

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	64
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 38x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	121-LFBGA
Supplier Device Package	121-MAPBGA (8x8)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mk22fn1m0vmc12

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information¹

Part Number	Mer	nory	Maximum number of I\O's
	Flash (KB)	SRAM (KB)	
MK22FX512VMC12	512 KB	128	86
MK22FN1M0VMC12	1 MB	128	86

1. To confirm current availability of ordererable part numbers, go to http://www.freescale.com and perform a part number search.

Related Resources

Туре	Description	Resource
Selector Guide	The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Solution Advisor
Product Brief	The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.	K20PB ¹
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	K22P121M50SF5RM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	K22P121M50SF5 ¹
Package drawing	Package dimensions are provided in package drawings.	MAPBGA 121-pin: 98ASA00344D ¹

1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.

2.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Тур	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -8mA	V _{DD} – 0.5	—	_	v	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -3mA	V _{DD} – 0.5	—	_	V	
	Output high voltage — low drive strength					
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2mA	V _{DD} – 0.5	—	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -0.6mA	V _{DD} – 0.5	—	_	V	
I _{OHT}	Output high current total for all ports			100	mA	
V _{OL}	Output low voltage — high drive strength					1
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9mA	_	—	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 3\text{mA}$	_	—	0.5	V	
	Output low voltage — low drive strength					-
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2mA	—	—	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 0.6 \text{mA}$	—	—	0.5	V	
I _{OLT}	Output low current total for all ports			100	mA	
I _{IND}	Input leakage current, digital pins • $V_{SS} \le V_{IN} \le V_{IL}$					² , 3
	All digital pins	_	0.002	0.5	μA	
	• V _{IN} = V _{DD}					
	All digital pins except PTD7	_	0.002	0.5	μA	
	• PTD7	—	0.004	1	μA	
I _{IND}	Input leakage current, digital pins • V _{IL} < V _{IN} < V _{DD}					2
	• V _{DD} = 3.6 V	_	18	26	μA	
	• V _{DD} = 3.0 V	_	12	19	μΑ	
	• V _{DD} = 2.5 V		8	13	μΑ	
	• V _{DD} = 1.7 V		3	6	μΑ	
I _{IND}	Input leakage current, digital pins					
	• $V_{DD} < V_{IN} < 5.5 V$		1	50	μA	
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	—		0.25	μA	
R _{PU}	Internal pullup resistors	20	35	50	kΩ	4
R _{PD}	Internal pulldown resistors	20	35	50	kΩ	5

1. Open drain outputs must be pulled to V_{DD} .

- 2. Measured at VDD=3.6V
- 3. Internal pull-up/pull-down resistors disabled.
- 4. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

5. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 100 MHz
- Bus clock = 50 MHz
- FlexBus clock = 50 MHz
- Flash clock = 25 MHz

Table 5. Power mode transition operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip.	_	300	μs	
	• VLLS0 \rightarrow RUN	—	183	μs	
	• VLLS1 → RUN	_	183	μs	
	• VLLS2 \rightarrow RUN	_	105	μs	
	• VLLS3 \rightarrow RUN	—	105	μs	
	• LLS → RUN	—	5.0	μs	
	• VLPS \rightarrow RUN	—	4.4	μs	
	• STOP → RUN	—	4.4	μs	

2.2.5 Power consumption operating behaviors

 Table 6. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	—	—	See note	mA	1
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash					2
		—	33.57	36.2	mA	
		—	33.51	36.1	mA	

Table continues on the next page...

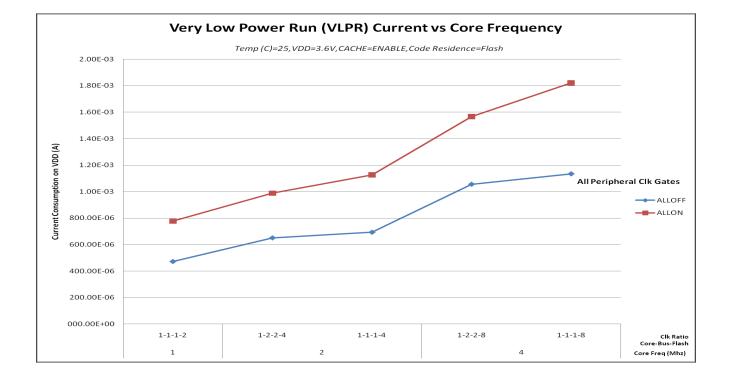


Figure 4. VLPR mode supply current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	23	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	27	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	28	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	14	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	К		2, 3

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code.

The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. $V_{DD} = 3.3 \text{ V}$, $T_A = 25 \text{ °C}$, $f_{OSC} = 12 \text{ MHz}$ (crystal), $f_{SYS} = 96 \text{ MHz}$, $f_{BUS} = 48 \text{MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	-	7	pF
C _{IN_D}	Input capacitance: digital pins	_	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mode	Э			
f _{SYS}	System and core clock	_	120	MHz	
f _{SYS_USB}	System and core clock when Full Speed USB in operation	20	_	MHz	
f _{BUS}	Bus clock	—	60	MHz	
FB_CLK	FlexBus clock	—	50	MHz	
f _{FLASH}	Flash clock	—	25	MHz	
f _{LPTMR}	LPTMR clock	—	25	MHz	
	VLPR mode ¹				
f _{SYS}	System and core clock	_	4	MHz	
f _{BUS}	Bus clock	_	4	MHz	

Table continues on the next page ...

Symbol	Description	Min.	Max.	Unit
	Boundary Scan	0	10	
	JTAG and CJTAG	0	25	
	Serial Wire Debug	0	50	
J2	TCLK cycle period	1/J1		ns
J3	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	JTAG and CJTAG	20	_	ns
	Serial Wire Debug	10	—	ns
J4	TCLK rise and fall times		3	ns
J5	Boundary scan input data setup time to TCLK rise	20	—	ns
J6	Boundary scan input data hold time after TCLK rise	2.6	_	ns
J7	TCLK low to boundary scan output data valid	_	25	ns
J8	TCLK low to boundary scan output high-Z	—	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	_	ns
J10	TMS, TDI input data hold time after TCLK rise	1	_	ns
J11	TCLK low to TDO data valid	_	17	ns
J12	TCLK low to TDO high-Z	—	17	ns
J13	TRST assert time	100	_	ns
J14	TRST setup time (negation) to TCLK high	8		ns

Table 13. JTAG limited voltage range electricals (continued)

Table 14. JTAG full voltage range electricals

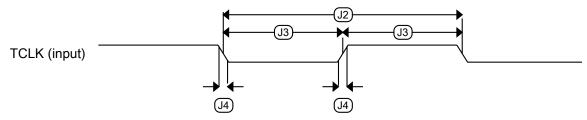

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	20	
	Serial Wire Debug	0	40	
J2	TCLK cycle period	1/J1		ns
JЗ	TCLK clock pulse width			
	Boundary Scan	50	—	ns
	JTAG and CJTAG	25	—	ns
	Serial Wire Debug	12.5	—	ns
J4	TCLK rise and fall times		3	ns
J5	Boundary scan input data setup time to TCLK rise	20	_	ns
J6	Boundary scan input data hold time after TCLK rise	0		ns

Table continues on the next page...

Symbol	Description	Min.	Max.	Unit
J7	TCLK low to boundary scan output data valid	—	25	ns
J8	TCLK low to boundary scan output high-Z	—	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	—	ns
J10	TMS, TDI input data hold time after TCLK rise	1.4	—	ns
J11	TCLK low to TDO data valid	—	22.1	ns
J12	TCLK low to TDO high-Z	—	22.1	ns
J13	TRST assert time	100	—	ns
J14	TRST setup time (negation) to TCLK high	8	—	ns

