Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | F ² MC-16FX | | Core Size | 16-Bit | | Speed | 32MHz | | Connectivity | CANbus, I ² C, LINbus, SCI, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 52 | | Program Memory Size | 64KB (64K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 4K x 8 | | Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V | | Data Converters | A/D 21x8/10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 125°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 64-LQFP | | Supplier Device Package | 64-LQFP (12x12) | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/mb96f622rbpmc-gse1 | | 14.4.9 External Input Timing | 47 | |--|----| | 14.4.10 I ² C Timing | 48 | | 14.5 A/D Converter | 49 | | 14.5.1 Electrical Characteristics for the A/D Converter | 49 | | 14.5.2 Accuracy and Setting of the A/D Converter Sampling Time | 50 | | 14.5.3 Definition of A/D Converter Terms | 51 | | 14.6 Low Voltage Detection Function Characteristics | 53 | | 14.7 Flash Memory Write/Erase Characteristics | | | 15. Example Characteristics | 56 | | 16. Ordering Information | | | 17. Package Dimension | | | 18. Major Changes | | | Document History | | ## 2. Block Diagram | Pin no. | I/O circuit type* | Pin name | |---------|-------------------|---------------------------------| | 33 | N | P04_5 / SCL0 | | 34 | 0 | DEBUG I/F | | 35 | Н | P17_0 | | 36 | С | MD | | 37 | A | X0 | | 38 | Α | X1 | | 39 | Supply | Vss | | 40 | В | P04_0 / X0A | | 41 | В | P04_1 / X1A | | 42 | С | RSTX | | 43 | J | P11_7 / SEG3 / IN0_R | | 44 | J | P11_0 / COM0 | | 45 | J | P11_1 / COM1 / PPG0_R | | 46 | J | P11_2 / COM2 / PPG1_R | | 47 | J | P11_3 / COM3 / PPG2_R | | 48 | J | P12_0 / SEG4 / IN1_R | | 49 | J | P12_1 / SEG5 / TIN1_R / PPG0_B | | 50 | J | P12_2 / SEG6 / TOT1_R / PPG1_B | | 51 | J | P12_4 / SEG8 | | 52 | J | P12_5 / SEG9 / TIN2_R / PPG2_B | | 53 | J | P12_6 / SEG10 / TOT2_R / PPG3_B | | 54 | J | P12_7 / SEG11 / INT1_R | | 55 | J | P01_1 / SEG21 / CKOT1 | | 56 | J | P01_3 / SEG23 | | 57 | L | P03_0 / SEG36 / V0 | | 58 | L | P03_1 / SEG37 / V1 | | 59 | L | P03_2 / SEG38 / V2 | | 60 | L | P03_3 / SEG39 / V3 | | 61 | М | P03_4 / RX0 / INT4 | | 62 | Н | P03_5 / TX0 | | 63 | Н | P03_6 / INT0 / NMI | | 64 | Supply | Vcc | ^{*:} See "I/O Circuit Type" for details on the I/O circuit types. | Vector
number | Offset in vector table | Vector name | Cleared by DMA | Index in
ICR to
program | Description | |------------------|------------------------|-------------|----------------|-------------------------------|------------------------------| | 81 | 2B8 _H | OCU4 | Yes | 81 | Output Compare Unit 4 | | 82 | 2B4 _H | OCU5 | Yes | 82 | Output Compare Unit 5 | | 83 | 2B0 _H | OCU6 | Yes | 83 | Output Compare Unit 6 | | 84 | 2AC _H | OCU7 | Yes | 84 | Output Compare Unit 7 | | 85 | 2A8 _H | - | - | 85 | Reserved | | 86 | 2A4 _H | - | - | 86 | Reserved | | 87 | 2A0 _H | - | - | 87 | Reserved | | 88 | 29C _H | - | - | 88 | Reserved | | 89 | 298н | FRT0 | Yes | 89 | Free-Running Timer 0 | | 90 | 294 _H | FRT1 | Yes | 90 | Free-Running Timer 1 | | 91 | 290 _H | FRT2 | Yes | 91 | Free-Running Timer 2 | | 92 | 28C _H | FRT3 | Yes | 92 | Free-Running Timer 3 | | 93 | 288 _H | RTC0 | No | 93 | Real Time Clock | | 94 | 284 _H | CAL0 | No | 94 | Clock Calibration Unit | | 95 | 280 _H | - | - | 95 | Reserved | | 96 | 27C _H | IIC0 | Yes | 96 | I ² C interface 0 | | 97 | 278 _H | - | - | 97 | Reserved | | 98 | 274 _H | ADC0 | Yes | 98 | A/D Converter 0 | | 99 | 270 _H | - | - | 99 | Reserved | | 100 | 26C _H | - | - | 100 | Reserved | | 101 | 268 _H | - | - | 101 | Reserved | | 102 | 264 _H | - | - | 102 | Reserved | | 103 | 260н | - | - | 103 | Reserved | | 104 | 25C _H | - | - | 104 | Reserved | | 105 | 258 _H | LINR2 | Yes | 105 | LIN USART 2 RX | | 106 | 254 _H | LINT2 | Yes | 106 | LIN USART 2 TX | | 107 | 250 _H | - | - | 107 | Reserved | | 108 | 24C _H | - | - | 108 | Reserved | | 109 | 248 _H | - | - | 109 | Reserved | | 110 | 244 _H | - | - | 110 | Reserved | | 111 | 240 _H | - | - | 111 | Reserved | | 112 | 23C _H | - | - | 112 | Reserved | | 113 | 238 _H | - | - | 113 | Reserved | | 114 | 234 _H | - | - | 114 | Reserved | | 115 | 230 _H | LINR7 | Yes | 115 | LIN USART 7 RX | | 116 | 22C _H | LINT7 | Yes | 116 | LIN USART 7 TX | | 117 | 228 _H | LINR8 | Yes | 117 | LIN USART 8 RX | | 118 | 224 _H | LINT8 | Yes | 118 | LIN USART 8 TX | | 119 | 220 _H | - | - | 119 | Reserved | | 120 | 21C _H | - | - | 120 | Reserved | | 121 | 218 _H | - | - | 121 | Reserved | | 122 | 214 _H | - | - | 122 | Reserved | ## 12. Handling Precautions Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices. ### 12.1 Precautions for Product Design This section describes precautions when designing electronic equipment using semiconductor devices. #### ■ Absolute Maximum Ratings Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings. #### ■ Recommended Operating Conditions Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand. #### ■Processing and Protection of Pins These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions. - 1. Preventing Over-Voltage and Over-Current Conditions - Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage. - 2. Protection of Output Pins - Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection. - 3. Handling of Unused Input Pins - Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin. #### ■Latch-up Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up. CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following: - 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc. - 2. Be sure that abnormal current flows do not occur during the power-on sequence. ### ■Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products. #### ■Fail-Safe Design Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. #### ■Precautions Related to Usage of Devices Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. ### 12.2 Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative. #### ■Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. #### ■Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions. ### ■Lead-Free Packaging CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use. ### ■ Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following: - 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight. - Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. - When you open Dry Package that recommends humidity 40% to 70% relative humidity. - 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage. - 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust. ### ■Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking. Condition: 125°C/24 h ## 13. Handling Devices ### Special care is required for the following when handling the device: - · Latch-up prevention - · Unused pins handling - · External clock usage - · Notes on PLL clock mode operation - Power supply pins (V_{cc}/V^{ss}) - · Crystal oscillator and ceramic resonator circuit - Turn on sequence of power supply to A/D converter and analog inputs - · Pin handling when not using the A/D converter - · Notes on Power-on - · Stabilization of power supply voltage - · Serial communication - Mode Pin (MD) ### 13.1 Latch-up prevention CMOS IC chips may suffer latch-up under the following conditions: - A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin. - A voltage higher than the rated voltage is applied between V_{cc} pins and V_{ss} pins. - The AV_{CC} power supply is applied before the V_{CC} voltage. Latch-up may increase the power supply current dramatically, causing thermal damages to the device. For the same reason, extra care is required to not let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage. #### 13.2 Unused pins handling Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0). Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent damage of the device. To prevent latch-up, they must therefore be pulled up or pulled down through resistors which should be more than $2k\Omega$. Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with either input disabled or external pull-up/pull-down resistor as described above. ### 13.6 Crystal oscillator and ceramic resonator circuit Noise at X0, X1 pins or X0A, X1A pins might cause abnormal operation. It is required to provide bypass capacitors with shortest possible distance to X0, X1 pins and X0A, X1A pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the utmost effort, that the lines of oscillation circuit do not cross the lines of other circuits. It is highly recommended to provide a printed circuit board art work surrounding X0, X1 pins and X0A, X1A pins with a ground area for stabilizing the operation. It is highly recommended to evaluate the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer, especially when using low-Q resonators at higher frequencies. ### 13.7 Turn on sequence of power supply to A/D converter and analog inputs It is required to turn the A/D converter power supply (AV_{CC}, AVRH) and analog inputs (ANn) on after turning the digital power supply (V_{CC}) on. It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, AVRH must not exceed AV_{CC} . Input voltage for ports shared with analog input ports also must not exceed AV_{CC} (turning the analog and digital power supplies simultaneously on or off is acceptable). ### 13.8 Pin handling when not using the A/D converter If the A/D converter is not used, the power supply pins for A/D converter should be connected such as $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = V_{SS}$. #### 13.9 Notes on Power-on To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower than 50µs from 0.2V to 2.7V. ### 13.10Stabilization of power supply voltage If the power supply voltage varies acutely even within the operation safety range of the V_{CC} power supply voltage, a malfunction may occur. The V_{CC} power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must be stabilized in such a way that V_{CC} ripple fluctuations (peak to peak value) in the commercial frequencies (50Hz to 60Hz) fall within 10% of the standard V_{CC} power supply voltage and the transient fluctuation rate becomes $0.1V/\mu s$ or less in instantaneous fluctuation for power supply switching. ### 13.11Serial communication There is a possibility to receive wrong data due to noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise. Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs. ### 13.12Mode Pin (MD) Connect the mode pin directly to Vcc or Vss pin. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pin to Vcc or Vss pin and provide a low-impedance connection. ### 14. Electrical Characteristics ### 14.1 Absolute Maximum Ratings | Parameter | Symbol | Condition Rating | | | Unit | Remarks | |---|----------------------|-------------------------|-----------------------|-----------------------|-------|---| | Parameter | Syllibol | Condition | Min | Max | Ullit | Remarks | | Power supply voltage*1 | V _{CC} | - | V _{SS} - 0.3 | V _{SS} + 6.0 | V | | | Analog power supply voltage*1 | AV _{CC} | - | V _{SS} - 0.3 | V _{SS} + 6.0 | V | $V_{CC} = AV_{CC}^{*2}$ | | Analog reference voltage*1 | AVRH | - | V _{SS} - 0.3 | V _{SS} + 6.0 | V | AV _{CC} ≥ AVRH,
AVRH ≥ AV _{SS} | | Input voltage*1 | Vı | - | V _{SS} - 0.3 | V _{SS} + 6.0 | V | $V_{I} \le V_{CC} + 0.3V^{*3}$ | | Output voltage*1 | Vo | - | V _{SS} - 0.3 | V _{SS} + 6.0 | V | $V_{\rm O} \le V_{\rm CC} + 0.3 V^{*3}$ | | Maximum Clamp
Current | I _{CLAMP} | - | -4.0 | +4.0 | mA | Applicable to general purpose I/O pins *4 | | Total Maximum Clamp Current | Σ I _{CLAMP} | - | - | 17 | mA | Applicable to general purpose I/O pins *4 | | "L" level maximum output current | I _{OL} | - | - | 15 | mA | | | "L" level average
output current | I _{OLAV} | - | - | 4 | mA | | | "L" level maximum overall output current | ΣI _{OL} | - | - | 42 | mA | | | "L" level average
overall output current | ΣI _{OLAV} | - | - | 21 | mA | | | "H" level maximum output current | I _{OH} | - | - | -15 | mA | | | "H" level average output current | I _{OHAV} | - | - | -4 | mA | | | "H" level maximum overall output current | Σι _{ΟΗ} | - | - | -42 | mA | | | "H" level average overall output current | ΣI _{OHAV} | - | - | -21 | mA | | | Power consumption*5 | P _D | T _A = +125°C | - | 352 ^{*6} | mW | | | Operating ambient temperature | T _A | - | -40 | +125 ^{*7} | °C | | | Storage temperature | T _{STG} | - | -55 | +150 | °C | | ^{*1}: This parameter is based on Vss = AVss = 0V. - · Use within recommended operating conditions. - · Use at DC voltage (current). - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller. - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods. - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{CC} pin, and