

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

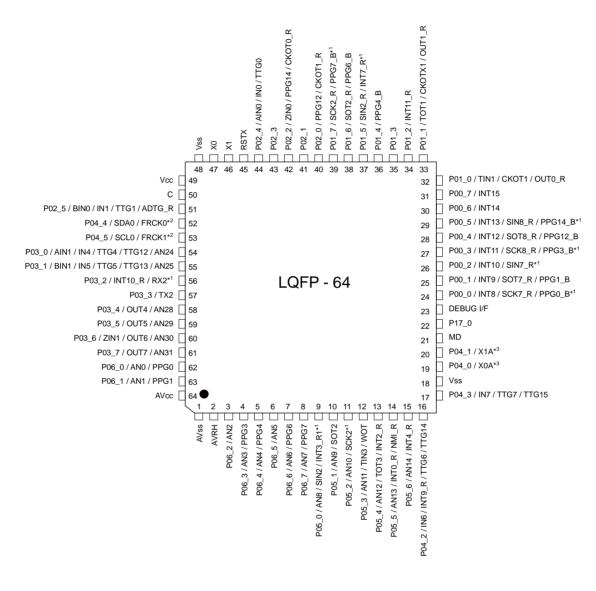
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 21x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f623rbpmc1-gse1


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Pin Assignment

(Top view)

(FPT-64P-M23/M24)

*1: CMOS input level only

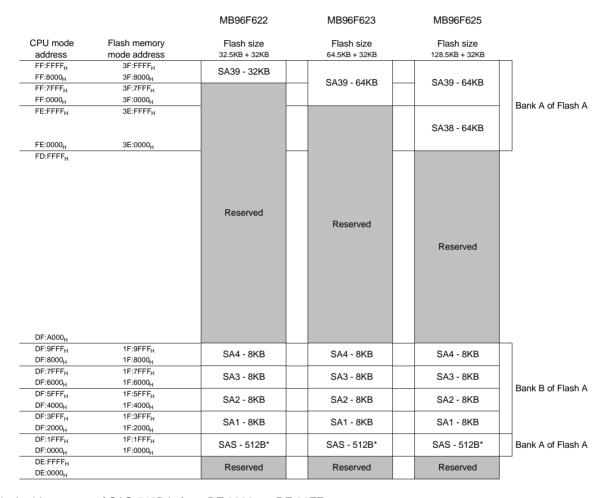
*2: CMOS input level only for I^2C

*3: Please set ROM Configuration Block (RCB) to use the subclock.

Other than those above, general-purpose pins have only Automotive input level.

Туре	Circuit	Remarks
F	P-ch N-ch	Power supply input protection circuit
G	P-ch N-ch	 A/D converter ref+ (AVRH) power supply input pin with protection circuit Without protection circuit against V_{CC} for pins AVRH
Н	P-ch P-ch Pout P-ch P-ch Pout N-ch Nout Standby control for input shutdown	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) Automotive input with input shutdown function Programmable pull-up resistor
	P-ch P-ch Pout P-ch P-ch Pout N-ch Nout Hysteresis input Standby control for input shutdown Analog input	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) CMOS hysteresis input with input shutdown function Programmable pull-up resistor Analog input

Туре	Circuit	Remarks
K	Pull-up control	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) Automotive input with input
	P-ch P-ch Pout	shutdown function Programmable pull-up resistor Analog input
	N-ch Nout	
	Standby control	
	Analog input	
M	Pull-up control	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) CMOS hysteresis input with input shutdown function Programmable pull-up resistor
	P-ch P-ch Pout	
	Standby control	
N	P-ch P-ch Pout	 CMOS level output (I_{OL} = 3mA, I_{OH} = -3mA) CMOS hysteresis input with input shutdown function Programmable pull-up resistor *: N-channel transistor has slew rate control according to I²C spec, irrespective of usage.
	Standby control	



8. RAMSTART Addresses

Devices	Bank 0 RAM size	RAMSTART0
MB96F622	4KB	00:7200 _H
MB96F623 MB96F625	10KB	00:5A00 _H

9. User ROM Memory Map For Flash Devices

*: Physical address area of SAS-512B is from DF:0000_H to DF:01FF_H. Others (from DF:0200_H to DF:1FFF_H) is mirror area of SAS-512B. Sector SAS contains the ROM configuration block RCBA at CPU address DF:0000_H -DF:01FF_H. SAS can not be used for E²PROM emulation.

11. Interrupt Vector Table

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
0	3FC _H	CALLV0	No	-	CALLV instruction
1	3F8 _Н	CALLV1	No	-	CALLV instruction
2	3F4 _H	CALLV2	No	-	CALLV instruction
3	ЗF0 _H	CALLV3	No	-	CALLV instruction
4	3EC _H	CALLV4	No	-	CALLV instruction
5	3E8 _H	CALLV5	No	-	CALLV instruction
6	3E4 _H	CALLV6	No	-	CALLV instruction
7	3E0 _Н	CALLV7	No	-	CALLV instruction
8	3DC _H	RESET	No	-	Reset vector
9	3D8 _H	INT9	No	-	INT9 instruction
10	3D4 _H	EXCEPTION	No	-	Undefined instruction execution
11	3D0 _Н	NMI	No	-	Non-Maskable Interrupt
12	3CC _H	DLY	No	12	Delayed Interrupt
13	3C8 _H	RC_TIMER	No	13	RC Clock Timer
14	3C4 _H	MC_TIMER	No	14	Main Clock Timer
15	3C0 _Н	SC_TIMER	No	15	Sub Clock Timer
16	3BC _H	LVDI	No	16	Low Voltage Detector
17	3В8 _Н	EXTINT0	Yes	17	External Interrupt 0
18	3B4 _H	-	-	18	Reserved
19	3B0 _Н	EXTINT2	Yes	19	External Interrupt 2
20	3AC _H	EXTINT3	Yes	20	External Interrupt 3
21	3А8 _н	EXTINT4	Yes	21	External Interrupt 4
22	3A4 _H	-	-	22	Reserved
23	3A0 _H	-	-	23	Reserved
24	39C _Н	EXTINT7	Yes	24	External Interrupt 7
25	398 _н	EXTINT8	Yes	25	External Interrupt 8
26	394 _Н	EXTINT9	Yes	26	External Interrupt 9
27	390 _Н	EXTINT10	Yes	27	External Interrupt 10
28	38C _H	EXTINT11	Yes	28	External Interrupt 11
29	388 _H	EXTINT12	Yes	29	External Interrupt 12
30	384 _Н	EXTINT13	Yes	30	External Interrupt 13
31	380 _H	EXTINT14	Yes	31	External Interrupt 14
32	37C _H	EXTINT15	Yes	32	External Interrupt 15
33	378 _H	-	-	33	Reserved
34	374 _H	-	-	34	Reserved
35	370 _Н	CAN2	No	35	CAN Controller 2
36	36C _H	-	-	36	Reserved
37	368 _H	-	-	37	Reserved
38	364 _H	PPG0	Yes	38	Programmable Pulse Generator 0
39	360н	PPG1	Yes	39	Programmable Pulse Generator 1

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
40	35C _H	-	-	40	Reserved
41	358H	PPG3	Yes	41	Programmable Pulse Generator 3
42	354H	PPG4	Yes	42	Programmable Pulse Generator 4
43	350H	-	-	43	Reserved
44	34CH	PPG6	Yes	44	Programmable Pulse Generator 6
45	348H	PPG7	Yes	45	Programmable Pulse Generator 7
46	344H	-	-	46	Reserved
47	340H	-	-	47	Reserved
48	33CH	-	-	48	Reserved
49	338H	-	-	49	Reserved
50	334H	PPG12	Yes	50	Programmable Pulse Generator 12
51	330H	-	-	51	Reserved
52	32CH	PPG14	Yes	52	Programmable Pulse Generator 14
53	328H	-	-	53	Reserved
54	324H	-	-	54	Reserved
55	320H	-	-	55	Reserved
56	31CH	-	-	56	Reserved
57	318H	-	-	57	Reserved
58	314H	-	-	58	Reserved
59	310H	RLT1	Yes	59	Reload Timer 1
60	30CH	-	-	60	Reserved
61	308H	RLT3	Yes	61	Reload Timer 3
62	304H	-	-	62	Reserved
63	300H	-	-	63	Reserved
64	2FCH	RLT6	Yes	64	Reload Timer 6
65	2F8H	ICU0	Yes	65	Input Capture Unit 0
66	2F4H	ICU1	Yes	66	Input Capture Unit 1
67	2F0H	-	-	67	Reserved
68	2ECH	-	-	68	Reserved
69	2E8H	ICU4	Yes	69	Input Capture Unit 4
70	2E4H	ICU5	Yes	70	Input Capture Unit 5
71	2E0H	ICU6	Yes	71	Input Capture Unit 6
72	2DCH	ICU7	Yes	72	Input Capture Unit 7
73	2D8H	-	-	73	Reserved
74	2D4H	ICU9	Yes	74	Input Capture Unit 9
75	2D0H	ICU10	Yes	75	Input Capture Unit 10
76	2CCH	-	-	76	Reserved
77	2C8H	OCU0	Yes	77	Output Compare Unit 0
78	2C4H	OCU1	Yes	78	Output Compare Unit 1
79	2C0H	-	-	79	Reserved
80	2BCH	-	-	80	Reserved

12. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

12.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

1. Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

2. Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.

3. Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

■Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

■Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

■Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

■ Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

12.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

■Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

■Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

■Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- 2. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.

When you open Dry Package that recommends humidity 40% to 70% relative humidity.

- 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

14.2 Recommended Operating Conditions

 $(V_{SS} = AV_{SS} = 0V)$

Parameter	Symbol		Value		Unit	Remarks	
Falameter	Symbol	Min	Тур	Max	Unit	Reliaiks	
Power supply	V _{CC} , AV _{CC}	2.7	-	5.5	V		
voltage		2.0	-	5.5	V	Maintains RAM data in stop mode	
Smoothing capacitor at C pin	Cs	0.5	1.0 to 3.9	4.7	μF	$\begin{array}{l} 1.0 \mu F \mbox{ (Allowance within \pm 50\%)} \\ 3.9 \mu F \mbox{ (Allowance within \pm 20\%)} \\ Please use the ceramic capacitor or the capacitor of the frequency response of this level. \\ The smoothing capacitor at V_{CC} must use the one of a capacity value that is larger than C_s. \end{array}$	

WARNING

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

14.3 DC Characteristics

14.3.1 Current Rating

D	O multi al	Pin			Value)		
Parameter	Symbol	name	Conditions	Min	Тур	Max	Unit	Remarks
			PLL Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32MHz	-	25	-	mA	T _A = +25°C
	I _{CCPLL}		Flash 0 wait	-	-	34	mA	T _A = +105°C
			(CLKRC and CLKSC stopped)	-	-	35	mA	T _A = +125°C
			Main Run mode with CLKS1/2 = CLKB = CLKP1/2 = 4MHz	-	3.5	-	mA	T _A = +25°C
	ICCMAIN		Flash 0 wait	-	-	7.5	mA	T _A = +105°C
			(CLKPLL, CLKSC and CLKRC stopped)	-	-	8.5	mA	T _A = +125°C
			RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 2MHz	-	1.7	-	mA	T _A = +25°C
Power supply current in Run modes ^{*1}	I _{CCRCH}		Flash 0 wait	-	-	5.5	mA	T _A = +105°C
			(CLKMC, CLKPLL and CLKSC stopped)	-	-	6.5	mA	T _A = +125°C
			RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 100kHz	-	0.15	-	mA	T _A = +25°C
			Flash 0 wait	-	-	3.2	mA	T _A = +105°C
			(CLKMC, CLKPLL and CLKSC stopped)	-	-	4.2	mA	T _A = +125°C
			Sub Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32kHz		0.1	-	mA	T _A = +25°C
	I _{CCSUB}		Flash 0 wait	-	-	3	mA	T _A = +105°C
			(CLKMC, CLKPLL and CLKRC stopped)	-	-	4	mA	T _A = +125°C

