

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	12
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	72 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc505t-04i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

1.0	General Description	3
2.0	PIC16C505 Device Varieties	5
3.0	Architectural Overview	7
4.0	Memory Organization	. 11
5.0	I/O Port	. 19
6.0	Timer0 Module and TMR0 Register	. 23
7.0	Special Features of the CPU	. 27
8.0	Instruction Set Summary	. 39
9.0	Development Support.	. 51
10.0	Electrical Characteristics - PIC16C505	. 55
11.0	DC and AC Characteristics - PIC16C505	. 69
12.0	Packaging Information	. 73
PIC16	C505 Product Identification System	. 87

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 GENERAL DESCRIPTION

The PIC16C505 from Microchip Technology is a lowcost, high-performance, 8-bit, fully static, EPROM/ ROM-based CMOS microcontroller. It employs a RISC architecture with only 33 single word/single cycle instructions. All instructions are single cycle (200 μ s) except for program branches, which take two cycles. The PIC16C505 delivers performance an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical resulting in a typical 2:1 code compression over other 8-bit microcontrollers in its class. The easy to use and easy to remember instruction set reduces development time significantly.

The PIC16C505 product is equipped with special features that reduce system cost and power requirements. The Power-On Reset (POR) and Device Reset Timer (DRT) eliminate the need for external reset circuitry. There are five oscillator configurations to choose from, including INTRC internal oscillator mode and the power-saving LP (Low Power) oscillator mode. Power saving SLEEP mode, Watchdog Timer and code protection features improve system cost, power and reliability.

The PIC16C505 is available in the cost-effective One-Time-Programmable (OTP) version, which is suitable for production in any volume. The customer can take full advantage of Microchip's price leadership in OTP microcontrollers, while benefiting from the OTP's flexibility.

The PIC16C505 product is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a 'C' compiler, a low-cost development programmer and a full featured programmer. All the tools are supported on $IBM^{\textcircled{B}}$ PC and compatible machines.

1.1 <u>Applications</u>

The PIC16C505 fits in applications ranging from personal care appliances and security systems to lowpower remote transmitters/receivers. The EPROM technology makes customizing application programs (transmitter codes, appliance settings, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make this microcontroller perfect for applications with space limitations. Low-cost, low-power, highperformance, ease of use and I/O flexibility make the PIC16C505 very versatile even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of "glue" logic and PLD's in larger systems, and coprocessor applications).

TABLE 1-1: PIC16C505 DEVICE

		PIC16C505
Clock	Maximum Frequency of Operation (MHz)	20
Memory	EPROM Program Memory	1024
Memory	Data Memory (bytes)	72
	Timer Module(s)	TMR0
Peripherals	Wake-up from SLEEP on pin change	Yes
	I/O Pins	11
	Input Pins	1
Features	Internal Pull-ups	Yes
	In-Circuit Serial Programming	Yes
	Number of Instructions	33
	Packages	14-pin DIP, SOIC, TSSOP

The PIC16C505 device has Power-on Reset, selectable Watchdog Timer, selectable code protect, high I/O current capability and precision internal oscillator.

The PIC16C505 device uses serial programming with data pin RB0 and clock pin RB1.

NOTES:

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C505 can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C505 uses a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12 bits wide, making it possible to have all single word instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle (200ns @ 20MHz) except for program branches.

The Table below lists program memory (EPROM) and data memory (RAM) for the PIC16C505.

Dovice	Memory			
Device	Program	Data		
PIC16C505	1024 x 12	72 x 8		

The PIC16C505 can directly or indirectly address its register files and data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16C505 has a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C505 simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC16C505 device contains an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, one operand is typically the W (working) register. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, with the corresponding device pins described in Table 3-1.

4.6 Program Counter

As a program instruction is executed, the Program Counter (PC) will contain the address of the next program instruction to be executed. The PC value is increased by one every instruction cycle, unless an instruction changes the PC.

For a GOTO instruction, bits 8:0 of the PC are provided by the GOTO instruction word. The PC Latch (PCL) is mapped to PC<7:0>. Bit 5 of the STATUS register provides page information to bit 9 of the PC (Figure 4-3).

