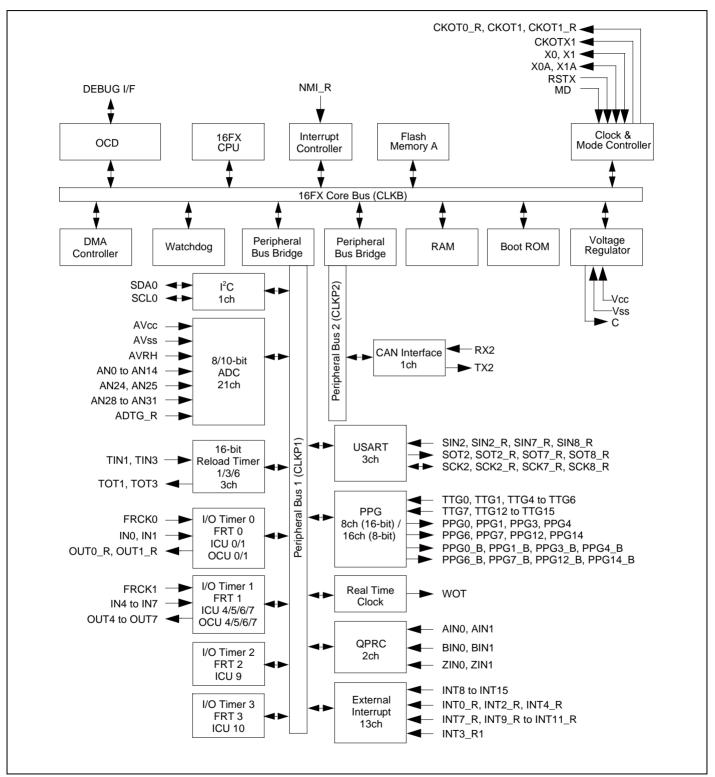


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?


"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 21x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f622abpmc-gse2

2. Block Diagram

4. Pin Description

Pin name	Feature	Description
ADTG_R	ADC	Relocated A/D converter trigger input pin
AlNn	QPRC	Quadrature Position/Revolution Counter Unit n input pin
ANn	ADC	A/D converter channel n input pin
AVcc	Supply	Analog circuits power supply pin
AVRH	ADC	A/D converter high reference voltage input pin
AVss	Supply	Analog circuits power supply pin
BINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin
С	Voltage regulator	Internally regulated power supply stabilization capacitor pin
CKOTn	Clock Output function	Clock Output function n output pin
CKOTn_R	Clock Output function	Relocated Clock Output function n output pin
CKOTXn	Clock Output function	Clock Output function n inverted output pin
DEBUG I/F	OCD	On Chip Debugger input/output pin
FRCKn	Free-Running Timer	Free-Running Timer n input pin
INn	ICU	Input Capture Unit n input pin
INTn	External Interrupt	External Interrupt n input pin
INTn_R	External Interrupt	Relocated External Interrupt n input pin
INTn_R1	External Interrupt	Relocated External Interrupt n input pin
MD	Core	Input pin for specifying the operating mode
NMI_R	External Interrupt	Relocated Non-Maskable Interrupt input pin
OUTn	OCU	Output Compare Unit n waveform output pin
OUTn_R	OCU	Relocated Output Compare Unit n waveform output pin
Pnn_m	GPIO	General purpose I/O pin
PPGn	PPG	Programmable Pulse Generator n output pin (16bit/8bit)
PPGn_B	PPG	Programmable Pulse Generator n output pin (16bit/8bit)
RSTX	Core	Reset input pin
RXn	CAN	CAN interface n RX input pin
SCKn	USART	USART n serial clock input/output pin
SCKn_R	USART	Relocated USART n serial clock input/output pin
SCLn	I ² C	I ² C interface n clock I/O input/output pin
SDAn	I ² C	I ² C interface n serial data I/O input/output pin
SINn	USART	USART n serial data input pin
SINn_R	USART	Relocated USART n serial data input pin
SOTn	USART	USART n serial data output pin
SOTn_R	USART	Relocated USART n serial data output pin
TINn	Reload Timer	Reload Timer n event input pin
TOTn	Reload Timer	Reload Timer n output pin
TTGn	PPG	Programmable Pulse Generator n trigger input pin
TXn	CAN	CAN interface n TX output pin
Vcc	Supply	Power supply pin
Vss	Supply	Power supply pin