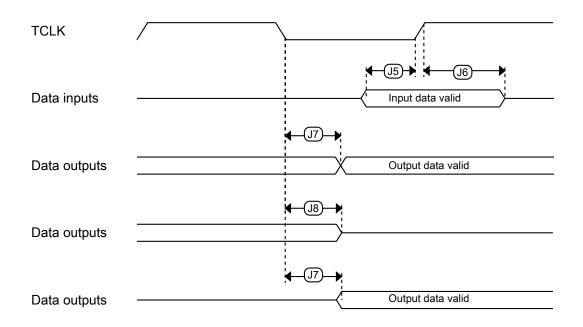


Figure 8. Boundary scan (JTAG) timing

3.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}		frequency (slow clock) — t nominal VDD and 25 °C	—	32.768	—	kHz	
f _{ints_t}	Internal reference user trimmed	frequency (slow clock) —	31.25	_	39.0625	kHz	
I _{ints}	Internal reference	(slow clock) current	_	20	—	μA	
$\Delta_{fdco_res_t}$		med average DCO output I voltage and temperature — Id SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
$\Delta f_{dco_res_t}$		med average DCO output I voltage and temperature — Iy	_	± 0.2	± 0.5	%f _{dco}	1
Δf_{dco_t}		trimmed average DCO output ltage and temperature	—	± 0.5	± 2	%f _{dco}	1,2
Δf_{dco_t}		trimmed average DCO output ed voltage and temperature	_	± 0.3	± 1	%f _{dco}	1
f _{intf_ft}		frequency (fast clock) — t nominal VDD and 25°C	—	4	—	MHz	
f _{intf_t}		frequency (fast clock) — ominal VDD and 25 °C	3	—	5	MHz	
l _{intf}	Internal reference	(fast clock) current	—	25	—	μA	
f _{loc_low}	Loss of external c RANGE = 00	lock minimum frequency —	(3/5) x f _{ints_t}	—	—	kHz	
f _{loc_high}	Loss of external c RANGE = 01, 10,	lock minimum frequency — or 11	(16/5) x f _{ints_t}	_	—	kHz	
	1	FL	L				1
f _{fll_ref}	FLL reference free	quency range	31.25		39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll_ref}	20	20.97	25	MHz	3, 4
		Mid range (DRS=01) 1280 × f _{fll ref}	40	41.94	50	MHz	
		Mid-high range (DRS=10)	60	62.91	75	MHz	
		1920 × f _{fll_ref} High range (DRS=11)	80	83.89	100	MHz	_
		$2560 \times f_{fll_ref}$					
f _{dco_t_} DMX3 2	DCO output frequency	Low range (DRS=00) 732 × f _{fll ref}	_	23.99		MHz	5, ⁶
		Mid range (DRS=01) 1464 × f _{fll ref}	_	47.97	-	MHz	
		$1404 \times 1_{fll_ref}$ Mid-high range (DRS=10)		71.99		MHz	ļ

Table 15. MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
		2197 × f _{fll_ref}					
		High range (DRS=11)	—	95.98	—	MHz	
		$2929 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter		_	180	_	ps	
	 f_{DCO} = 48 M f_{DCO} = 98 M 		_	150	_		
t _{fll_acquire}	FLL target freque	ncy acquisition time	—	_	1	ms	7
		P	LL				
f _{vco}	VCO operating fre	equency	48.0	_	120	MHz	
I _{pll}	PLL operating curves PLL @ 96 M = 2 MHz, V	rrent MHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} DIV multiplier = 48)	_	1060	—	μA	8
I _{pll}		rrent MHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} DIV multiplier = 24)	_	600	—	μA	8
f _{pll_ref}	PLL reference fre	quency range	2.0	_	4.0	MHz	
J _{cyc_pll}	PLL period jitter (RMS)					9
	• f _{vco} = 48 Mł	Hz	_	120	_	ps	
	• f _{vco} = 120 N	1Hz	—	75	_	ps	
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					9
	• f _{vco} = 48 Mł	Hz	—	1350	_	ps	
	• f _{vco} = 120 M	1Hz	—	600	-	ps	
D _{lock}	Lock entry freque	ncy tolerance	± 1.49		± 2.98	%	
D _{unl}	Lock exit frequen	cy tolerance	± 4.47	_	± 5.97	%	
t _{pll_lock}	Lock detector det	ection time	_	_	$150 \times 10^{-6} + 1075(1/ f_{pll_ref})$	S	10

Table 15. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. 2 V <= VDD <= 3.6 V.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco_t}) over voltage and temperature should be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications Table 16. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	600	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz		1.5	-	mA	
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz		7.5	_	μA	
	• 4 MHz		500	_	μA	
	• 8 MHz (RANGE=01)	_	650	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3.25	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance			_		2, 3
Cy	XTAL load capacitance	_	_	—		2, 3
R_F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_		—	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10	-	MΩ	
	Feedback resistor — high-frequency, low- power mode (HGO=0)	_		_	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	_	MΩ	-
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_	_	-	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	-	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_	-	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					

Table continues on the next page ...

- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

3.3.3 32 kHz oscillator electrical characteristics

3.3.3.1 32 kHz oscillator DC electrical specifications Table 18. 32kHz oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.71	_	3.6	V
R _F	Internal feedback resistor	—	100	_	MΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32		5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation	—	0.6	_	V

1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.3.2 32 kHz oscillator frequency specifications Table 19. 32 kHz oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal	—	32.768	—	kHz	
t _{start}	Crystal start-up time	_	1000		ms	1
V _{ec_extal32}	Externally provided input clock amplitude	700	_	V_{BAT}	mV	2, 3

1. Proper PC board layout procedures must be followed to achieve specifications.

2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The oscillator remains enabled and XTAL32 must be left unconnected.

 The parameter specified is a peak-to-peak value and V_{IH} and V_{IL} specifications do not apply. The voltage of the applied clock must be within the range of V_{SS} to V_{BAT}.

3.4 Memories and memory interfaces

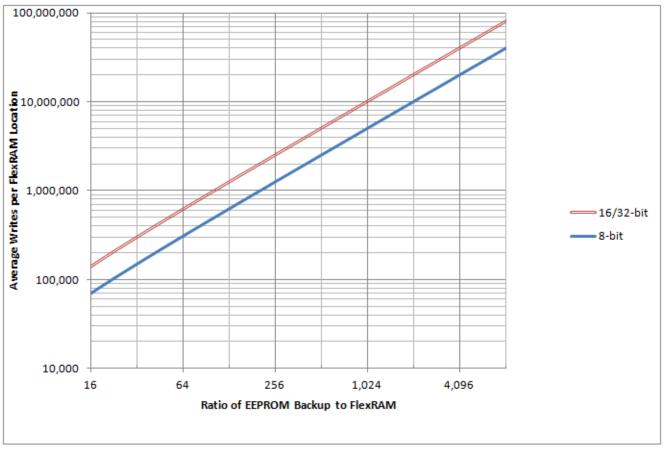


Figure 11. EEPROM backup writes to FlexRAM

3.4.2 EzPort switching specifications Table 24. EzPort switching specifications

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
EP1	EZP_CK frequency of operation (all commands except READ)	-	f _{SYS} /2	MHz
EP1a	EZP_CK frequency of operation (READ command)	—	f _{SYS} /8	MHz
EP2	EZP_CS negation to next EZP_CS assertion	2 x t _{EZP_CK}	—	ns
EP3	EZP_CS input valid to EZP_CK high (setup)	5	_	ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	5	—	ns
EP5	EZP_D input valid to EZP_CK high (setup)	2	—	ns
EP6	EZP_CK high to EZP_D input invalid (hold)	5	_	ns
EP7	EZP_CK low to EZP_Q output valid	_	18	ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	0	_	ns
EP9	EZP_CS negation to EZP_Q tri-state	_	12	ns