For a CALL instruction, or any instruction where the PCL is the destination, bits 7:0 of the PC again are provided by the instruction word. However, PC<8> does not come from the instruction word, but is always cleared (Figure 4-3).

Instructions where the PCL is the destination, or Modify PCL instructions, include MOVWF PC, ADDWF PC, and BSF PC, 5.

Note: Because PC<8> is cleared in the CALL instruction or any Modify PCL instruction, all subroutine calls or computed jumps are limited to the first 256 locations of any program memory page (512 words long).

FIGURE 4-3: LOADING OF PC BRANCH INSTRUCTIONS -PIC16C505

4.6.1 EFFECTS OF RESET

The Program Counter is set upon a RESET, which means that the PC addresses the last location in the last page (i.e., the oscillator calibration instruction.) After executing MOVLW XX, the PC will roll over to location 00h and begin executing user code.

The STATUS register page preselect bits are cleared upon a RESET, which means that page 0 is pre-selected.

Therefore, upon a RESET, a GOTO instruction will automatically cause the program to jump to page 0 until the value of the page bits is altered.

4.7 <u>Stack</u>

PIC16C505 devices have a 12-bit wide hardware push/pop stack.

A CALL instruction will push the current value of stack 1 into stack 2 and then push the current program counter value, incremented by one, into stack level 1. If more than two sequential CALL's are executed, only the most recent two return addresses are stored.

A RETLW instruction will pop the contents of stack level 1 into the program counter and then copy stack level 2 contents into level 1. If more than two sequential RETLW's are executed, the stack will be filled with the address previously stored in level 2. Note that the W register will be loaded with the literal value specified in the instruction. This is particularly useful for the implementation of data look-up tables within the program memory.

Note 1: There are no STATUS bits to indicate stack overflows or stack underflow conditions.

Note 2: There are no instructions mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETLW, and instructions.

NOTES:

7.2.5 INTERNAL 4 MHz RC OSCILLATOR

The internal RC oscillator provides a fixed 4 MHz (nominal) system clock at VDD = 5V and $25^{\circ}C$, see Electrical Specifications section for information on variation over voltage and temperature.

In addition, a calibration instruction is programmed into the last address of memory, which contains the calibration value for the internal RC oscillator. This location is always protected, regardless of the code protect settings. This value is programmed as a MOVLW XX instruction where XX is the calibration value, and is placed at the reset vector. This will load the W register with the calibration value upon reset and the PC will then roll over to the users program at address 0x000. The user then has the option of writing the value to the OSCCAL Register (05h) or ignoring it.

OSCCAL, when written to with the calibration value, will "trim" the internal oscillator to remove process variation from the oscillator frequency.

Note: Please note that erasing the device will also erase the pre-programmed internal calibration value for the internal oscillator. The calibration value must be read prior to erasing the part so it can be reprogrammed correctly later.

For the PIC16C505, only bits <7:2> of OSCCAL are implemented.

7.3 <u>RESET</u>

The device differentiates between various kinds of reset:

- a) Power on reset (POR)
- b) MCLR reset during normal operation
- c) MCLR reset during SLEEP
- d) WDT time-out reset during normal operation
- e) WDT time-out reset during SLEEP
- f) Wake-up from SLEEP on pin change

Some registers are not reset in any way, they are unknown on POR and unchanged in any other reset. Most other registers are reset to "reset state" on poweron reset (POR), MCLR, WDT or wake-up on pin change reset during normal operation. They are not affected by a WDT reset during SLEEP or MCLR reset during SLEEP, since these resets are viewed as resumption of normal operation. The exceptions to this are TO, PD and RBWUF bits. They are set or cleared differently in different reset situations. These bits are used in software to determine the nature of reset. See Table 7-3 for a full description of reset states of all registers.

FIGURE 7-7: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

FIGURE 7-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR PULLED LOW)

FIGURE 7-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME

7.9 Power-Down Mode (SLEEP)

A device may be powered down (SLEEP) and later powered up (Wake-up from SLEEP).

7.9.1 SLEEP

The Power-Down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{TO} bit (STATUS<4>) is set, the \overline{PD} bit (STATUS<3>) is cleared and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, driving low or hi-impedance).

It should be noted that a RESET generated by a WDT time-out does not drive the MCLR pin low.

For lowest current consumption while powered down, the T0CKI input should be at VDD or VSS and the RB3/ $\overline{\text{MCLR}}$ /VPP pin must be at a logic high level (VIHMC) if $\overline{\text{MCLR}}$ is enabled.

7.9.2 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. An external reset input on RB3/MCLR/VPP pin, when configured as MCLR.
- 2. A Watchdog Timer time-out reset (if WDT was enabled).
- 3. A change on input pin RB0, RB1, RB3 or RB4 when wake-up on change is enabled.

These events cause a device reset. The $\overline{\text{TO}}$, $\overline{\text{PD}}$, and RBWUF bits can be used to determine the cause of device reset. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up). The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The RBWUF bit indicates a change in state while in SLEEP at pins RB0, RB1, RB3 or RB4 (since the last file or bit operation on RB port).

The WDT is cleared when the device wakes from sleep, regardless of the wake-up source.

7.10 Program Verification/Code Protection

If the code protection bit has not been programmed, the on-chip program memory can be read out for verification purposes.

The first 64 locations and the last location (OSCCAL) can be read, regardless of the code protection bit setting.

7.11 ID Locations

Four memory locations are designated as ID locations where the user can store checksum or other codeidentification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify.

Use only the lower 4 bits of the ID locations and always program the upper 8 bits as '0's.

ADDWF	Add W and f			
Syntax:	[<i>label</i>] ADDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$			
Operation:	$(W) + (f) \to (dest)$			
Status Affected:	C, DC, Z			
Encoding:	0001 11df ffff			
Description:	Add the contents of the W register and register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is '1', the result is stored back in reg- ister 'f'.			
Words:	1			
Cycles:	1			
Example:	ADDWF FSR, 0			
Before Instru W = FSR =	ction 0x17 0xC2			
After Instruct W = FSR =	ion 0xD9 0xC2			

ANDLW	And liter	al with V	V		
Syntax:	[<i>label</i>] ANDLW k				
Operands:	$0 \le k \le 255$				
Operation:	(W).AND. (k) \rightarrow (W)				
Status Affected:	Z				
Encoding:	1110	kkkk	kkkk		
Description:	AND'ed v The resu ter.	with the e It is place	ight-bit lit id in the V	eral 'k'. V regis-	
Words:	1				
Cycles:	1				
Example:	ANDLW	0x5F			
Before Instru W =	iction 0xA3				
After Instruct W =	tion 0x03				

ANDWF	AND W with f					
Syntax:	[label] ANDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$					
Operation:	(W) .AND. (f) \rightarrow (dest)					
Status Affected:	Z					
Encoding:	0001 01df ffff					
Description:	AND'ed with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example:	ANDWF FSR, 1					
Before Instru W = FSR = After Instruct W = FSR =	ction 0x17 0xC2 ion 0x17 0x02					

BCF	Bit Clear f			
Syntax:	[label] BCF f,b			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$0 \rightarrow (f < b >)$			
Status Affected:	None			
Encoding:	0100 bbbf fff			
Description:	Bit 'b' in register 'f' is cleared.			
Words:	1			
Cycles:	1			
Example:	BCF FLAG_REG, 7			
Before Instruction FLAG_REG = 0xC7				
After Instruct FLAG_R	ion EG = 0x47			

IORLW	Inclusive OR literal with W				
Syntax:	[<i>label</i>] IORLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .OR. (k) \rightarrow (W)				
Status Affected:	Z				
Encoding:	1101 kkkk kkkk				
Description:	The contents of the W register are OR'ed with the eight bit literal 'k'. The result is placed in the W regis- ter.				
Words:	1				
Cycles:	1				
Example:	IORLW 0x35				
Before Instru W =	ction 0x9A				
After Instruct W = Z =	ion 0xBF 0				

IORWF	Inclusive OR W with f				
Syntax:	[lai	bel]	IORWF	f,d	
Operands:	0 ≤ d ∈	f ≤ 31 [0,1]			
Operation:	(W)	.OR.	$(f) \rightarrow (de)$	st)	
Status Affected:	Ζ				
Encoding:	0 0	01	00df	ffff	
Description:	reg plac the 'f'.	ister 'f ced in result	". If 'd' is the W re is placed	V register 0, the res gister. If I back in i	r with sult is 'd' is 1, register
Words:	1				
Cycles:	1				
Example:	IOR	WF		RESULT,	0
Before Instru RESULT W	uctior = =	ר 0x13 0x91			
After Instruc RESULT W Z	tion = = =	0x13 0x93 0			

MOVF	Move f				
Syntax:	[label] MOVF f,d				
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$				
Operation:	$(f) \rightarrow (dest)$				
Status Affected:	Z				
Encoding:	0010 00df ffff				
Description:	The contents of register 'f' are moved to destination 'd'. If 'd' is 0, destination is the W register. If 'd' is 1, the destination is file register 'f'. 'd' = 1 is useful as a test of a file register since status flag Z is affected.				
Words:	1				
Cycles:	1				
Example:	MOVF FSR, 0				
After Instruct W =	ction value in FSR register				

MOVLW	Move Literal to W				
Syntax:	[label]	MOVLW	k		
Operands:	$0 \le k \le 255$				
Operation:	$k \to (W)$				
Status Affected:	None				
Encoding:	1100	kkkk	kkkk		
Description:	The eight the W reg will asse	t bit literal gister. Th mbled as	'k' is loac le don't c 0s.	led into ares	
Words:	1				
Cycles:	1				
Example:	MOVLW	0x5A			
After Instruct	tion				
W =	0x5A				

		Standard Operating Conditions (unless otherwise specified)						
		Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ (commercial)						
	BACTERISTICS	$-40^{\circ}C \le TA \le +85^{\circ}C$ (industrial)						
					–40°C ≤	ΞTA ≤ +	125°C (extended)	
		Operating voltage VDD range as described in DC spec Section 10.1 and						
		Section 10.3.						
Param	Characteristic	Sym	Min	Typ†	Max	Units	Conditions	
No.								
	Output High Voltage							
D090	I/O ports/CLKOUT (Note 3)	Vон	Vdd - 0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V, −40°C to +85°C	
D090A			Vdd - 0.7	—	_	V	IOH = -2.5 mA, VDD = 4.5V, −40°C to +125°C	
D092	OSC2		Vdd - 0.7	—	_	V	IOH = -1.3 mA, VDD = 4.5V, −40°C to +85°C	
D092A			Vdd - 0.7	—	—	V	IOH = -1.0 mA, VDD = 4.5V, −40°C to +125°C	
	Capacitive Loading Specs on							
	Output Pins							
D100	OSC2 pin	Cosc2	_	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.	
D101	All I/O pins and OSC2	Cio	—	—	50	pF		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C505 be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: Does not include GP3. For GP3 see parameters D061 and D061A.

5: This spec. applies to GP3/MCLR configured as external MCLR and GP3/MCLR configured as input with internal pull-up enabled.

6: This spec. applies when GP3/MCLR is configured as an input with pull-up disabled. The leakage current of the MCLR circuit is higher than the standard I/O logic.

FIGURE 10-8: TIMER0 CLOCK TIMINGS - PIC16C505

TABLE 10-7:	TIMER0 CLOCK REQUIREMENTS - PIC16C505

AC Characteristics		$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ (commercial)} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ (industrial)} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ (extended)} \\ \mbox{Operating Voltage VDD range is described in Section 10.1.} \end{array} $						
Parm No.	Parm No. Sym Character		istic	Min	Тур ⁽¹⁾	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5 TCY + 20*	—	—	ns	
			With Prescaler	10*	-	_	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5 TCY + 20*	-	_	ns	
			With Prescaler	10*	—	—	ns	
42	Tt0P	T0CKI Period		20 or Tcy + 40* N		_	ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)

* These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins	N		14		
Pitch		0.65 BSC			
Overall Height	Α	-	-	1.20	
Molded Package Thickness	A2	0.80	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Overall Width	Е		6.40 BSC		
Molded Package Width	E1	4.30	4.40	4.50	
Molded Package Length	D	4.90	5.00	5.10	
Foot Length	L	0.45	0.60	0.75	
Footprint	(L1)	1.00 REF			
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.19	-	0.30	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2

INDEX

Α	
ALU	7
Applications	
Architectural Overview	7
Assembler	
MPASM Assembler	52
B	
Block Diagram	00
Wetebdeg Timer	
Proven Out Protoction Circuit	
Brown-Out Protection Circuit	
C	
C Compilers	
MPLAB C18	52
CAL0 bit	16
CAL1 bit	16
CAL2 bit	16
CAL3 bit	16
CALFST bit	16
CALSLW bit	16
Carry	7
Clocking Scheme	10
Code Protection	27, 37
Configuration Bits	
Configuration Word	27
Customer Change Notification Service	85
Customer Notification Service	85
Customer Support	85
D	
DC and AC Characteristics	
Development Support	
Device Varieties	
Digit Carry	7
E	
Errata	
F	
Family of Devices	
PIC16C505	4
FSR	18
1	
I/O Interference	10
I/O Internacing	19
I/O Poils	18 00
	20 סס סס
INDE	21, 31 10
Indiroct Data Addressing	
Instruction Cycle	10 10
Instruction Flow/Pipelining	10 10
Instruction Set Summany	10 //
Internet Address	

L				
Loading of PC 1	7			
Μ				
Memory Organization 1	1			
Data Memory 1	2			
Program Memory 1	1			
Microchip Internet Web Site	5			
MPLAB ASM30 Assembler, Linker, Librarian	2			
MPLAB Integrated Development Environment Soltware 5	1 1			
MPLAB REAL ICE In-Circuit Emulator System	+ 3			
MPLINK Object Linker/MPLIB Object Librarian	2			
0				
OPTION Begister 1	5			
OSC selection	7			
OSCCAL Register	6			
Oscillator Configurations	8			
Oscillator Types				
HS24	8			
LP	8			
RC	8			
XT	8			
P				
Package Marking Information	3			
Packaging Information	3			
POR				
Device Reset Timer (DRT) 27, 3-	4			
PD	b 7			
	/ 6			
PORTB 1	o a			
Power-Down Mode 3	7			
Prescaler 2	, 6			
Program Counter	7			
Q				
Q cycles 1	0			
B				
PC Oscillator 2	0			
Read Modify Write 2	9			
Beader Besponse 8	6			
Register File Map	2			
Registers				
Special Function 1	3			
Reset 2	7			
Reset on Brown-Out	6			
Revision History	1			
S				
SLEEP	7			
Software Simulator (MPLAB SIM) 5	3			
Special Features of the CPU 2	7			
Special Function Registers 1	3			
Stack	7			
STATUS	/ /			
יין איז	4			
I				
Timer0	_			
Switching Prescaler Assignment	6			
LimerO	3			
I IMERU (I MHU) MOdule	კ ნ			
Timing Diagrams and Specifications	۵ ۵			
Timing Parameter Symbology and Load Conditions	- 3			
TRIS Registers				

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent				
Fror	n: Name					
	Company					
	Address					
	City / State / ZIP / Country					
	Telephone: ()	FAX: ()				
Арр	lication (optional):					
Wou	Id you like a reply? Y N					
Dev	ice: PIC16C505	Literature Number: DS40192D				
Que	stions:					
1.	What are the best features of this document?					
2.	How does this document meet your hardware and soft	ware development needs?				
3.	3. Do you find the organization of this document easy to follow? If not, why?					
1	What additions to the desumant do you think would an	hance the structure and subject?				
4.						
5.	What deletions from the document could be made with	out affecting the overall usefulness?				
6.	Is there any incorrect or misleading information (what a	and where)?				
7.	How would you improve this document?					

NOTES:

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Fax: 45-4485-2829

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820