Pin name	Feature	Description
WOT	RTC	Real Time clock output pin
X0	Clock	Oscillator input pin
X0A	Clock	Subclock Oscillator input pin
X1	Clock	Oscillator output pin
X1A	Clock	Subclock Oscillator output pin
ZINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin

Туре	Circuit	Remarks
В	Pull-up control	Low-speed oscillation circuit shared with GPIO functionality: • Feedback resistor = approx.
	P-ch P-ch Pout	5.0MΩ • GPIO functionality selectable (CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA), Automotive input with input shutdown
	Standby control for input R	function and programmable pull-up resistor)
	shutdown Automotive input	
	X1A R	
	X out	
	X0A FCI or One disable	
	FCI or Osc disable Pull-up control P-ch P-ch Pout	
	Standby control for input	
	shutdown Automotive input	
С	R Hysteresis inputs	CMOS hysteresis input pin

Туре	Circuit	Remarks
0	Standby control for input shutdown	 Open-drain I/O Output 25mA, Vcc = 2.7V TTL input

12. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

12.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

■ Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

■ Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

■Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

- 1. Preventing Over-Voltage and Over-Current Conditions
 - Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.
- 2. Protection of Output Pins
 - Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.
- 3. Handling of Unused Input Pins
 - Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

■Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

■Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

■Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

13. Handling Devices

Special care is required for the following when handling the device:

- · Latch-up prevention
- · Unused pins handling
- · External clock usage
- · Notes on PLL clock mode operation
- Power supply pins (V_{cc}/V^{ss})
- · Crystal oscillator and ceramic resonator circuit
- Turn on sequence of power supply to A/D converter and analog inputs
- · Pin handling when not using the A/D converter
- · Notes on Power-on
- · Stabilization of power supply voltage
- · Serial communication
- Mode Pin (MD)

13.1 Latch-up prevention

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between V_{cc} pins and V_{ss} pins.
- The AV_{CC} power supply is applied before the V_{CC} voltage.

Latch-up may increase the power supply current dramatically, causing thermal damages to the device.

For the same reason, extra care is required to not let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage.

13.2 Unused pins handling

Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0).

Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent damage of the device. To prevent latch-up, they must therefore be pulled up or pulled down through resistors which should be more than $2k\Omega$.

Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with either input disabled or external pull-up/pull-down resistor as described above.

14.2 Recommended Operating Conditions

 $(V_{SS} = AV_{SS} = 0V)$

Parameter	Symbol		Value		Unit	Remarks
Farameter	Syllibol	Min	Тур	Max	Ollic	Kemarks
Power supply	V _{CC} , AV _{CC}	2.7	-	5.5	V	
voltage	VCC, AVCC	2.0	-	5.5	V	Maintains RAM data in stop mode
Smoothing capacitor at C pin	Cs	0.5	1.0 to 3.9	4.7	μF	$\begin{array}{l} 1.0\mu F \text{ (Allowance within } \pm 50\%) \\ 3.9\mu F \text{ (Allowance within } \pm 20\%) \\ \text{Please use the ceramic capacitor or the capacitor of the frequency response of this level.} \\ \text{The smoothing capacitor at V_{CC} must use the one of a capacity value that is larger than C_{S}.} \end{array}$

WARNING

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

14.3 DC Characteristics

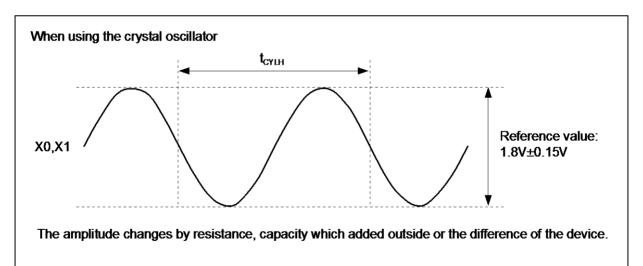
14.3.1 Current Rating

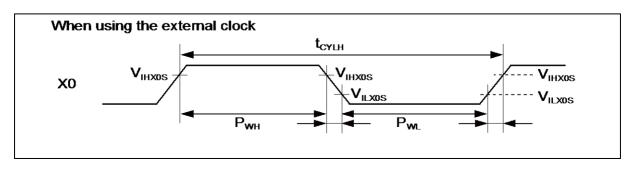
 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

D	0	Pin			Value		1111	D
Parameter	Symbol	name	Conditions	Min	Тур	Max	Unit	Remarks
			PLL Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32MHz	-	25	-	mA	T _A = +25°C
	I _{CCPLL}		Flash 0 wait	-	-	34	mA	T _A = +105°C
			(CLKRC and CLKSC stopped)	-	-	35	mA	T _A = +125°C
			Main Run mode with CLKS1/2 = CLKB = CLKP1/2 = 4MHz	-	3.5	-	mA	T _A = +25°C
	ICCMAIN		Flash 0 wait	-	-	7.5	mA	T _A = +105°C
			(CLKPLL, CLKSC and CLKRC stopped)	-	-	8.5	mA	T _A = +125°C
			RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 2MHz	-	1.7	-	mA	T _A = +25°C
Power supply current in Run modes ^{*1}	I _{CCRCH}	Vcc	Flash 0 wait	-	-	5.5	mA	T _A = +105°C
			(CLKMC, CLKPLL and CLKSC stopped)	-	-	6.5	mA	T _A = +125°C
			RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 100kHz	-	0.15	-	mA	T _A = +25°C
	I _{CCRCL}		Flash 0 wait	-	-	3.2	mA	T _A = +105°C
			(CLKMC, CLKPLL and CLKSC stopped)	-	-	4.2	mA	T _A = +125°C
			Sub Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32kHz	-	0.1	-	mA	T _A = +25°C
	I _{CCSUB}		Flash 0 wait	-	-	3	mA	T _A = +105°C
			(CLKMC, CLKPLL and CLKRC stopped)	-	-	4	mA	T _A = +125°C

Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks
raiailletei	Зуппол	name	Conditions	Min	Тур	Max	Offic	Nemarks
			PLL Sleep mode with	-	6.5	-	mA	T _A = +25°C
	I _{CCSPLL}		CLKS1/2 = CLKP1/2 = 32MHz (CLKRC and CLKSC	-	-	13	mA	T _A = +105°C
			stopped)	-	-	14	mA	T _A = +125°C
			Main Sleep mode with CLKS1/2 = CLKP1/2 =	-	0.9	-	mA	T _A = +25°C
	ICCSMAIN		4MHz, SMCR:LPMSS = 0	-	-	4	mA	T _A = +105°C
		Vcc	(CLKPLL, CLKRC and CLKSC stopped)	-	-	5	mA	T _A = +125°C
Davisa	I _{CCSRCH}		RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKMC, CLKPLL and CLKSC stopped)	-	0.5	-	mA	T _A = +25°C
Power supply current in Sleep modes ^{*1}				-	-	3.5	mA	T _A = +105°C
				-	-	4.5	mA	T _A = +125°C
			RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 100kHz (CLKMC, CLKPLL and	-	0.06	-	mA	T _A = +25°C
	I _{CCSRCL}			-	-	2.7	mA	T _A = +105°C
			CLKSC stopped)	-	-	3.7	mA	T _A = +125°C
	I _{CCSSUB}		Sub Sleep mode with CLKS1/2 = CLKP1/2 = 32kHz, (CLKMC, CLKPLL and	-	0.04	-	mA	T _A = +25°C
				-	-	2.5	mA	T _A = +105°C
			CLKRC stopped)	-	-	3.5	mA	T _A = +125°C

Parameter	Cumbal	Pin	Conditions		Value		Unit	Remarks
Parameter	Symbol	name	Conditions	Min	Тур	Max	Unit	Remarks
			PLL Timer mode with CLKPLL =	-	1800	2245	μΑ	T _A = +25°C
	I _{CCTPLL}		32MHz (CLKRC and CLKSC	-	-	3165	μА	T _A = +105°C
			stopped)	-	-	3975	μА	T _A = +125°C
			Main Timer mode with CLKMC = 4MHz,	-	285	325	μА	T _A = +25°C
	ICCTMAIN		SMCR:LPMSS = 0	-	-	1085	μА	T _A = +105°C
			(CLKPLL, CLKRC and CLKSC stopped)	-	-	1930	μА	T _A = +125°C
Dower gupply			RC Timer mode with CLKRC = 2MHz, SMCR:LPMSS = 0	-	160	210	μА	T _A = +25°C
Power supply current in Timer modes ^{*2}	I _{CCTRCH}	Vcc		-	-	1025	μА	T _A = +105°C
rimer modes			(CLKPLL, CLKMC and CLKSC stopped)	-	-	1840	μА	T _A = +125°C
			RC Timer mode with	-	35	75	μА	T _A = +25°C
	I _{CCTRCL}		CLKRC = 100kHz (CLKPLL, CLKMC and CLKSC	-	-	855	μА	T _A = +105°C
			stopped)	-	-	1640	μА	T _A = +125°C
			Sub Timer mode with	-	25	65	μА	T _A = +25°C
	I _{CCTSUB}		CLKSC = 32kHz (CLKMC, CLKPLL and CLKRC	-	-	830	μА	T _A = +105°C
			stopped)	-	-	1620	μА	T _A = +125°C

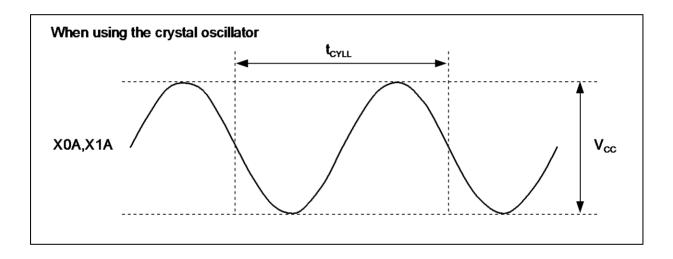


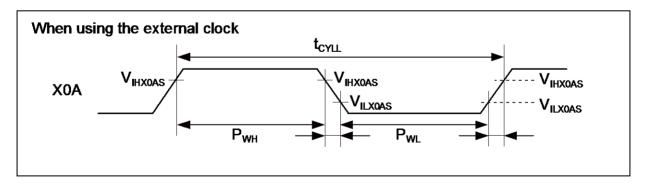

14.4 AC Characteristics

14.4.1 Main Clock Input Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, VD=1.8V\pm0.15V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

				Value			
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	Remarks
			4	-	8	MHz	When using a crystal oscillator, PLL off
Input frequency	f _C	X0,	-	-	8	MHz	When using an opposite phase external clock, PLL off
,		X1	4	-	8	MHz	When using a crystal oscillator or opposite phase external clock, PLL on
Input fraguancy	f _{FCI}	Х0	-	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL off
Input frequency			4	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL on
Input clock cycle	t _{CYLH}	-	125	-	-	ns	
Input clock pulse width	P _{WH} , P _{WL}	-	55	-	-	ns	

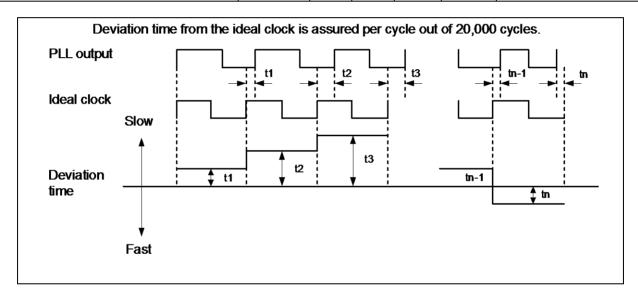




14.4.2 Sub Clock Input Characteristics

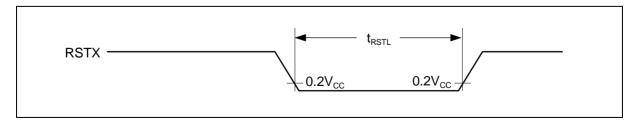
 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks
Farailleter	Symbol	name	Conditions	Min	Тур	Max	Oilit	Remarks
		X0A,	-	-	32.768	-	kHz	When using an oscillation circuit
Input frequency	f _{CL}	X1A	-	-	-	100	kHz	When using an opposite phase external clock
		X0A	-	-	-	50	kHz	When using a single phase external clock
Input clock cycle	t _{CYLL}	-	-	10	-	-	μS	
Input clock pulse width	-	-	P _{WH} /t _{CYLL} , P _{WL} /t _{CYLL}	30	-	70	%	



14.4.5 Operating Conditions of PLL

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$


Parameter	Symbol		Value		Unit	Remarks	
raidiffetei	Symbol	Min	Тур	Max	Onit		
PLL oscillation stabilization wait time	t _{LOCK}	1	-	4	ms	For CLKMC = 4MHz	
PLL input clock frequency	f _{PLLI}	4	-	8	MHz		
PLL oscillation clock frequency	f _{CLKVCO}	56	-	108	MHz	Permitted VCO output frequency of PLL (CLKVCO)	
PLL phase jitter	t _{PSKEW}	-5	-	+5	ns	For CLKMC (PLL input clock) ≥ 4MHz	

14.4.6 Reset Input

(V_{CC} = AV_{CC} = 2.7V to 5.5V,
$$V_{SS}$$
 = AV_{SS} = 0V, T_A = - 40°C to + 125°C)

Parameter	Symbol	Pin name	Va	Unit	
			Min	Max	O i iii
Reset input time		RSTX	10	-	μS
Rejection of reset input time	trstl		1	-	μs

14.4.8 USART Timing

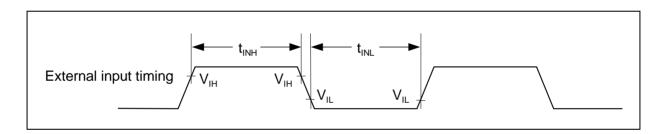
 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}, C_L = 50pF)$

Parameter	Symbo	Pin	Conditions	$4.5V \le V_{CC} < 5.5V$		$2.7V \le V_{CC} < 4.5V$		Unit
r arameter	ı	name	Conditions	Min	Max	Min	Max	Offic
Serial clock cycle time	t _{SCYC}	SCKn		4t _{CLKP1}	-	4t _{CLKP1}	-	ns
$SCK \downarrow \to SOT$ delay time	t _{SLOVI}	SCKn , SOTn		- 20	+ 20	- 30	+ 30	ns
SOT → SCK ↑ delay time	t _{OVSHI}	SCKn , SOTn	Internal shift	N×t _{CLKP1} - 20	-	N×t _{CLKP1} - 30	-	ns
$SIN \rightarrow SCK \uparrow setup time$	t _{IVSHI}	SCKn , SINn	GIOGIC MIGGE	t _{CLKP1} + 45	-	t _{CLKP1} + 55	-	ns
$SCK \uparrow \rightarrow SIN \text{ hold time}$	t _{SHIXI}	SCKn , SINn		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
$SCK \downarrow \to SOT$ delay time	t _{SLOVE}	SCKn , SOTn	External shift clock mode	-	2t _{CLKP1} + 45	-	2t _{CLKP1} + 55	ns
$SIN \rightarrow SCK \uparrow setup time$	t _{IVSHE}	SCKn , SINn		t _{CLKP1} /2 + 10	-	t _{CLKP1} /2 + 10	-	ns
$SCK \uparrow \rightarrow SIN \text{ hold time}$	t _{SHIXE}	SCKn , SINn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
SCK fall time	t _F	SCKn		-	20	-	20	ns
SCK rise time	t _R	SCKn		-	20	-	20	ns

Notes:

- AC characteristic in CLK synchronized mode.
- C_L is the load capacity value of pins when testing.
- Depending on the used machine clock frequency, the maximum possible baud rate can be limited by some parameters. These parameters are shown in "MB96600 series HARDWARE MANUAL".
- t_{CLKP1} indicates the peripheral clock 1 (CLKP1), Unit: ns
- These characteristics only guarantee the same relocate port number. For example, the combination of SCKn and SOTn_R is not guaranteed.
- *: Parameter N depends on t_{SCYC} and can be calculated as follows:
 - If $t_{SCYC} = 2 \times k \times t_{CLKP1}$, then N = k, where k is an integer > 2
- If $t_{SCYC} = (2 \times k + 1) \times t_{CLKP1}$, then N = k + 1, where k is an integer > 1 Examples:

t _{SCYC}	N
4 × t _{CLKP1}	2
$5 \times t_{CLKP1}, 6 \times t_{CLKP1}$	3
$7 \times t_{CLKP1}, 8 \times t_{CLKP1}$	4



14.4.9 External Input Timing

(V_{CC} = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40°C to + 125°C)

Parameter	Symbol	Pin name	Value		Unit	Remarks	
Parameter	Syllibol	Pin name	Min	Max	Ullit	Remarks	
		Pnn_m				General Purpose I/O	
		ADTG_R				A/D Converter trigger input	
		TINn				Reload Timer	
Input pulse width t_{INL}		TTGn	2t _{CLKP1} +200			PPG trigger input	
		FRCKn	FRCKn (t _{CLKP1} =		ns	Free-Running Timer input clock	
		INn	- 1/f _{CLKP1})*			Input Capture	
	TINL	AINn, BINn, ZINn				Quadrature Position/Revolution Counter	
		INTn, INTn_R, INTn_R1	200	_	ns	External Interrupt	
		NMI_R				Non-Maskable Interrupt	

^{*:} t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode.

14.5 A/D Converter

14.5.1 Electrical Characteristics for the A/D Converter

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

		T		Value		T	
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	Remarks
Resolution	-	-	-	-	10	bit	
Total error	-	-	- 3.0	-	+ 3.0	LSB	
Nonlinearity error	-	-	- 2.5	-	+ 2.5	LSB	
Differential Nonlinearity error	-	-	- 1.9	-	+ 1.9	LSB	
Zero transition voltage	V _{OT}	ANn	Тур - 20	AV _{SS} + 0.5LSB	Typ + 20	mV	
Full scale transition voltage	V _{FST}	ANn	Typ - 20	AVRH - 1.5LSB	Typ + 20	mV	
Compare time*	_		1.0	-	5.0	μS	$4.5V \le AV_{CC} \le 5.5V$
Compare time	_	-	2.2	-	8.0	μS	$2.7V \le AV_{CC} < 4.5V$
Committee a time a*	_		0.5	-	-	μS	$4.5V \le AV_{CC} \le 5.5V$
Sampling time*	-	-	1.2	-	-	μS	$2.7V \le AV_{CC} < 4.5V$
Danier annuali:	I _A		-	2.0	3.1	mA	A/D Converter active
Power supply current	I _{AH}	AV _{CC}	-	-	3.3	μА	A/D Converter not operated
Reference power supply current	I _R	- AVRH	-	520	810	μА	A/D Converter active
(between AVRH and AV _{SS})	I _{RH}		-	-	1.0	μА	A/D Converter not operated
Analog input	C _{VIN}	AN8, 9, 12, 13	-	-	15.5	pF	Normal outputs
capacity	OVIN	AN16 to 23	-	-	17.4	pF	High current outputs
Analog impedance	D	ANn	-	-	1450	Ω	$4.5V \le AV_{CC} \le 5.5V$
Analog impedance	R _{VIN}	AINII	-	-	2700	Ω	$2.7V \le AV_{CC} < 4.5V$
Analog port input current (during	1	AN8, 9, 12, 13	- 1.0	-	+ 1.0	μА	AV _{SS} < V _{AIN} <
conversion)	I _{AIN}	AN16 to 23	- 3.0	-	+ 3.0	μА	AV _{CC} , AVRH
Analog input voltage	V _{AIN}	ANn	AV _{SS}	-	AVRH	V	
Reference voltage range	-	AVRH	AV _{CC} - 0.1	-	AV _{CC}	V	
Variation between channels	-	ANn	-	-	4.0	LSB	

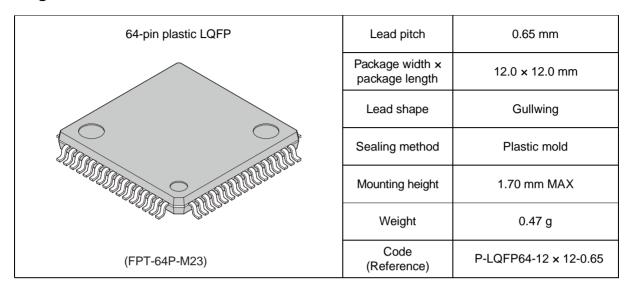
^{*:} Time for each channel.

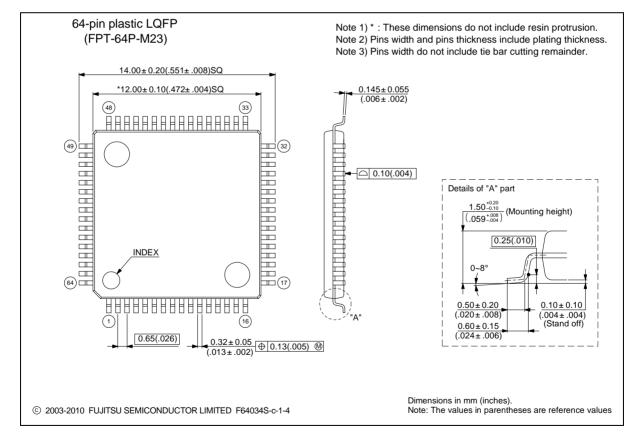
16. Ordering Information

MCU with CAN controller

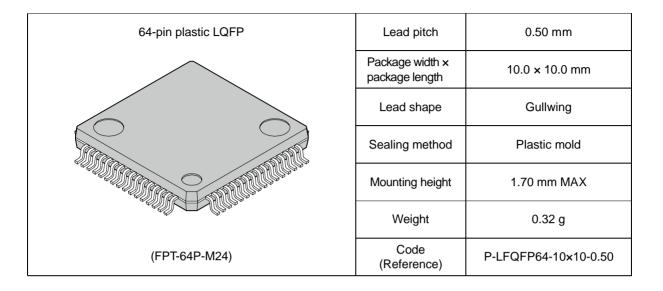
Part number	Flash memory	Package*		
MB96F622RBPMC-GSE1		CA min min min stip LOED		
MB96F622RBPMC-GSE2		64-pin plastic LQFP (FPT-64P-M23)		
MB96F622RBPMC-GTE1	Flash A	(11 1-041 -WZO)		
MB96F622RBPMC1-GSE1	(64.5KB)	04 : 1 :: 1055		
MB96F622RBPMC1-GSE2		64-pin plastic LQFP (FPT-64P-M24)		
MB96F622RBPMC1-GTE1		(11 1-041 -WZ4)		
MB96F623RBPMC-GSE1		04 : 1 :: 1 055		
MB96F623RBPMC-GSE2		64-pin plastic LQFP (FPT-64P-M23)		
MB96F623RBPMC-GTE1	Flash A	(11 1-041 -WZO)		
MB96F623RBPMC1-GSE1	(96.5KB)	04 : 1 :: 1055		
MB96F623RBPMC1-GSE2		64-pin plastic LQFP (FPT-64P-M24)		
MB96F623RBPMC1-GTE1		(11 1 OHI WIZH)		
MB96F625RBPMC-GSE1		04 1 1 1 1050		
MB96F625RBPMC-GSE2		64-pin plastic LQFP (FPT-64P-M23)		
MB96F625RBPMC-GTE1	Flash A	(11 1-041 -WZO)		
MB96F625RBPMC1-GSE1	(160.5KB)	CA min relaction LOED		
MB96F625RBPMC1-GSE2		64-pin plastic LQFP (FPT-64P-M24)		
MB96F625RBPMC1-GTE1		(11 1-041 -10124)		

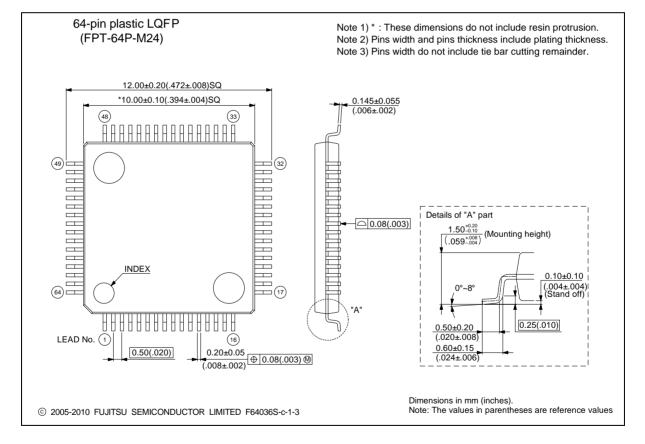
^{*:} For details about package, see "PACKAGE DIMENSION".


MCU without CAN controller


Part number	Flash memory	Package*		
MB96F622ABPMC-GSE1		OA min min aloutin LOED		
MB96F622ABPMC-GSE2		64-pin plastic LQFP (FPT-64P-M23)		
MB96F622ABPMC-GTE1	Flash A	(11101111120)		
MB96F622ABPMC1-GSE1	(64.5KB)	04 : 1 : 1050		
MB96F622ABPMC1-GSE2		64-pin plastic LQFP (FPT-64P-M24)		
MB96F622ABPMC1-GTE1		(11104110124)		
MB96F623ABPMC-GSE1				
MB96F623ABPMC-GSE2		64-pin plastic LQFP (FPT-64P-M23)		
MB96F623ABPMC-GTE1	Flash A	(11 1 041 W25)		
MB96F623ABPMC1-GSE1	(96.5KB)	04 : 1 :: 1055		
MB96F623ABPMC1-GSE2		64-pin plastic LQFP (FPT-64P-M24)		
MB96F623ABPMC1-GTE1		(11 1-0-11 -IVI2-1)		
MB96F625ABPMC-GSE1		04 : 1 :: 1 050		
MB96F625ABPMC-GSE2		64-pin plastic LQFP (FPT-64P-M23)		
MB96F625ABPMC-GTE1	Flash A	(111-041-10123)		
MB96F625ABPMC1-GSE1	(160.5KB)	04 : 1 : 1050		
MB96F625ABPMC1-GSE2		64-pin plastic LQFP (FPT-64P-M24)		
MB96F625ABPMC1-GTE1		(11101111127)		

^{*:} For details about package, see "PACKAGE DIMENSION".




17. Package Dimension

