

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

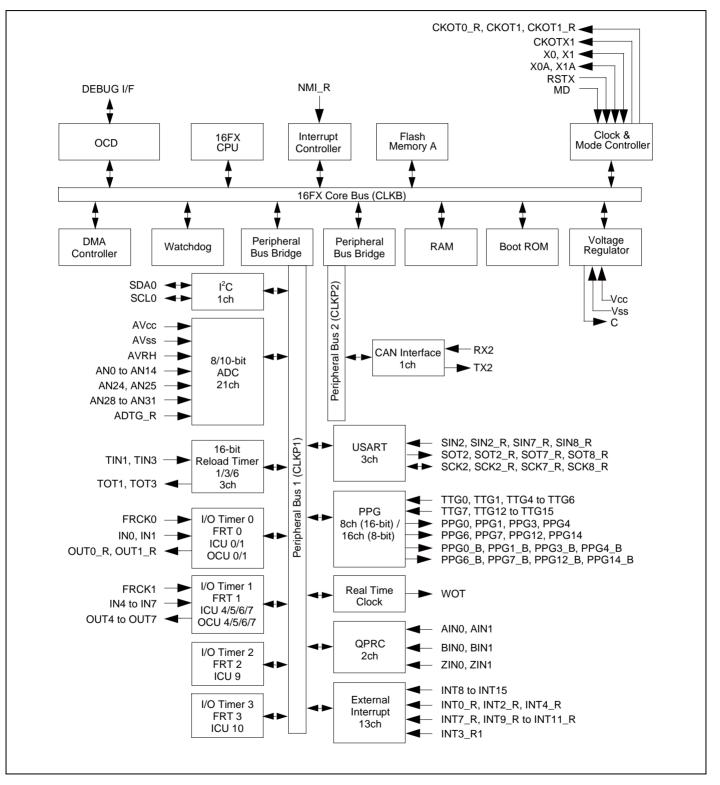
Details	
Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	160KB (160K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 21x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f625abpmc1-gse1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

14.4.9 External Input Timing	7
14.4.10 T C mining	
14.5.1 Electrical Characteristics for the A/D Converter	
14.5.2 Accuracy and Setting of the A/D Converter Sampling Time	0
14.5.3 Definition of A/D Converter Terms	1
14.6 Low Voltage Detection Function Characteristics	3
14.7 Flash Memory Write/Erase Characteristics	5
15. Example Characteristics	6
16. Ordering Information	9
17. Package Dimension	
18. Major Changes	
Document History	4

1. Product Lineup


Features		MB96620	Remark	
Product Type		Flash Memory Product		
Subclock		Subclock can be set by software		
Dual Opera	ation Flash Memory	RAM	-	
32.5KB + 3		4KB	MB96F622R, MB96F622A	Product Options
64.5KB + 3		10KB	MB96F623R, MB96F623A	R: MCU with CAN
128.5KB +		10KB	MB96F625R, MB96F625A	A: MCU without CAN
Package	-		LQFP-64 FPT-64P-M23/M24	
DMA			2ch	
USART			3ch	LIN-USART 2/7/8
	with automatic LIN-Head transmission/reception	er	Yes (only 1ch)	LIN-USART 2
	with 16 byte RX- and TX-FIFO		No	
l ² C			1ch	I ² C 0
8/10-bit A/	D Converter		21ch	AN 0 to 14/24/25/28 to 31
	with Data Buffer		No	
	with Range Comparator		Yes	
	with Scan Disable		No	
	with ADC Pulse Detection	n	No	
16-bit Relo	ad Timer (RLT)		3ch	RLT 1/3/6
16-bit Free	16-bit Free-Running Timer (FRT)		4ch	FRT 0 to 3 FRT 2/3 does not have external clock input pin
	t Capture Unit (ICU)		8ch (2 channels for LIN-USART)	ICU 0/1/4 to 7/9/10 (ICU 9/10 for LIN-USART)
	out Compare Unit (OCU)		6ch	OCU 0/1/4 to 7
8/16-bit Pro	ogrammable Pulse Genera	tor (PPG)	8ch (16-bit) / 16ch (8-bit)	PPG 0/1/3/4/6/7/12/14
	with Timing point capture	;	Yes	
	with Start delay		No	
	with Ramp		No	
Quadrature (QPRC)	Position/Revolution Cour	ter	2ch	QPRC 0/1
CAN Interfa			1ch	CAN 2 32 Message Buffers
External In	terrupts (INT)		13ch	INT 0/2/3/4/7 to 15
	able Interrupt (NMI)		1ch	
	Clock (RTC)		1ch	
I/O Ports		50 (Dual clock mode) 52 (Single clock mode)		
Clock Calib	pration Unit (CAL)		1ch	
Clock Output Function			2ch	
Low Voltage Detection Function		Yes	Low voltage detection function can be disabled by software	
Hardware \	Watchdog Timer		Yes	
On-chip RC			Yes	
	ebugger		Yes	