this may affect other devices. - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result. - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset. ^{*2:} AVcc and Vcc must be set to the same voltage. It is required that AVcc does not exceed Vcc and that the voltage at the analog inputs does not exceed AVcc when the power is switched on. ^{*3}: VI and Vo should not exceed Vcc + 0.3V. VI should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the ICLAMP rating supersedes the VI rating. Input/Output voltages of standard ports depend on Vcc. ^{*4:} Applicable to all general purpose I/O pins (Pnn_m). ### 14.2 Recommended Operating Conditions $(V_{SS} = AV_{SS} = 0V)$ | Parameter | Symbol | | Value | | Unit | Remarks | |------------------------------|------------------------------------|-----|------------|-----|-------|--| | Farameter | Syllibol | Min | Тур | Max | Ollic | Kemarks | | Power supply | V _{CC} , AV _{CC} | 2.7 | - | 5.5 | V | | | voltage | VCC, AVCC | 2.0 | - | 5.5 | V | Maintains RAM data in stop mode | | Smoothing capacitor at C pin | Cs | 0.5 | 1.0 to 3.9 | 4.7 | μF | $\begin{array}{l} 1.0\mu F \text{ (Allowance within } \pm 50\%) \\ 3.9\mu F \text{ (Allowance within } \pm 20\%) \\ \text{Please use the ceramic capacitor or the capacitor of the frequency response of this level.} \\ \text{The smoothing capacitor at V_{CC} must use the one of a capacity value that is larger than C_{S}.} \end{array}$ | ### **WARNING** The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand. | Doromotor | arameter Symbol Pin name Conditions | | Canditions | | Value | | Unit | Remarks | |------------------------------|-------------------------------------|-----|--|-----|-------|------|---------|-------------------------| | Parameter | | | Min | Тур | Max | Unit | Remarks | | | | | | PLL Timer mode with CLKPLL = | - | 1800 | 2245 | μА | T _A = +25°C | | | I _{CCTPLL} | | 32MHz (CLKRC and CLKSC | - | - | 3165 | μА | T _A = +105°C | | | | | stopped) | - | - | 3975 | μА | T _A = +125°C | | | | | Main Timer mode with CLKMC = 4MHz, | - | 285 | 325 | μА | T _A = +25°C | | | ICCTMAIN | | SMCR:LPMSS = 0 | - | - | 1085 | μА | T _A = +105°C | | | | | (CLKPLL, CLKRC and CLKSC stopped) | | - | 1930 | μА | T _A = +125°C | | Power supply current in Icci | | | RC Timer mode with CLKRC = 2MHz, SMCR:LPMSS = 0 | - | 160 | 210 | μА | T _A = +25°C | | | I _{CCTRCH} | Vcc | | - | - | 1025 | μА | T _A = +105°C | | Timer modes ^{*2} | | | (CLKPLL, CLKMC and CLKSC stopped) | - | - | 1840 | μА | T _A = +125°C | | | | | RC Timer mode with | - | 35 | 75 | μА | T _A = +25°C | | | I _{CCTRCL} | | CLKRC = 100kHz
(CLKPLL, CLKMC and CLKSC | - | - | 855 | μА | T _A = +105°C | | | | | stopped) | - | - | 1640 | μА | T _A = +125°C | | | | | Sub Timer mode with CLKSC = 32kHz (CLKMC, CLKPLL and CLKRC | - | 25 | 65 | μА | T _A = +25°C | | | I _{CCTSUB} | | | - | - | 830 | μА | T _A = +105°C | | | | | stopped) | - | - | 1620 | μА | T _A = +125°C | ### 14.4.5 Operating Conditions of PLL $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$ | Parameter | Symbol | Value | | | Unit | Remarks | | |---|---------------------|-------|-----|-----|------|--|--| | raidiffetei | Symbol | | Тур | Max | Onit | Kemarks | | | PLL oscillation stabilization wait time | t _{LOCK} | 1 | - | 4 | ms | For CLKMC = 4MHz | | | PLL input clock frequency | f _{PLLI} | 4 | - | 8 | MHz | | | | PLL oscillation clock frequency | f _{CLKVCO} | 56 | - | 108 | MHz | Permitted VCO output frequency of PLL (CLKVCO) | | | PLL phase jitter | t _{PSKEW} | -5 | - | +5 | ns | For CLKMC (PLL input clock) ≥ 4MHz | | ## 14.4.6 Reset Input (V_{CC} = AV_{CC} = 2.7V to 5.5V, $$V_{SS}$$ = AV_{SS} = 0V, T_A = - 40°C to + 125°C) | Parameter | Symbol | Pin name | Va | Unit | | | |-------------------------------|--------|------------|-----|------|----|--| | T drameter | Cymbol | T III Hame | Min | Max | | | | Reset input time | | DOTY | 10 | - | μS | | | Rejection of reset input time | trstl | TL RSTX - | 1 | - | μs | | ### ■MB96F625 ## ■Used setting | Mode | Selected Source
Clock | Clock/Regulator and FLASH Settings | |------------|--------------------------|--| | Run mode | PLL | CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz | | | Main osc. | CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz | | | RC clock fast | CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz | | | RC clock slow | CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz | | | Sub osc. | CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz | | Sleep mode | PLL | CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz Regulator in High Power Mode, (CLKB is stopped in this mode) | | | Main osc. | CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz Regulator in High Power Mode, (CLKB is stopped in this mode) | | | RC clock fast | CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz Regulator in High Power Mode, (CLKB is stopped in this mode) | | | RC clock slow | CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz Regulator in Low Power Mode, (CLKB is stopped in this mode) | | | Sub osc. | CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz Regulator in Low Power Mode, (CLKB is stopped in this mode) | | Timer mode | PLL | CLKMC = 4MHz, CLKPLL = 32MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode | | | Main osc. | CLKMC = 4MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode | | | RC clock fast | CLKMC = 2MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode | | | RC clock slow | CLKMC = 100kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode | | | Sub osc. | CLKMC = 32 kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode | | Stop mode | stopped | (All clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode | ## 17. Package Dimension | Page | Section | Change Results | |------------|--|--| | 56 | Electrical Characteristics 7. Flash Memory Write/Erase Characteristics | Changed the Note While the Flash memory is written or erased, shutdown of the external power (V _{CC}) is prohibited. In the application system where the external power (V _{CC}) might be shut down while writing, be sure to turn the power off by using an external voltage detector. | | | | While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function. | | 60 | Ordering Information | Deleted the Part number MCU with CAN controller MB96F622RBPMC-GTE2 MB96F622RBPMC1-GTE2 MB96F623RBPMC-GTE2 MB96F623RBPMC1-GTE2 MB96F625RBPMC1-GTE2 MB96F625RBPMC1-GTE2 MCU without CAN controller MB96F622ABPMC1-GTE2 MB96F622ABPMC1-GTE2 MB96F623ABPMC1-GTE2 MB96F623ABPMC1-GTE2 MB96F625ABPMC1-GTE2 MB96F625ABPMC1-GTE2 MB96F625ABPMC1-GTE2 MB96F625ABPMC1-GTE2 | | Revision 2 | 2.1 | | | - | - | Company name and layout design change | NOTE: Please see "Document History" about later revised information. # **Document History** Document Title: MB96620 Series F²MC-16FX 16-Bit Microcontroller Document Number: 002-04712 | Revision | ECN | Orig. of
Change | Submission
Date | Description of Change | |----------|---------|--------------------|--------------------|--| | ** | - | KSUN | 01/31/2014 | Migrated to Cypress and assigned document number 002-04712. No change to document contents or format. | | *A | 5137624 | KSUN | 02/17/2016 | Updated to Cypress format. | ## Sales, Solutions, and Legal Information ### **Worldwide Sales and Design Support** Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. #### **Products** Automotive Clocks & Buffers Interface **Lighting & Power Control** Memory PSoC Touch Sensing USB Controllers Wireless/RF Spansion Products cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless cypress.com/spansionproducts ### **PSoC® Solutions** psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP ### **Cypress Developer Community** Community | Forums | Blogs | Video | Training ## **Technical Support** cypress.com/go/support Cypress, the Cypress logo, Spansion®, the Spansion logo, MirrorBit®, MirrorBit® Eclipse™, ORNAND™, Easy DesignSim™, Traveo™ and combinations thereof, are trademarks and registered trademarks of Cypress Semiconductor Corp. ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. All other trademarks or registered trademarks referenced herein are the property of their respective owners. © Cypress Semiconductor Corporation, 2014-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement.