-bit microcontrollers in its class. The easy to use and easy to remember instruction set reduces development time significantly.

The PIC16C505 product is equipped with special features that reduce system cost and power requirements. The Power-On Reset (POR) and Device Reset Timer (DRT) eliminate the need for external reset circuitry. There are five oscillator configurations to choose from, including INTRC internal oscillator mode and the power-saving LP (Low Power) oscillator mode. Power saving SLEEP mode, Watchdog Timer and code protection features improve system cost, power and reliability.

The PIC16C505 is available in the cost-effective One-Time-Programmable (OTP) version, which is suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in OTP microcontrollers, while benefiting from the OTP's flexibility.

The PIC16C505 product is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a 'C' compiler, a low-cost development programmer and a full featured programmer. All the tools are supported on $IBM^{\textcircled{B}}$ PC and compatible machines.

1.1 <u>Applications</u>

The PIC16C505 fits in applications ranging from personal care appliances and security systems to lowpower remote transmitters/receivers. The EPROM technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make this microcontroller perfect for applications with space limitations. Low-cost, low-power, highperformance, ease of use and I/O flexibility make the PIC16C505 very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of "glue" logic and PLD's in larger systems, and coprocessor applications).

NOTES:

FIGURE 3-1: PIC16C505 BLOCK DIAGRAM

3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter is incremented every Q1, and the instruction is fetched from program memory and latched into the instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2 and Example 3-1.

3.2 Instruction Flow/Pipelining

An Instruction cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

4.5 OSCCAL Register

The Oscillator Calibration (OSCCAL) register is used to calibrate the internal 4 MHz oscillator. It contains six bits for calibration

Note:	Please note that erasing the device will
	also erase the pre-programmed internal
	calibration value for the internal oscillator.
	The calibration value must be read prior to
	erasing the part, so it can be repro-
	grammed correctly later.

After you move in the calibration constant, do not change the value. See Section 7.2.5

REGISTER 4-3: OSCCAL REGISTER (ADDRESS 05h) PIC16C505

7.2.5 INTERNAL 4 MHz RC OSCILLATOR

The internal RC oscillator provides a fixed 4 MHz (nominal) system clock at VDD = 5V and $25^{\circ}C$, see Electrical Specifications section for information on variation over voltage and temperature.

In addition, a calibration instruction is programmed into the last address of memory, which contains the calibration value for the internal RC oscillator. This location is always protected, regardless of the code protect settings. This value is programmed as a MOVLW XX instruction where XX is the calibration value, and is placed at the reset vector. This will load the W register with the calibration value upon reset and the PC will then roll over to the users program at address 0x000. The user then has the option of writing the value to the OSCCAL Register (05h) or ignoring it.

OSCCAL, when written to with the calibration value, will "trim" the internal oscillator to remove process variation from the oscillator frequency.

Note: Please note that erasing the device will also erase the pre-programmed internal calibration value for the internal oscillator. The calibration value must be read prior to erasing the part so it can be reprogrammed correctly later.

For the PIC16C505, only bits <7:2> of OSCCAL are implemented.

7.3 <u>RESET</u>

The device differentiates between various kinds of reset:

- a) Power on reset (POR)
- b) MCLR reset during normal operation
- c) MCLR reset during SLEEP
- d) WDT time-out reset during normal operation
- e) WDT time-out reset during SLEEP
- f) Wake-up from SLEEP on pin change

Some registers are not reset in any way, they are unknown on POR and unchanged in any other reset. Most other registers are reset to "reset state" on poweron reset (POR), MCLR, WDT or wake-up on pin change reset during normal operation. They are not affected by a WDT reset during SLEEP or MCLR reset during SLEEP, since these resets are viewed as resumption of normal operation. The exceptions to this are TO, PD and RBWUF bits. They are set or cleared differently in different reset situations. These bits are used in software to determine the nature of reset. See Table 7-3 for a full description of reset states of all registers.

FIGURE 7-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME

7.5 Device Reset Timer (DRT)

In the PIC16C505, the DRT runs any time the device is powered up. DRT runs from RESET and varies based on oscillator selection and reset type (see Table 7-5).

The DRT operates on an internal RC oscillator. The processor is kept in RESET as long as the DRT is active. The DRT delay allows VDD to rise above VDD min. and for the oscillator to stabilize.

Oscillator circuits based on crystals or ceramic resonators require a certain time after power-up to establish a stable oscillation. The on-chip DRT keeps the device in a RESET condition for approximately 18 ms after MCLR has reached a logic high (VIHMCLR) level. Thus, programming RB3/MCLR/VPP as MCLR and using an external RC network connected to the MCLR input is not required in most cases, allowing for savings in cost-sensitive and/or space restricted applications, as well as allowing the use of the RB3/MCLR/VPP pin as a general purpose input.

The Device Reset time delay will vary from chip to chip due to VDD, temperature and process variation. See AC parameters for details.

The DRT will also be triggered upon a Watchdog Timer time-out. This is particularly important for applications using the WDT to wake from SLEEP mode automatically.

Reset sources are POR, MCLR, WDT time-out and Wake-up on pin change. (See Section 7.9.2, Notes 1, 2, and 3, page 37.)

7.6 <u>Watchdog Timer (WDT)</u>

The Watchdog Timer (WDT) is a free running on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the external RC oscillator of the RB5/OSC1/CLKIN pin and the internal 4 MHz oscillator. That means that the WDT will run even if the main processor clock has been stopped, for example, by execution of a SLEEP instruction. During normal operation or SLEEP, a WDT reset or wake-up reset generates a device RESET.

The $\overline{\text{TO}}$ bit (STATUS<4>) will be cleared upon a Watchdog Timer reset.

The WDT can be permanently disabled by programming the configuration bit WDTE as a '0' (Section 7.1). Refer to the PIC16C505 Programming Specifications to determine how to access the configuration word.

TABLE 7-5: DRT (DEVICE RESET TIMER PERIOD)

Oscillator Configuration	POR Reset	Subsequent Resets
IntRC & ExtRC	18 ms (typical)	300 μs (typical)
HS, XT & LP	18 ms (typical)	18 ms (typical)

7.6.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT (under software control) by writing to the OPTION register. Thus, a time-out period of a nominal 2.3 seconds can be realized. These periods vary with temperature, VDD and part-topart process variations (see DC specs).

Under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler), it may take several seconds before a WDT time-out occurs.

7.6.2 WDT PROGRAMMING CONSIDERATIONS

The CLRWDT instruction clears the WDT and the postscaler, if assigned to the WDT, and prevents it from timing out and generating a device RESET.

The SLEEP instruction resets the WDT and the postscaler, if assigned to the WDT. This gives the maximum SLEEP time before a WDT wake-up reset.

FIGURE 7-11: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 7-6: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIM	ER
--	----

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-On Reset	Value on All Other Resets
N/A	OPTION	RBWU	RBPU	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: Shaded boxes = Not used by Watchdog Timer, — = unimplemented, read as '0', u = unchanged.

Mnemo	nic			12-	Bit Opc	ode	Status	
Operar	nds	Description	Cycles	MSb		LSb	Affected	Notes
ADDWF	f,d	Add W and f	1	0001	11df	ffff	C,DC,Z	1,2,4
ANDWF	f,d	AND W with f	1	0001	01df	ffff	Z	2,4
CLRF	f	Clear f	1	0000	011f	ffff	Z	4
CLRW	-	Clear W	1	0000	0100	0000	Z	
COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2,4
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	0010	11df	ffff	None	2,4
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2,4
INCFSZ	f, d	Increment f, Skip if 0	1(2)	0011	11df	ffff	None	2,4
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2,4
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2,4
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1,4
NOP	-	No Operation	1	0000	0000	0000	None	
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2,4
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2,4
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C,DC,Z	1,2,4
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2,4
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2,4
BIT-ORIEN	TED FIL	E REGISTER OPERATIONS	•	•				
BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2,4
BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2,4
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	0110	bbbf	ffff	None	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	0111	bbbf	ffff	None	
LITERAL A		NTROL OPERATIONS	•					
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	1001	kkkk	kkkk	None	1
CLRWDT	k	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
IORLW	k	Inclusive OR Literal with W	1	1101	kkkk	kkkk	Z	
MOVLW	k	Move Literal to W	1	1100	kkkk	kkkk	None	
OPTION	-	Load OPTION register	1	0000	0000	0010	None	
RETLW	k	Return, place Literal in W	2	1000	kkkk	kkkk	None	
SLEEP	-	Go into standby mode	1	0000	0000	0011	TO, PD	
TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3
XORLW	k	Exclusive OR Literal to W	1	1111	kkkk	kkkk	Z	

TABLE 8-2: INSTRUCTION SET SUMMARY

Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for GOTO. (Section 4.6)

2: When an I/O register is modified as a function of itself (e.g. MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 6 causes the contents of the W register to be written to the tristate latches of PORTB. A '1' forces the pin to a hi-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

BSF	Bit Set f					
Syntax:	[<i>label</i>] BSF f,b					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	$1 \rightarrow (f < b >)$					
Status Affected:	None					
Encoding:	0101 bbbf ffff					
Description:	Bit 'b' in register 'f' is set.					
Words:	1					
Cycles:	1					
Example:	BSF FLAG_REG, 7					
Before Instru FLAG_R	ction EG = 0x0A					
After Instruction FLAG_REG = 0x8A						
BTFSC	Bit Test f, Skip if Clear					
Syntax:	[label] BTFSC f,b					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	skip if $(f < b >) = 0$					

Operation:	SKIP If $(f < D >) = 0$						
Status Affected:	None						
Encoding:	01	10	bbbf	ffff]		
Description: If bit 'b' in register 'f' is 0, then next instruction is skipped. If bit 'b' is 0, then the next inst tion fatched during the curren							
	inst and mal	ructic l a NC king t	on execut op is exec his a 2 cy	ion is disc cuted inste cle instru	arded, ead, iction.		
Words:	1						
Cycles:	1(2))					
Example:	HER FAL TRU	E SE E	BTFSC GOTO •	FLAG,1 PROCESS	3_CODE		
Before Instru PC	uctior	ו =	address	(HERE)			
After Instruc	tion						
if FLAG<	1>	=	0,				
PC		=	address (TRUE);			
If FLAG< PC	1>	=	1, address (FALSE)			

BTFSS	Bit Test f, Skip if Set						
Syntax:	[label] BTFSS f,b						
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b < 7 \end{array}$						
Operation:	skip if (f<	:b>) = 1					
Status Affected:	None						
Encoding:	0111	bbbf	ffff				
Description:	If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruc- tion fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2 cycle instruction						
Words:	1						
Cycles:	1(2)						
Example:	HERE I FALSE (TRUE •	BTFSS GOTO •	FLAG,1 PROCESS_C	CODE			
Before Instru PC	ction =	address	(HERE)				
After Instruct If FLAG< PC if FLAG< PC	ion 1> = = 1> = =	0, address 1, address	(FALSE); (TRUE)				

CALL	Subroutine Call					
Syntax:	[<i>label</i>] CALL k					
Operands:	$0 \le k \le 255$					
Operation:	$(PC) + 1 \rightarrow Top of Stack;$ $k \rightarrow PC < 7:0>;$ $(STATUS < 6:5>) \rightarrow PC < 10:9>;$ $0 \rightarrow PC < 8>$					
Status Affected:	None					
Encoding:	1001 kkkk kkkk					
Description.	address (PC+1) is pushed onto the stack. The eight bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from STATUS<6:5>, PC<8> is cleared. CALL is a two ovela instruction					
Words:	1					
Cycles:	2					
Example:	HERE CALL THERE					
Before Instru PC =	ction address (HERE)					
After Instruct PC = TOS =	on address (THERE) address (HERE + 1)					

CLRF Clear f

Syntax:	[label] CLRF f					
Operands:	$0 \leq f \leq 31$					
Operation:	$\begin{array}{l} 00h \rightarrow (f); \\ 1 \rightarrow Z \end{array}$					
Status Affected:	Z					
Encoding:	0000	011f	ffff			
Description:	The contents of register 'f' and cleared and the Z bit is set.					
Words:	1					
Cycles:	1					
Example:	CLRF	FLAG_REG	3			
Before Instru FLAG_RE	ction EG =	0x5A				
After Instruct FLAG_RE Z	ion EG = =	0x00 1				

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$00h \rightarrow (W);$
	$1 \rightarrow Z$
Status Affected:	Z
Encoding:	0000 0100 0000
Description:	The W register is cleared. Zero bit (Z) is set.
Words:	1
Cycles:	1
Example:	CLRW
Before Instru W =	uction 0x5A
After Instruct	tion
W =	0x00
Ζ =	1
CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$00h \rightarrow WDT;$
	$0 \rightarrow WD1$ prescaler (if assigned); $1 \rightarrow TO$:
	$1 \rightarrow \overline{PD}$
Status Affected:	TO, PD
Encoding:	0000 0000 0100
Description:	The CLRWDT instruction resets the
	WDT. It also resets the prescaler, if
	WDT and not Timer0. Status bits
	$\overline{\text{TO}}$ and $\overline{\text{PD}}$ are set.
Words:	1
Cycles:	1
Example:	CLRWDT
Before Instru WDT cou	uction unter = ?
After Instruc	tion
	unter = 0x00
	= 1
PD	= 1

INCF	Increment f				
Syntax:	[label] INCF f,d				
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$				
Operation:	(f) + 1 \rightarrow (dest)				
Status Affected:	Z				
Encoding:	0010 10df ffff				
Description.	incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.				
Words:	1				
Cycles:	1				
Example:	INCF CNT, 1				
Before Instru CNT Z After Instruct CNT Z	ction = 0xFF = 0 ion = 0x00 = 1				

INCFSZ	Increment f, Skip if 0					
Syntax:	[label] INCFSZ f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0					
Status Affected:	None					
Encoding:	0011 11df ffff					
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register					
	If the result is 0, then the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two cycle instruction					
Words:	1					
Cycles:	1(2)					
Example:	HERE INCFSZ CNT, 1 GOTO LOOP					
	CONTINUE • •					
Before Instru PC	iction = address (HERE)					
After Instruct CNT if CNT PC if CNT PC	tion = CNT + 1; = 0, = address (CONTINUE); ≠ 0, = address (HERE +1)					

SLEEP	Enter SLEEP Mode					
Syntax:	[label] SLEEP					
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow WDT \ prescaler; \\ 1 \rightarrow \overline{TO}; \\ 0 \rightarrow \overline{PD} \end{array}$					
Status Affected:	TO, PD, F	RBWUF				
Encoding:	0000	0000	0011			
Description:	Time-out status bit (TO) is set. The power down status bit (PD) is cleared. RBWUF is unaffected. The WDT and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See section on SLEEP for more					
Words:	1					
Cycles:	1					
Example:	SLEEP					

SUBWF	Sub	otract	W from	f	
Syntax:	[lab	el]	SUBWF	f,d	
Operands:	0 ≤ 1 d ∈	f ≤ 31 [0,1]			
Operation:	(f) –	· (W)	\rightarrow (dest)		
Status Affected:	С, С	DC, Z			
Encoding:	00	00	10df	ffff	
Description:	Subtract (2's complement method) the W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example 1:	SUB	WF	REG1, 1		
Before Instru REG1 W C	ction = = =	3 2 ?			
After Instructi REG1 W C Example 2:	on = = =	1 2 1	; result is	positive	
Before Instru	ction				
REG1 W C	= = =	2 2 ?			
After Instructi REG1 W C	on = = =	0 2 1	; result is	zero	
Example 3:					
Before Instruc REG1 W C	ction = = =	1 2 ?			
After Instructi REG1 W C	ion = = =	FF 2 0	; result is	negative	

10.0 ELECTRICAL CHARACTERISTICS - PIC16C505

Absolute Maximum Ratings†

Ambient Temperature under bias	40°C to +125°C
Storage Temperature	–65°C to +150°C
Voltage on VDD with respect to Vss	0 to +7 V
Voltage on MCLR with respect to Vss	0 to +14 V
Voltage on all other pins with respect to Vss	–0.6 V to (VDD + 0.6 V)
Total Power Dissipation ⁽¹⁾	700 mW
Max. Current out of Vss pin	150 mA
Max. Current into Vod pin	125 mA
Input Clamp Current, Iк (VI < 0 or VI > VDD)	±20 mA
Output Clamp Current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. Output Current sunk by any I/O pin	25 mA
Max. Output Current sourced by any I/O pin	25 mA
Max. Output Current sourced by I/O port	100 mA
Max. Output Current sunk by I/O port	100 mA
Note 1: Power Dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD)-VOH) x IOH} + Σ (VOL x IOL)

[†]NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

FIGURE 10-3: PIC16LC505 VOLTAGE-FREQUENCY GRAPH, -40°C \leq Ta \leq +85°C

FIGURE 10-8: TIMER0 CLOCK TIMINGS - PIC16C505

TABLE 10-7:	TIMER0 CLOCK REQUIREMENTS - PIC16C505

AC Characteristics		$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ (commercial)} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ (industrial)} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ (extended)} \\ \mbox{Operating Voltage VDD range is described in Section 10.1.} \end{array} $						
Parm No. Sym Character		istic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5 TCY + 20*	—	—	ns	
			With Prescaler	10*	-	_	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5 TCY + 20*	-	_	ns	
			With Prescaler	10*	—	—	ns	
42	Tt0P T0CKI Period		20 or Tcy + 40* N		_	ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)	

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Oscillator	Frequency	$VDD = 3.0V^{(1)}$	VDD = 5.5V
External RC	4 MHz	240 µA ⁽²⁾	800 µA ⁽²⁾
Internal RC	4 MHz	320 µA	800 µA
ХТ	4 MHz	300 µA	800 µA
LP	32 kHz	19 µA	50 µA
HS	20 MHz	N/A	4.5 mA

TABLE 11-1: DYNAMIC IDD (TYPICAL) - WDT ENABLED, 25°C

Note 1: LP oscillator based on VDD = 2.5V

2: Does not include current through external R&C.

FIGURE 11-3: WDT TIMER TIME-OUT PERIOD vs. Vdd

FIGURE 11-4: SHORT DRT PERIOD VS. VDD

NOTES:

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-087C Sheet 1 of 2

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support