Note:

All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the general I/O port according to your function use.

2. Block Diagram

Pin name	Feature	Description
WOT	RTC	Real Time clock output pin
X0	Clock	Oscillator input pin
X0A	Clock	Subclock Oscillator input pin
X1	Clock	Oscillator output pin
X1A	Clock	Subclock Oscillator output pin
ZINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin

Туре	Circuit	Remarks
F	P-ch N-ch	Power supply input protection circuit
G	P-ch N-ch	 A/D converter ref+ (AVRH) power supply input pin with protection circuit Without protection circuit against V_{CC} for pins AVRH
Н	P-ch P-ch Pout P-ch P-ch Pout N-ch Nout Standby control for input shutdown	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) Automotive input with input shutdown function Programmable pull-up resistor
	P-ch P-ch Pout P-ch P-ch Pout N-ch Nout Hysteresis input Standby control for input shutdown Analog input	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) CMOS hysteresis input with input shutdown function Programmable pull-up resistor Analog input

Туре	Circuit	Remarks
K	Pull-up control	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) Automotive input with input
	P-ch P-ch Pout	shutdown function Programmable pull-up resistor Analog input
	N-ch Nout	
	Standby control	
	Analog input	
M	Pull-up control	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) CMOS hysteresis input with input shutdown function Programmable pull-up resistor
	P-ch P-ch Pout	
	Standby control	
N	P-ch P-ch Pout	 CMOS level output (I_{OL} = 3mA, I_{OH} = -3mA) CMOS hysteresis input with input shutdown function Programmable pull-up resistor *: N-channel transistor has slew rate control according to I²C spec, irrespective of usage.
	Standby control	

8. RAMSTART Addresses

Devices	Bank 0 RAM size	RAMSTART0
MB96F622	4KB	00:7200 _H
MB96F623 MB96F625	10KB	00:5A00 _H

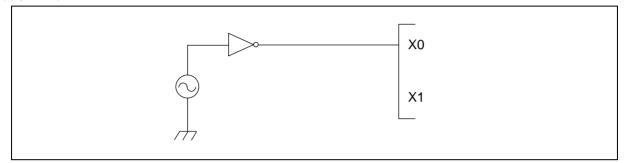


11. Interrupt Vector Table

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description	
0	3FC _H	CALLV0	No	-	CALLV instruction	
1	3F8 _Н	CALLV1	No	-	CALLV instruction	
2	3F4 _H	CALLV2	No	-	CALLV instruction	
3	ЗF0 _H	CALLV3	No	-	CALLV instruction	
4	3EC _H	CALLV4	No	-	CALLV instruction	
5	3E8 _H	CALLV5	No	-	CALLV instruction	
6	3E4 _H	CALLV6	No	-	CALLV instruction	
7	3E0 _Н	CALLV7	No	-	CALLV instruction	
8	3DC _H	RESET	No	-	Reset vector	
9	3D8 _H	INT9	No	-	INT9 instruction	
10	3D4 _H	EXCEPTION	No	-	Undefined instruction execution	
11	3D0 _Н	NMI	No	-	Non-Maskable Interrupt	
12	3CC _H	DLY	No	12	Delayed Interrupt	
13	3C8 _H	RC_TIMER	No	13	RC Clock Timer	
14	3C4 _H	MC_TIMER	No	14	Main Clock Timer	
15	3C0 _Н	SC_TIMER	No	15	Sub Clock Timer	
16	3BC _H	LVDI	No	16	Low Voltage Detector	
17	3В8 _Н	EXTINT0	Yes	17	External Interrupt 0	
18	3B4 _H	-	-	18	Reserved	
19	3B0 _Н	EXTINT2	Yes	19	External Interrupt 2	
20	3AC _H	EXTINT3	Yes	20	External Interrupt 3	
21	3А8 _н	EXTINT4	Yes	21	External Interrupt 4	
22	3A4 _H	-	-	22	Reserved	
23	3A0 _H	-	-	23	Reserved	
24	39C _Н	EXTINT7	Yes	24	External Interrupt 7	
25	398 _н	EXTINT8	Yes	25	External Interrupt 8	
26	394 _Н	EXTINT9	Yes	26	External Interrupt 9	
27	390 _Н	EXTINT10	Yes	27	External Interrupt 10	
28	38C _H	EXTINT11	Yes	28	External Interrupt 11	
29	388 _H	EXTINT12	Yes	29	External Interrupt 12	
30	384 _Н	EXTINT13	Yes	30	External Interrupt 13	
31	380 _H	EXTINT14	Yes	31	External Interrupt 14	
32	37C _H	EXTINT15	Yes	32	External Interrupt 15	
33	378 _H	-	-	33	Reserved	
34	374 _H	-	-	34	Reserved	
35	370 _н	CAN2	No	35 CAN Controller 2		
36	36C _H	-	-	36 Reserved		
37	368 _H	-	-	37	Reserved	
38	364 _H	PPG0	Yes	38	Programmable Pulse Generator 0	
39	360н	PPG1	Yes	39	Programmable Pulse Generator 1	

Vector number	Offset in vector table Vector name Cleared by DMA Index in ICR to program		ICR to	Description		
40	35C _H	-	-	40	Reserved	
41	358H	PPG3	Yes	41	Programmable Pulse Generator 3	
42	354H	PPG4	Yes	42	Programmable Pulse Generator 4	
43	350H	-	-	43	Reserved	
44	34CH	PPG6	Yes	44	Programmable Pulse Generator 6	
45	348H	PPG7	Yes	45	Programmable Pulse Generator 7	
46	344H	-	-	46	Reserved	
47	340H	-	-	47	Reserved	
48	33CH	-	-	48	Reserved	
49	338H	-	-	49	Reserved	
50	334H	PPG12	Yes	50	Programmable Pulse Generator 12	
51	330H	-	-	51	Reserved	
52	32CH	PPG14	Yes	52	Programmable Pulse Generator 14	
53	328H	-	-	53	Reserved	
54	324H	-	-	54	Reserved	
55	320H	-	-	55	Reserved	
56	31CH	-	-	56	Reserved	
57	318H	-	-	57	Reserved	
58	314H	-	-	58	Reserved	
59	310H	RLT1	Yes	59	Reload Timer 1	
60	30CH	-	-	60	Reserved	
61	308H	RLT3	Yes	61	Reload Timer 3	
62	304H	-	-	62	Reserved	
63	300H	-	-	63	Reserved	
64	2FCH	RLT6	Yes	64	Reload Timer 6	
65	2F8H	ICU0	Yes	65	Input Capture Unit 0	
66	2F4H	ICU1	Yes	66	Input Capture Unit 1	
67	2F0H	-	-	67	Reserved	
68	2ECH	-	-	68	Reserved	
69	2E8H	ICU4	Yes	69	Input Capture Unit 4	
70	2E4H	ICU5	Yes	70	Input Capture Unit 5	
71	2E0H	ICU6	Yes	71	Input Capture Unit 6	
72	2DCH	ICU7	Yes	72	Input Capture Unit 7	
73	2D8H	-	-	73	Reserved	
74	2D4H	ICU9	Yes	74	Input Capture Unit 9	
75	2D0H	ICU10	Yes	75	Input Capture Unit 10	
76	2CCH	-	-	76	Reserved	
77	2C8H	OCU0	Yes	77	Output Compare Unit 0	
78	2C4H	OCU1	Yes	78	Output Compare Unit 1	
79	2C0H	-	-	79	Reserved	
80	2BCH	-	-	80	Reserved	

Vector number			Index in ICR to program	Description		
81	2B8 _H	OCU4	Yes	81	Output Compare Unit 4	
82	2B4 _H	OCU5	Yes	82	Output Compare Unit 5	
83	2B0 _H	OCU6	Yes	83	Output Compare Unit 6	
84	2AC _H	OCU7	Yes	84	Output Compare Unit 7	
85	2A8 _H	-	-	85	Reserved	
86	2A4 _H	-	-	86	Reserved	
87	2A0 _H	-	-	87	Reserved	
88	29C _H	-	-	88	Reserved	
89	298 _H	FRT0	Yes	89	Free-Running Timer 0	
90	294 _H	FRT1	Yes	90	Free-Running Timer 1	
91	290 _H	FRT2	Yes	91	Free-Running Timer 2	
92	28C _H	FRT3	Yes	92	Free-Running Timer 3	
93	288 _H	RTC0	No	93	Real Time Clock	
94	284 _H	CAL0	No	94	Clock Calibration Unit	
95	280 _H	-	-	95	Reserved	
96	27C _H	IIC0	Yes	96	I ² C interface 0	
97	278 _H	-	-	97	Reserved	
98	274 _H	ADC0	Yes	98	A/D Converter 0	
99	270 _H	-	-	99	Reserved	
100	26C _H	-	-	100	Reserved	
101	268 _H	-	-	101	Reserved	
102	264 _H	-	-	102	Reserved	
103	260 _H	-	-	103	Reserved	
104	25C _H	-	-	104	Reserved	
105	258 _H	LINR2	Yes	105	LIN USART 2 RX	
106	254 _H	LINT2	Yes	106	LIN USART 2 TX	
107	250 _H	-	-	107	Reserved	
108	24C _H	-	-	108	Reserved	
109	248 _H	-	-	109	Reserved	
110	244 _H	-	-	110	Reserved	
111	240 _H	-	-	111	Reserved	
112	23C _H	-	-	112	Reserved	
113	238 _H	-	-	113	Reserved	
114	234 _H	-	-	114	Reserved	
115	230 _H	LINR7	Yes	115	LIN USART 7 RX	
116	22C _H	LINT7	Yes	116	LIN USART 7 TX	
117	228 _H	LINR8	Yes	117	LIN USART 8 RX	
118	224 _H	LINT8	Yes	118	LIN USART 8 TX	
119	220 _H	-	-	119		
120	21C _H	-	-	120	Reserved	
121	218 _H	-	-	121	Reserved	
122	214 _H	-	-	122	Reserved	

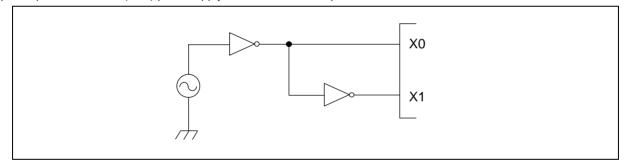

13.3 External clock usage

The permitted frequency range of an external clock depends on the oscillator type and configuration.

See AC Characteristics for detailed modes and frequency limits. Single and opposite phase external clocks must be connected as follows:

13.3.1 Single phase external clock for Main oscillator

When using a single phase external clock for the Main oscillator, X0 pin must be driven and X1 pin left open. And supply 1.8V power to the external clock.


13.3.2 Single phase external clock for Sub oscillator

When using a single phase external clock for the Sub oscillator, "External clock mode" must be selected and

X0A/P04_0 pin must be driven. X1A/P04_1 pin can be configured as GPIO.

13.3.3 Opposite phase external clock

When using an opposite phase external clock, X1 (X1A) pins must be supplied with a clock signal which has the opposite phase to the X0 (X0A) pins. Supply level on X0 and X1 pins must be 1.8V.

13.4 Notes on PLL clock mode operation

If the microcontroller is operated with PLL clock mode and no external oscillator is operating or no external clock is supplied, the microcontroller attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be guaranteed.

13.5 Power supply pins (V_{cc}/V_{ss})

It is required that all V_{CC} -level as well as all V_{SS} -level power supply pins are at the same potential. If there is more than one V_{CC} or V_{SS} level, the device may operate incorrectly or be damaged even within the guaranteed operating range.

V_{cc} and V_{ss} pins must be connected to the device from the power supply with lowest possible impedance.

The smoothing capacitor at V_{cc} pin must use the one of a capacity value that is larger than Cs.

Besides this, as a measure against power supply noise, it is required to connect a bypass capacitor of about 0.1μ F between V_{cc} and V_{ss} pins as close as possible to V_{cc} and V_{ss} pins.

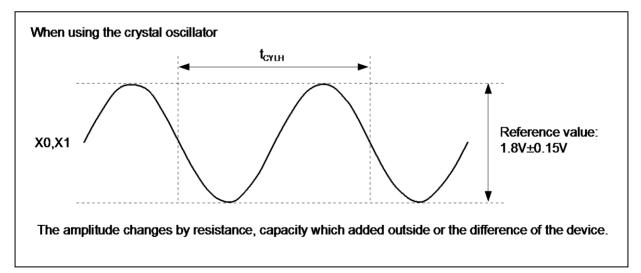
14. Electrical Characteristics

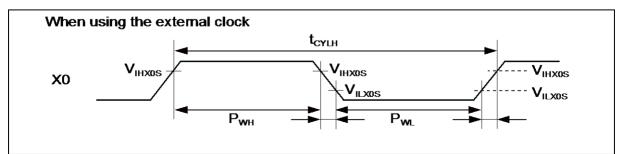
14.1 Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating		Unit	Remarks
	Gymbol	Condition	Min	Max	Unit	Remarks
Power supply voltage*1	V _{cc}	-	V _{SS} - 0.3	V _{SS} + 6.0	V	
Analog power supply voltage*1	AV _{CC}	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{CC} = AV_{CC}^{*2}$
Analog reference voltage* ¹	AVRH	-	V _{SS} - 0.3	V _{SS} + 6.0	V	AV _{CC} ≥ AVRH, AVRH ≥ AV _{SS}
Input voltage*1	VI	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{\rm I} \le V_{\rm CC} + 0.3 V^{*3}$
Output voltage*1	Vo	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_0 \le V_{CC} + 0.3 V^{*3}$
Maximum Clamp Current	I _{CLAMP}	-	-4.0	+4.0	mA	Applicable to general purpose I/O pins * ⁴
Total Maximum Clamp Current	Σ I _{CLAMP}	-	-	17	mA	Applicable to general purpose I/O pins * ⁴
"L" level maximum output current	I _{OL}	-	-	15	mA	
"L" level average output current	I _{OLAV}	-	-	4	mA	
"L" level maximum overall output current	ΣI _{OL}	-	-	42	mA	
"L" level average overall output current	ΣI _{OLAV}	-	-	21	mA	
"H" level maximum output current	I _{OH}	-	-	-15	mA	
"H" level average output current	I _{OHAV}	-	-	-4	mA	
"H" level maximum overall output current	ΣI _{OH}	-	-	-42	mA	
"H" level average overall output current	Σι _{ομαν}	-	-	-21	mA	
Power consumption* ⁵	P _D	T _A = +125°C	-	352 ^{*6}	mW	
Operating ambient temperature	T _A	-	-40	+125 ^{*7}	°C	
Storage temperature	T _{STG}	-	-55	+150	°C	

^{*1}: This parameter is based on Vss = AVss = 0V.

- ^{*2}: AVcc and Vcc must be set to the same voltage. It is required that AVcc does not exceed Vcc and that the voltage at the analog inputs does not exceed AVcc when the power is switched on.
- *3: VI and Vo should not exceed Vcc + 0.3V. VI should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating. Input/Output voltages of standard ports depend on Vcc.
- ^{*4}: Applicable to all general purpose I/O pins (Pnn_m).
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{CC} pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset.

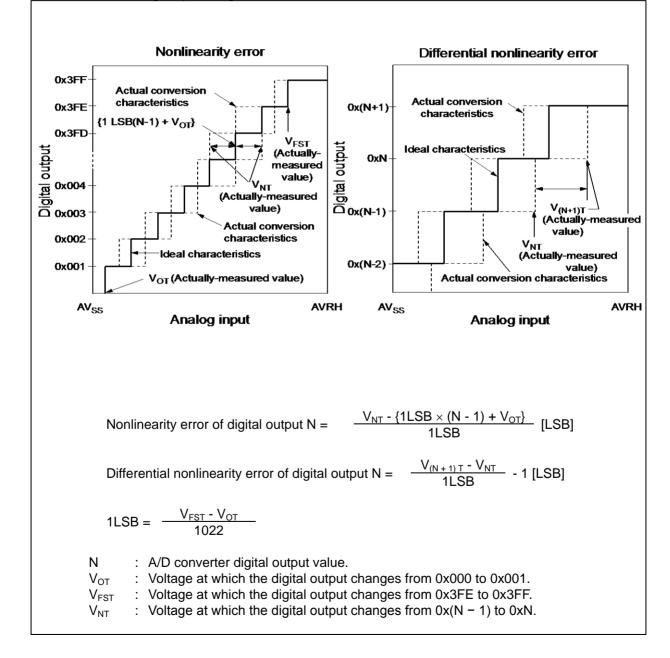



14.4 AC Characteristics

14.4.1 Main Clock Input Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, VD=1.8V \pm 0.15V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Parameter	Symbol	Pin name		Value		Unit	Remarks
Farameter	Symbol	Fin hame	Min	Тур	Max	Unit	Remarks
			4	-	8	MHz	When using a crystal oscillator, PLL off
Input frequency	fc	X0, X1	-	-	8	MHz	When using an opposite phase external clock, PLL off
			4	-	8	MHz	When using a crystal oscillator or opposite phase external clock, PLL on
	<i>(</i>	XO	-	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL off
Input frequency	f _{FCI}		4	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL on
Input clock cycle	t _{СҮLН}	-	125	-	-	ns	
Input clock pulse width	Р _{WH} , Р _{WL}	-	55	-	-	ns	



14.5.3 Definition of A/D Converter Terms

- Resolution : Analog variation that is recognized by an A/D converter.
- Nonlinearity error transition point
 Deviation of the actual conversion characteristics from a straight line that connects the zero (0b000000000 ←→ 0b000000001) to the full-scale transition point (0b1111111110 ←→ 0b111111111).
- Differential nonlinearity error : Deviation from the ideal value of the input voltage that is required to change the output code by 1LSB.
- Total error : Difference between the actual value and the theoretical value. The total error includes zero transition error, full-scale transition error and nonlinearity error.
- Zero transition voltage : Input voltage which results in the minimum conversion value.
- · Full scale transition voltage: Input voltage which results in the maximum conversion value.

14.6 Low Voltage Detection Function Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Parameter	Symbol	Symbol Conditions	Value			Unit
Farameter	Symbol		Min	Тур	Max	Onit
	V _{DL0}	$CILCR:LVL = 0000_{B}$	2.70	2.90	3.10	V
	V _{DL1}	$CILCR:LVL = 0001_{B}$	2.79	3.00	3.21	V
	V _{DL2}	$CILCR:LVL = 0010_B$	2.98	3.20	3.42	V
Detected voltage ^{*1}	V _{DL3}	$CILCR:LVL = 0011_B$	3.26	3.50	3.74	V
	V _{DL4}	$CILCR:LVL = 0100_B$	3.45	3.70	3.95	V
	V _{DL5}	CILCR:LVL = 0111 _B	3.73	4.00	4.27	V
	V _{DL6}	$CILCR:LVL = 1001_B$	3.91	4.20	4.49	V
Power supply voltage change rate ²	dV/dt	-	- 0.004	-	+ 0.004	V/µs
		CILCR:LVHYS=0	-	-	50	mV
Hysteresis width	Hysteresis width V _{HYS}		80	100	120	mV
Stabilization time	T _{LVDSTAB}	-	-	-	75	μS
Detection delay time	t _d	-	-	-	30	μS

^{*1}: If the power supply voltage fluctuates within the time less than the detection delay time (t_d), there is a possibility that the low voltage detection will occur or stop after the power supply voltage passes the detection range.

^{*2}: In order to perform the low voltage detection at the detection voltage (V_{DLX}), be sure to suppress fluctuation of the power supply voltage within the limits of the change ration of power supply voltage.

14.7 Flash Memory Write/Erase Characteristics

Parameter							
		Conditions	Min	Тур	Max	Unit	Remarks
Sector erase time	Large Sector	T _A ≤ + 105°C	-	1.6	7.5	s	Includes write time prior to internal erase.
	Small Sector	-	-	0.4	2.1	s	
	Security Sector	-	-	0.31	1.65	s	
Word (16-bit) write time	Large Sector	T _A ≤ + 105°C	-	25	400	μS	Not including system-level overhead time.
	Small Sector	-	-	25	400	μS	
Chip erase time		T _A ≤+ 105°C	-	5.11	25.05	S	Includes write time prior to internal erase.

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C})$

Note:

While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.

To put it concrete, change the external power in the range of change ration of power supply voltage (-0.004V/ μ s to +0.004V/ μ s) after the external power falls below the detection voltage (V_{DLX})⁻¹.

Write/Erase cycles and data hold time

Write/Erase cycles (cycle)	Data hold time (year)
1,000	20 ^{*2}
10,000	10 ^{*2}
100,000	5 ^{*2}

^{*1}: See "Low Voltage Detection Function Characteristics".

^{*2}: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85°C).

■Used setting

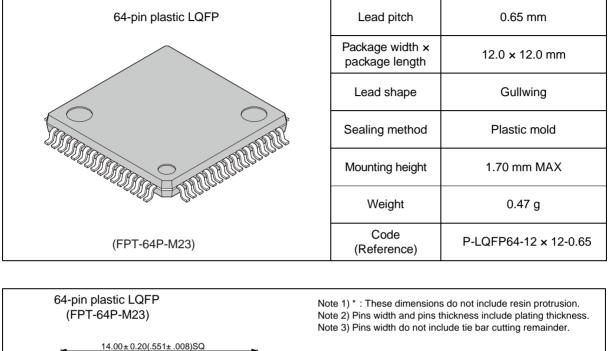
Mode	Selected Source Clock	Clock/Regulator and FLASH Settings
Run mode	PLL	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz
	Main osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz
	RC clock fast	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz
	RC clock slow	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz
	Sub osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz
Sleep mode	PLL	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz Regulator in High Power Mode, (CLKB is stopped in this mode)
	Main osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz Regulator in High Power Mode, (CLKB is stopped in this mode)
	RC clock fast	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz Regulator in High Power Mode, (CLKB is stopped in this mode)
	RC clock slow	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz Regulator in Low Power Mode, (CLKB is stopped in this mode)
	Sub osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz Regulator in Low Power Mode, (CLKB is stopped in this mode)
Timer mode	PLL	CLKMC = 4MHz, CLKPLL = 32MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode
	Main osc.	CLKMC = 4MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode
	RC clock fast	CLKMC = 2MHz (System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode
	RC clock slow	CLKMC = 100kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode
	Sub osc.	CLKMC = 32 kHz (System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode
Stop mode	stopped	(All clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode

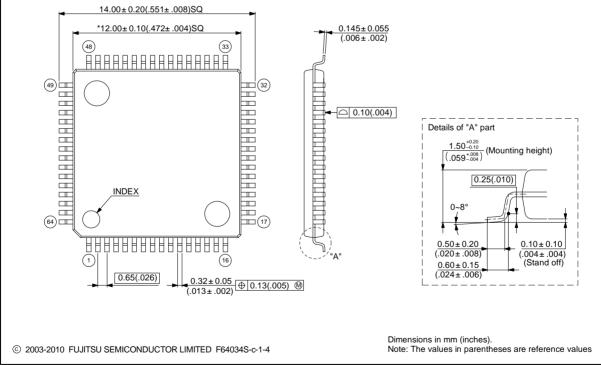
16. Ordering Information

MCU with CAN controller

Part number	Flash memory	Package*
MB96F622RBPMC-GSE1		
MB96F622RBPMC-GSE2		64-pin plastic LQFP (FPT-64P-M23)
MB96F622RBPMC-GTE1	Flash A	
MB96F622RBPMC1-GSE1	(64.5KB)	
MB96F622RBPMC1-GSE2		64-pin plastic LQFP (FPT-64P-M24)
MB96F622RBPMC1-GTE1		
MB96F623RBPMC-GSE1		
MB96F623RBPMC-GSE2		64-pin plastic LQFP (FPT-64P-M23)
MB96F623RBPMC-GTE1	Flash A	
MB96F623RBPMC1-GSE1	(96.5KB)	
MB96F623RBPMC1-GSE2		64-pin plastic LQFP (FPT-64P-M24)
MB96F623RBPMC1-GTE1		
MB96F625RBPMC-GSE1		
MB96F625RBPMC-GSE2		64-pin plastic LQFP (FPT-64P-M23)
MB96F625RBPMC-GTE1	Flash A	
MB96F625RBPMC1-GSE1	(160.5KB)	
MB96F625RBPMC1-GSE2		64-pin plastic LQFP (FPT-64P-M24)
MB96F625RBPMC1-GTE1		

*: For details about package, see "PACKAGE DIMENSION".


MCU without CAN controller


Part number	Flash memory	Package*
MB96F622ABPMC-GSE1		64-pin plastic LQFP (FPT-64P-M23)
MB96F622ABPMC-GSE2		
MB96F622ABPMC-GTE1	Flash A	
MB96F622ABPMC1-GSE1	(64.5KB)	
MB96F622ABPMC1-GSE2		64-pin plastic LQFP (FPT-64P-M24)
MB96F622ABPMC1-GTE1		
MB96F623ABPMC-GSE1		
MB96F623ABPMC-GSE2		64-pin plastic LQFP (FPT-64P-M23)
MB96F623ABPMC-GTE1	Flash A	
MB96F623ABPMC1-GSE1	(96.5KB)	
MB96F623ABPMC1-GSE2		64-pin plastic LQFP (FPT-64P-M24)
MB96F623ABPMC1-GTE1		
MB96F625ABPMC-GSE1		
MB96F625ABPMC-GSE2		64-pin plastic LQFP (FPT-64P-M23)
MB96F625ABPMC-GTE1	Flash A	
MB96F625ABPMC1-GSE1	(160.5KB)	64-pin plastic LQFP (FPT-64P-M24)
MB96F625ABPMC1-GSE2		
MB96F625ABPMC1-GTE1		

*: For details about package, see "PACKAGE DIMENSION".

17. Package Dimension

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless
Spansion Products	cypress.com/spansionproducts

PSoC® Solutions psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

Cypress, the Cypress logo, Spansion[®], the Spansion logo, MirrorBit[®], MirrorBit[®] EclipseTM, ORNANDTM, Easy DesignSimTM, TraveoTM and combinations thereof, are trademarks and registered trademarks of Cypress Semiconductor Corp. ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2014-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.