$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks
Parameter	Symbol	name	Conditions	Min	Тур	Max	Unit	Remarks
			PLL Sleep mode with	-	6.5	-	mA	T _A = +25°C
	I _{CCSPLL}		CLKS1/2 = CLKP1/2 = 32MHz (CLKRC and CLKSC	-	-	13	mA	T _A = +105°C
			stopped)	-	-	14	mA	T _A = +125°C
			Main Sleep mode with CLKS1/2 = CLKP1/2 =	-	0.9	-	mA	T _A = +25°C
			4MHz, SMCR:LPMSS = 0	-	-	4	mA	T _A = +105°C
		Vcc	(CLKPLL, CLKRC and CLKSC stopped)	-	-	5	mA	T _A = +125°C
	I _{CCSRCH}		RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKMC, CLKPLL and CLKSC stopped)	-	0.5	-	mA	T _A = +25°C
Power supply current in Sleep modes ^{*1}				-	-	3.5	mA	T _A = +105°C
				-	-	4.5	mA	T _A = +125°C
			RC Sleep mode with	-	0.06	-	mA	T _A = +25°C
			CLKS1/2 = CLKP1/2 = CLKRC = 100kHz (CLKMC, CLKPLL and	-	-	2.7	mA	T _A = +105°C
			CLKSC stopped)	-	-	3.7	mA	T _A = +125°C
			Sub Sleep mode with	-	0.04	-	mA	T _A = +25°C
	I _{CCSSUB}		CLKS1/2 = CLKP1/2 = 32kHz, (CLKMC, CLKPLL and	-	-	2.5	mA	T _A = +105°C
		CLKRC stopped)		-	-	3.5	mA	T _A = +125°C

Devenuetor	Cumhal	Pin	Conditions		Value		11	Demerke
Parameter	eter Symbol name Conditions		Min	Тур	Max	Unit	Remarks	
			PLL Timer mode with CLKPLL =	-	1800	2245	μΑ	T _A = +25°C
	I _{CCTPLL}		32MHz (CLKRC and CLKSC	-	-	3165	μA	T _A = +105°C
			stopped)	-	-	3975	μA	T _A = +125°C
			Main Timer mode with CLKMC = 4MHz,	-	285	325	μΑ	T _A = +25°C
			SMCR:LPMSS = 0	-	-	1085	μA	T _A = +105°C
			(CLKPLL, CLKRC and CLKSC stopped)	-	-	1930	μA	T _A = +125°C
Power supply			RC Timer mode with CLKRC = 2MHz,	-	160	210	μA	T _A = +25°C
current in Timer modes ^{*2}	ICCTRCH	Vcc	SMCR:LPMSS = 0	-	-	1025	μA	T _A = +105°C
Timer modes			(CLKPLL, CLKMC and CLKSC stopped)	-	-	1840	μA	T _A = +125°C
			RC Timer mode with	-	35	75	μΑ	T _A = +25°C
	ICCTRCL		CLKRC = 100kHz (CLKPLL, CLKMC and CLKSC stopped)	-	-	855	μA	T _A = +105°C
				-	-	1640	μA	T _A = +125°C
			Sub Timer mode with	-	25	65	μA	T _A = +25°C
	I _{CCTSUB}		CLKSC = 32kHz (CLKMC, CLKPLL and CLKRC	-	-	830	μA	T _A = +105°C
			stopped)	-	-	1620	μΑ	T _A = +125°C

Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks
Parameter	Symbol	name	Conditions	Min	Тур	Max	Unit	
				-	20	55	μA	$T_A = +25^{\circ}C$
Power supply current in Stop mode ^{*3}	I _{CCH}		-	-	-	825	μA	T _A = +105°C
				-	-	1615	μA	T _A = +125°C
Flash Power Down current	ICCFLASHPD]	-	-	36	70	μΑ	
Power supply current for active Low	I _{CCLVD}	Vcc	Low voltage detector enabled	-	5	-	μА	T _A = +25°C
Voltage detector*4				-	-	12.5	μA	T _A = +125°C
Flash Write/				-	12.5	-	mA	T _A = +25°C
Erase current*5	ICCFLASH		-	-	-	20	mA	T _A = +125°C

^{*1}: The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. See chapter "Standby mode and voltage regulator control circuit" of the Hardware Manual for further details about voltage regulator control. Current for "On Chip Debugger" part is not included. Power supply current in Run mode does not include Flash Write / Erase current.

^{*2}: The power supply current in Timer mode is the value when Flash is in Power-down / reset mode. When Flash is not in Power-down / reset mode, I_{CCFLASHPD} must be added to the Power supply current.

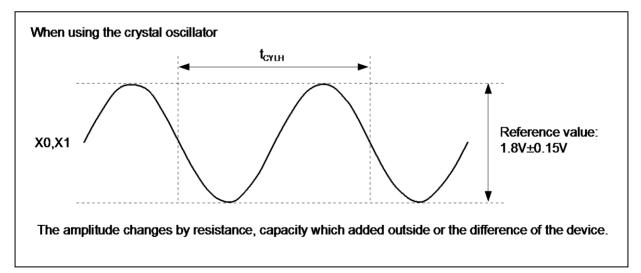
The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. The current for "On Chip Debugger" part is not included.

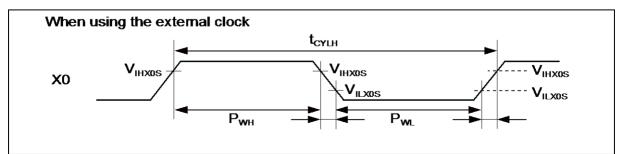
^{*3}: The power supply current in Stop mode is the value when Flash is in Power-down / reset mode.

When Flash is not in Power-down / reset mode, I_{CCFLASHPD} must be added to the Power supply current.

^{*4}: When low voltage detector is enabled, I_{CCLVD} must be added to Power supply current.

^{*5}: When Flash Write / Erase program is executed, I_{CCFLASH} must be added to Power supply current.

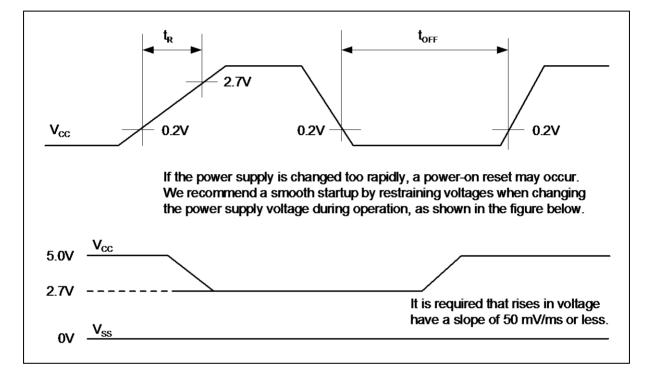



14.4 AC Characteristics

14.4.1 Main Clock Input Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, VD=1.8V \pm 0.15V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Parameter	Symbol	Pin name		Value		Unit	Remarks
Farameter	Symbol	Fin hame	Min	Тур	Max	Unit	Reliidiks
			4	-	8	MHz	When using a crystal oscillator, PLL off
Input frequency	fc	X0, X1	-	-	8	MHz	When using an opposite phase external clock, PLL off
		X1	4	-	8	MHz	When using a crystal oscillator or opposite phase external clock, PLL on
Input frequency	£		-	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL off
	f _{FCI}	X0	4	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL on
Input clock cycle	t _{СҮLН}	-	125	-	-	ns	
Input clock pulse width	Р _{WH} , Р _{WL}	-	55	-	-	ns	



14.4.7 Power-on Reset Timing

$(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$							
Parameter	Symbol	Pin name		Value	Unit		
Farameter			Min	Тур	Max		
Power on rise time	t _R	Vcc	0.05	-	30	ms	
Power off time	t _{OFF}	Vcc	1	-	-	ms	

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C} \text{ to } + 125^{\circ}\text{C}, C_L=50\text{pF})$

14.4.8 USART Timing

Baramatar	Symbo	Pin	Conditions	4.5V ≤ V ₀	_{cc} < 5.5V	2.7V ≤ V ₀	_{cc} < 4.5V	Unit
Parameter	Í I	name Conditions	Min	Max	Min	Max	Unit	
Serial clock cycle time	t _{SCYC}	SCKn		4t _{CLKP1}	-	4t _{CLKP1}	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVI}	SCKn , SOTn		- 20	+ 20	- 30	+ 30	ns
SOT $ ightarrow$ SCK \uparrow delay time	t _{ovsнi}	SCKn , SOTn	Internal shift clock mode	N×t _{CLKP1} – 20 [*]	-	N×t _{CLKP1} – 30 [*]	-	ns
$SIN \to SCK \uparrow setup time$	t _{IVSHI}	SCKn , SINn		t _{CLKP1} + 45	-	t _{CLKP1} + 55	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	t _{SHIXI}	SCKn , SINn		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKn	External shift clock mode	t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVE}	SCKn , SOTn		-	2t _{CLKP1} + 45	-	2t _{CLKP1} + 55	ns
$SIN \to SCK \uparrow setup time$	t _{IVSHE}	SCKn , SINn		t _{CLKP1} /2 + 10	-	t _{CLKP1} /2 + 10	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{SHIXE}	SCKn , SINn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
SCK fall time	tF	SCKn		-	20	-	20	ns
SCK rise time	t _R	SCKn		-	20	-	20	ns

Notes:

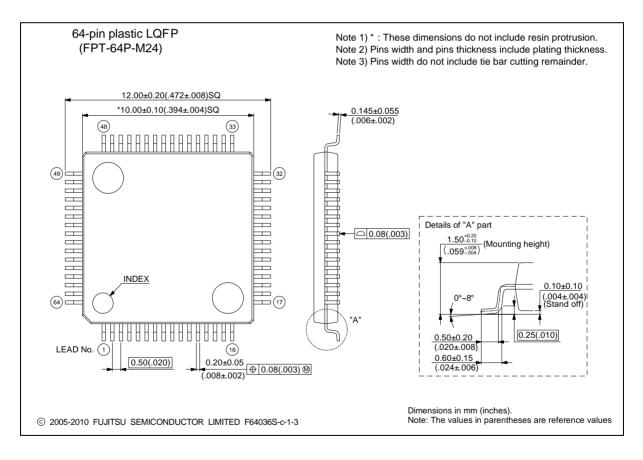
- AC characteristic in CLK synchronized mode.
- C_L is the load capacity value of pins when testing.
- Depending on the used machine clock frequency, the maximum possible baud rate can be limited by some parameters. These parameters are shown in "MB96600 series HARDWARE MANUAL".
- + t_{CLKP1} indicates the peripheral clock 1 (CLKP1), Unit: ns
- These characteristics only guarantee the same relocate port number.

For example, the combination of SCKn and SOTn_R is not guaranteed.

*: Parameter N depends on $t_{\mbox{\scriptsize SCYC}}$ and can be calculated as follows:

• If $t_{SCYC} = 2 \times k \times t_{CLKP1}$, then N = k, where k is an integer > 2

• If $t_{SCYC} = (2 \times k + 1) \times t_{CLKP1}$, then N = k + 1, where k is an integer > 1


Examples:

tscyc	Ν
$4 \times t_{CLKP1}$	2
$5 \times t_{CLKP1}, 6 \times t_{CLKP1}$	3
$7 \times t_{CLKP1}, 8 \times t_{CLKP1}$	4

64-pin plastic LQFP	Lead pitch	0.50 mm
	Package width × package length	10.0 × 10.0 mm
	Lead shape	Gullwing
	Sealing method	Plastic mold
	Mounting height	1.70 mm MAX
. <u>voji a k</u> ilos.	Weight	0.32 g
(FPT-64P-M24)	Code (Reference)	P-LFQFP64-10×10-0.50

Page	Section	Change Results
56	Electrical Characteristics 7. Flash Memory Write/Erase Characteristics	Changed the Note While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing, be sure to turn the power off by using an external voltage detector.
		While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.
60	Ordering Information	Deleted the Part number MCU with CAN controller MB96F622RBPMC-GTE2 MB96F622RBPMC1-GTE2 MB96F623RBPMC-GTE2 MB96F623RBPMC-GTE2 MB96F625RBPMC-GTE2 MCU without CAN controller MB96F622ABPMC-GTE2 MB96F622ABPMC1-GTE2 MB96F623ABPMC-GTE2 MB96F623ABPMC1-GTE2 MB96F625ABPMC1-GTE2 MB96F625ABPMC1-GTE2
Revision 2	2.1	
-	-	Company name and layout design change

NOTE: Please see "Document History" about later revised information.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless
Spansion Products	cypress.com/spansionproducts

PSoC® Solutions psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

Cypress, the Cypress logo, Spansion[®], the Spansion logo, MirrorBit[®], MirrorBit[®] EclipseTM, ORNANDTM, Easy DesignSimTM, TraveoTM and combinations thereof, are trademarks and registered trademarks of Cypress Semiconductor Corp. ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2014-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.