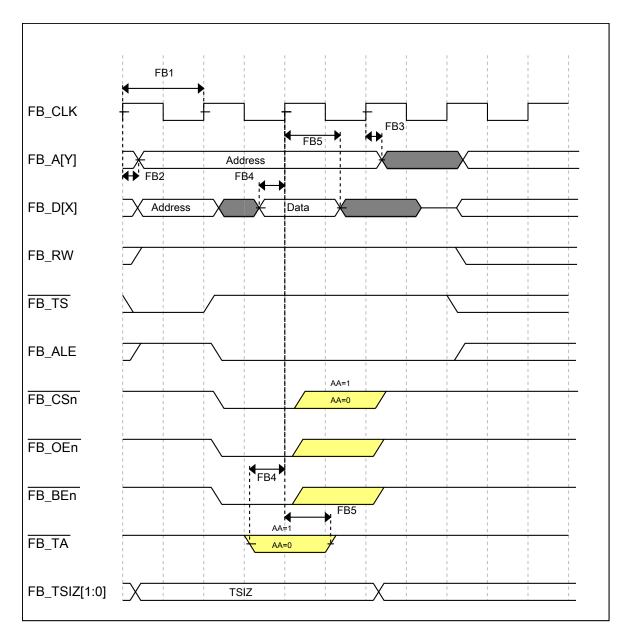


Figure 13. FlexBus read timing diagram

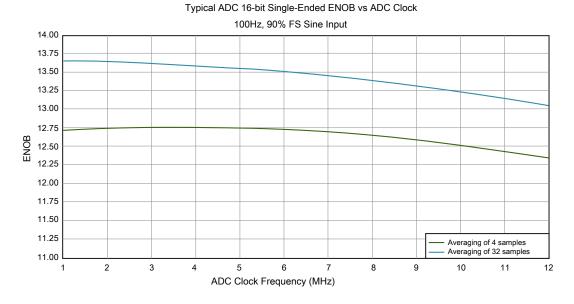


Figure 17. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

3.6.2 CMP and 6-bit DAC electrical specifications Table 29. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
IDDHS	Supply current, High-speed mode (EN=1, PMODE=1)	-		200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_		20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	_		20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	—	20	_	mV
	• CR0[HYSTCTR] = 11	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5			V
V _{CMPOI}	Output low	_		0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_		40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)		7	_	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3		0.3	LSB

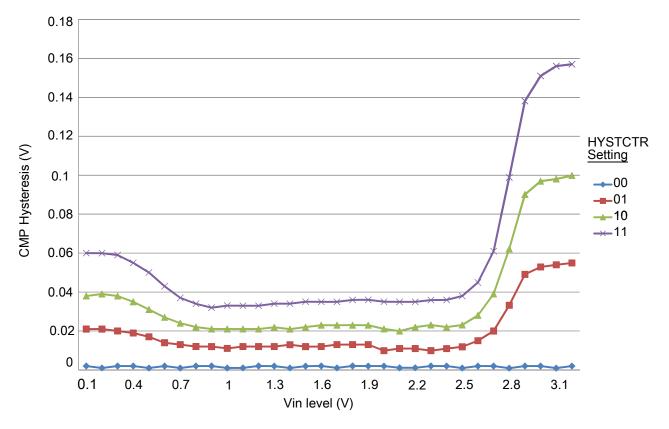


Figure 19. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

3.6.3 12-bit DAC electrical characteristics

3.6.3.1 12-bit DAC operating requirements Table 30. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
CL	Output load capacitance	_	100	pF	2
١L	Output load current	—	1	mA	

1. The DAC reference can be selected to be V_{DDA} or $V_{\text{REFH}}.$

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

3.6.3.2 12-bit DAC operating behaviors Table 31. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL}	Supply current — low-power mode		—	150	μΑ	
I _{DDA_DACH}	Supply current — high-speed mode		—	700	μΑ	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode		100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode		15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000	_	—	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	—	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	_	—	±8	LSB	2
DNL	Differential non-linearity error — $V_{DACR} > 2$ V		—	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT		—	±1	LSB	4
VOFFSET	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error		±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, $V_{DDA} \ge 2.4 V$	60	—	90	dB	
T _{CO}	Temperature coefficient offset voltage	_	3.7	_	μV/C	6
T _{GE}	Temperature coefficient gain error	_	0.000421	—	%FSR/C	
A _C	Offset aging coefficient	_	—	100	μV/yr	
Rop	Output resistance (load = $3 \text{ k}\Omega$)	_	—	250	Ω	
SR	Slew rate -80h \rightarrow F7Fh \rightarrow 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	_		
	• Low power (SP _{LP})	0.05	0.12	_		
СТ	Channel to channel cross talk			-80	dB	
BW	3dB bandwidth				kHz	
	 High power (SP_{HP}) 	550	_	_		
	• Low power (SP _{LP})	40	_	—		

1. Settling within ±1 LSB

- 2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 4. The DNL is measured for 0 + 100 mV to V_{DACR} -100 mV with V_{DDA} > 2.4 V 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} 100 mV

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V _{DDA} and temperature=25C	1.1915	1.195	1.1977	V	1
V _{out}	Voltage reference output — factory trim	1.1584	_	1.2376	V	1
V _{out}	Voltage reference output — user trim	1.193	—	1.197	V	1
V _{step}	Voltage reference trim step	—	0.5	—	mV	1
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	_		80	mV	1
I _{bg}	Bandgap only current	_	_	80	μA	1
ΔV_{LOAD}	Load regulation				μV	1, 2
	• current = ± 1.0 mA	_	200	—		
T _{stup}	Buffer startup time	_		100	μs	_
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	_	2	_	mV	1

Table 33.	VREF full-range operating behaviors
-----------	-------------------------------------

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 34. VREF limited-range operating requirements

Sym	bol	Description	Min.	Max.	Unit	Notes
Τ ₄	Ą	Temperature	0	50	°C	_

Table 35. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	—

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

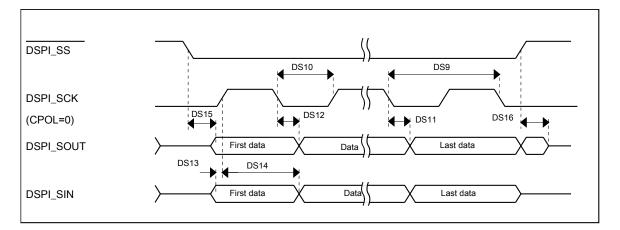


Figure 23. DSPI classic SPI timing — slave mode

3.8.6 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	—	15	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	—	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	_	10	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-4.5	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	20.5	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	

Table 40. Master mode DSPI timing (full voltage range)

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

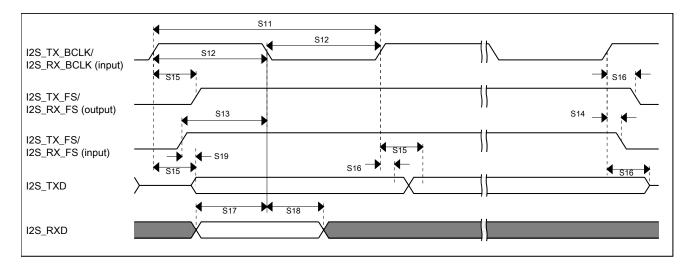


Figure 30. I2S/SAI timing — slave modes

3.8.10.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 47. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes(full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	—	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	—	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	-	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	45	ns
S8	I2S_TX_BCLK to I2S_TXD invalid		—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK		-	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	—	ns

3.8.10.4.5 Small package marking

In an effort to save space, small package devices use special marking on the chip. These markings have the following format:

Q ## C F T PP

This table lists the possible values for each field in the part number for small packages (not all combinations are valid):

Field	Description	Values	
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification 	
##	Kinetis family	• 2# = K21/K22	
С	Speed	• H = 120 MHz	
F	Flash memory configuration	 K = 512 KB + Flex 1 = 1 MB 	
Т	Temperature range (°C)	• V = -40 to 105	
PP	Package identifier	 LL = 100 LQFP MC = 121 MAPBGA LQ = 144 LQFP MD = 144 MAPBGA DC = 121 XFBGA 	

This tables lists some examples of small package marking along with the original part numbers:

Original part number	Alternate part number
MK22FN1M0VMC12	M22H1VMC

3.8.10.5 Terminology and guidelines

3.8.10.5.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

3.8.10.5.1.1 Example

This is an example of an operating requirement: