

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	160KB (160K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 21x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f625abpmc1-gse2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1. I	Product Lineup	5
2. I	Block Diagram	6
3. I	Pin Assignment	7
4. I	Pin Description	8
5. I	Pin Circuit Type	. 10
6. I	/O Circuit Type	. 12
7. I	Метогу Мар	. 17
8. I	RAMSTART Addresses	. 18
9. (User ROM Memory Map For Flash Devices	. 19
10. 3	Serial Programming Communication Interface	. 20
11.1	nterrupt Vector Table	. 21
12.	Handling Precautions	. 25
12.1	Precautions for Product Design	. 25
12.2	Precautions for Package Mounting	. 26
12.3	Precautions for Use Environment	. 27
13.1	Handling Devices	. 28
13.1	Latch-up prevention	. 28
13.2	2 Unused pins handling	. 28
13.3	B External clock usage	. 29
13.3	3.1 Single phase external clock for Main oscillator	. 29
13.3	3.2 Single phase external clock for Sub oscillator	. 29
13.3	3.3 Opposite phase external clock	. 29
13.4	Notes on PLL clock mode operation	. 29
13.5	Fower supply pins (V_{cc}/V_{ss})	. 29
13.6	Crystal oscillator and ceramic resonator circuit	. 30
13.7	' Turn on sequence of power supply to A/D converter and analog inputs	. 30
13.8	Pin handling when not using the A/D converter	. 30
13.9	Notes on Power-on	. 30
13.1	0 Stabilization of power supply voltage	. 30
13.1	1 Serial communication	. 30
13.1	2 Mode Pin (MD)	. 30
14. I	Electrical Characteristics	. 31
14.1	Absolute Maximum Ratings	. 31
14.2	2 Recommended Operating Conditions	. 33
14.3	B DC Characteristics	. 34
14.3	3.1 Current Rating	. 34
14.3	3.2 Pin Characteristics	. 38
14.4	AC Characteristics	. 40
14.4	1.1 Main Clock Input Characteristics	. 40
14.4	1.2 Sub Clock Input Characteristics	. 41
14.4	1.3 Built-in RC Oscillation Characteristics	. 42
14.4	I.4 Internal Clock Timing	. 42
14.4	4.5 Operating Conditions of PLL	. 43
14.4	I.6 Reset Input	. 43
14.4	I.7 Power-on Reset Timing	. 44
14.4	1.8 USART Timing	. 45

2. Block Diagram

5. Pin Circuit Type

Pin no.	I/O circuit type*	Pin name				
1	Supply	AVss				
2	G	AVRH				
3	к	P06_2 / AN2				
4	К	P06_3 / AN3 / PPG3				
5	К	P06_4 / AN4 / PPG4				
6	К	P06_5 / AN5				
7	К	P06_6 / AN6 / PPG6				
8	К	P06_7 / AN7 / PPG7				
9	1	P05_0 / AN8 / SIN2 / INT3_R1				
10	К	P05_1 / AN9 / SOT2				
11	I	P05_2 / AN10 / SCK2				
12	К	P05_3 / AN11 / TIN3 / WOT				
13	К	P05_4 / AN12 / TOT3 / INT2_R				
14	к	P05_5 / AN13 / INT0_R / NMI_R				
15	к	P05_6 / AN14 / INT4_R				
16	н	P04_2 / IN6 / INT9_R / TTG6 / TTG14				
17	н	P04_3 / IN7 / TTG7 / TTG15				
18	Supply	Vss				
19	В	P04_0 / X0A				
20	В	P04_1 / X1A				
21	С	MD				
22	н	P17_0				
23	0	DEBUG I/F				
24	Μ	P00_0 / INT8 / SCK7_R / PPG0_B				
25	н	P00_1 / INT9 / SOT7_R / PPG1_B				
26	Μ	P00_2 / INT10 / SIN7_R				
27	Μ	P00_3 / INT11 / SCK8_R / PPG3_B				
28	Н	P00_4 / INT12 / SOT8_R / PPG12_B				
29	М	P00_5 / INT13 / SIN8_R / PPG14_B				
30	н	P00_6 / INT14				
31	Н	P00_7 / INT15				
32	н	P01_0 / TIN1 / CKOT1 / OUT0_R				

Pin no.	I/O circuit type*	Pin name
33	N	P04_5 / SCL0
34	0	DEBUG I/F
35	н	P17_0
36	С	MD
37	A	X0
38	A	X1
39	Supply	Vss
40	В	P04_0 / X0A
41	В	P04_1 / X1A
42	С	RSTX
43	J	P11_7 / SEG3 / IN0_R
44	J	P11_0 / COM0
45	J	P11_1 / COM1 / PPG0_R
46	J	P11_2 / COM2 / PPG1_R
47	J	P11_3 / COM3 / PPG2_R
48	J	P12_0 / SEG4 / IN1_R
49	J	P12_1 / SEG5 / TIN1_R / PPG0_B
50	J	P12_2 / SEG6 / TOT1_R / PPG1_B
51	J	P12_4 / SEG8
52	J	P12_5 / SEG9 / TIN2_R / PPG2_B
53	J	P12_6 / SEG10 / TOT2_R / PPG3_B
54	J	P12_7 / SEG11 / INT1_R
55	J	P01_1 / SEG21 / CKOT1
56	J	P01_3 / SEG23
57	L	P03_0 / SEG36 / V0
58	L	P03_1 / SEG37 / V1
59	L	P03_2 / SEG38 / V2
60	L	P03_3 / SEG39 / V3
61	Μ	P03_4 / RX0 / INT4
62	н	P03_5 / TX0
63	н	P03_6 / INT0 / NMI
64	Supply	Vcc

*: See "I/O Circuit Type" for details on the I/O circuit types.

Туре	Circuit	Remarks
0	Standby control	 Open-drain I/O Output 25mA, Vcc = 2.7V TTL input

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

12.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

■Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

■Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

■Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.

When you open Dry Package that recommends humidity 40% to 70% relative humidity.

- 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

13. Handling Devices

Special care is required for the following when handling the device:

- Latch-up prevention
- Unused pins handling
- External clock usage
- Notes on PLL clock mode operation
- Power supply pins (V_{cc}/V^{ss})
- · Crystal oscillator and ceramic resonator circuit
- Turn on sequence of power supply to A/D converter and analog inputs
- · Pin handling when not using the A/D converter
- Notes on Power-on
- · Stabilization of power supply voltage
- Serial communication
- Mode Pin (MD)

13.1 Latch-up prevention

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between V_{cc} pins and V_{ss} pins.
- The AV_{CC} power supply is applied before the V_{CC} voltage.

Latch-up may increase the power supply current dramatically, causing thermal damages to the device.

For the same reason, extra care is required to not let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage.

13.2 Unused pins handling

Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0).

Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent damage of the device. To prevent latch-up, they must therefore be pulled up or pulled down through resistors which should be more than $2k\Omega$.

Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with either input disabled or external pull-up/pull-down resistor as described above.

14. Electrical Characteristics

14.1 Absolute Maximum Ratings

Parameter	Symbol Condition Rating		Unit	Remarks		
i di diffeter	Min Max		Onit	Remarks		
Power supply voltage*1	V _{CC}	-	V _{SS} - 0.3	V _{SS} + 6.0	V	
Analog power supply voltage* ¹	AV _{CC}	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{CC} = AV_{CC}^{*2}$
Analog reference voltage* ¹	AVRH	-	V _{SS} - 0.3	V _{SS} + 6.0	V	AV _{CC} ≥ AVRH, AVRH ≥ AV _{SS}
Input voltage*1	VI	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{I} \le V_{CC} + 0.3 V^{*3}$
Output voltage*1	Vo	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_0 \le V_{CC} + 0.3 V^{*3}$
Maximum Clamp Current	I _{CLAMP}	-	-4.0	+4.0	mA	Applicable to general purpose I/O pins * ⁴
Total Maximum Clamp Current	Σ I _{CLAMP}	-	-	17	mA	Applicable to general purpose I/O pins * ⁴
"L" level maximum output current	I _{OL}	-	-	15	mA	
"L" level average output current	I _{OLAV}	-	-	4	mA	
"L" level maximum overall output current	Σl _{OL}	-	-	42	mA	
"L" level average overall output current	ΣI _{OLAV}	-	-	21	mA	
"H" level maximum output current	I _{OH}	-	-	-15	mA	
"H" level average output current	I _{OHAV}	-	-	-4	mA	
"H" level maximum overall output current	ΣI _{OH}	-	-	-42	mA	
"H" level average overall output current	Σι _{ομαν}	-	-	-21	mA	
Power consumption* ⁵	P _D	T _A = +125°C	-	352 ^{*6}	mW	
Operating ambient temperature	T _A	-	-40	+125 ^{*7}	°C	
Storage temperature	T _{STG}	-	-55	+150	°C	

^{*1}: This parameter is based on Vss = AVss = 0V.

- ^{*2}: AVcc and Vcc must be set to the same voltage. It is required that AVcc does not exceed Vcc and that the voltage at the analog inputs does not exceed AVcc when the power is switched on.
- *3: VI and Vo should not exceed Vcc + 0.3V. VI should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating. Input/Output voltages of standard ports depend on Vcc.
- ^{*4}: Applicable to all general purpose I/O pins (Pnn_m).
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{CC} pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset.

Parameter	Symbol	Pin name	Conditions	Min	Value Typ	Max	Unit	Remarks
		Indinio		-	1800	2245	μA	T _A = +25°C
	I _{CCTPLL}		32MHz (CLKRC and CLKSC	-	-	3165	μΑ	T _A = +105°C
			stopped)	-	-	3975	μA	T _A = +125°C
			Main Timer mode with	-	285	325	μΑ	T _A = +25°C
		Vcc	CLKMC = 4MHZ, SMCR:LPMSS = 0 (CLKPLL, CLKRC and CLKSC stopped)	-	-	1085	μΑ	T _A = +105°C
				-	-	1930	μΑ	T _A = +125°C
	ICCTRCH		RC Timer mode with CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKPLL, CLKMC and CLKSC stopped)	-	160	210	μΑ	T _A = +25°C
current in				-	-	1025	μΑ	T _A = +105°C
Timer modes				-	-	1840	μΑ	T _A = +125°C
			RC Timer mode with CLKRC = 100kHz (CLKPLL, CLKMC and CLKSC	-	35	75	μΑ	T _A = +25°C
	ICCTRCL			-	-	855	μΑ	T _A = +105°C
			stopped)	-	-	1640	μΑ	T _A = +125°C
	I _{CCTSUB}		Sub Timer mode with CLKSC = 32kHz (CLKMC, CLKPLL and CLKRC	-	25	65	μΑ	T _A = +25°C
				-	-	830	μA	T _A = +105°C
			stopped)	-	-	1620	μA	T _A = +125°C

Devenueter	rameter Symbol Bin name Conditions Value				L lus i t	Domorko		
Parameter	Symbol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
"H" level output voltage	V _{OH4}	4mA type	$\begin{array}{l} 4.5V \leq V_{CC} \leq 5.5V \\ I_{OH} = -4mA \\ \hline 2.7V \leq V_{CC} < 4.5V \\ I_{OH} = -1.5mA \end{array}$	V _{CC} - 0.5	-	V _{cc}	V	
	V _{OH3}	3mA type	$4.5V \le V_{CC} \le 5.5V$ $I_{OH} = -3mA$ $2.7V \le V_{CC} < 4.5V$ $I_{OH} = -1.5mA$	V _{CC} - 0.5	-	V _{cc}	v	
"L" level	V _{OL4}	4mA type	$4.5V \le V_{CC} \le 5.5V$ $I_{OL} = +4mA$ $2.7V \le V_{CC} < 4.5V$ $I_{OL} = +1.7mA$		-	0.4	V	
voltage	V _{OL3}	3mA type	$2.7V \le V_{CC} < 5.5V$ $I_{OL} = +3mA$	-	-	0.4	V	
	V _{OLD}	DEBUG I/F	$V_{CC} = 2.7V$ $I_{OL} = +25mA$	0	-	0.25	V	
Input leak current	IIL	Pnn_m	$V_{SS} < V_1 < V_{CC}$ AV _{SS} < V ₁ < AV _{CC} , AVRH	- 1	-	+ 1	μА	
Pull-up resistance value	R _{PU}	Pnn_m	V _{CC} = 5.0V ±10%	25	50	100	kΩ	
Input capacitance	Cin	Other than C, Vcc, Vss, AVcc, AVss, AVRH	-	-	5	15	pF	

14.4 AC Characteristics

14.4.1 Main Clock Input Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, VD=1.8V \pm 0.15V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Parameter	Symbol	Din nomo		Value		Unit	Pomarke	
Falailletei	Symbol	Finname	Min	Тур	Max	Unit	iteniai KS	
		X0, X1	4	-	8	MHz	When using a crystal oscillator, PLL off	
Input frequency	fc		-	-	8	MHz	When using an opposite phase external clock, PLL off	
			4	-	8	MHz	When using a crystal oscillator or opposite phase external clock, PLL on	
Input frequency	f _{FCI}	XO	-	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL off	
			4	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL on	
Input clock cycle	t _{СҮLН}	-	125	-	-	ns		
Input clock pulse width	Р _{WH} , Р _{WL}	-	55	-	-	ns		

14.4.5 Operating Conditions of PLL

Parameter	Symbol	Value			Unit	Domosko	
Farameter	Symbol	Min	Тур	Max	Onit	itemaiks	
PLL oscillation stabilization wait time	t _{LOCK}	1	-	4	ms	For CLKMC = 4MHz	
PLL input clock frequency	f _{PLLI}	4	-	8	MHz		
PLL oscillation clock frequency	f _{CLKVCO}	56	-	108	MHz	Permitted VCO output frequency of PLL (CLKVCO)	
PLL phase jitter	t _{PSKEW}	-5	-	+5	ns	For CLKMC (PLL input clock) ≥ 4MHz	

14.4.6 Reset Input

(V_{CC} = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C to + 125°C)

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C})$

Parameter	Symbol	Pin name	Va	Unit		
	Cymbol	T III Hallie	Min	Max	0.mt	
Reset input time		DOTY	10	-	μs	
Rejection of reset input time	IRSTL	ROIX	1	-	μs	

14.4.7 Power-on Reset Timing

	U	(\	$V_{\rm CC} = AV_{\rm CC} = 2.7$	7V to 5.5V, V _{SS}	$_{\rm S} = {\rm AV}_{\rm SS} = {\rm 0V},$	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$
Paramotor	Symbol	Bin namo		Value	Unit	
Falailletei	Symbol	Fin hame	Min	Тур	Max	Onic
Power on rise time	t _R	Vcc	0.05	-	30	ms
Power off time	t _{OFF}	Vcc	1	-	-	ms

14.5.2 Accuracy and Setting of the A/D Converter Sampling Time

If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision.

To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (Tsamp) depends on the external driving impedance R_{ext} , the board capacitance of the A/D converter input pin C_{ext} and the AV_{CC} voltage level. The following replacement model can be used for the calculation:

Rext: External driving impedance

Cext: Capacitance of PCB at A/D converter input

C_{VIN}: Analog input capacity (I/O, analog switch and ADC are contained)

R_{VIN}: Analog input impedance (I/O, analog switch and ADC are contained)

The following approximation formula for the replacement model above can be used: Tsamp = 7.62 × (Rext × Cext + (Rext + R_{VIN}) × C_{VIN})

- Do not select a sampling time below the absolute minimum permitted value. ($0.5\mu s$ for $4.5V \le AV_{CC} \le 5.5V$, $1.2\mu s$ for $2.7V \le AV_{CC} < 4.5V$)
- If the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu F$ to the analog input pin.
- A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL (static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
- The accuracy gets worse as |AVRH AV_{SS}| becomes smaller.

14.7 Flash Memory Write/Erase Characteristics

Parameter		Conditions	Value			l lmit	Domorko
			Min	Тур	Max	Unit	Remarks
Sector erase time	Large Sector	Ta≤+105°C	-	1.6	7.5	s	Includes write time prior to internal erase.
	Small Sector	-	-	0.4	2.1	S	
	Security Sector	-	-	0.31	1.65	S	
Word (16-bit) write time	Large Sector	Ta≤+ 105°C	-	25	400	μS	Not including system-level overhead time.
	Small Sector	-	-	25	400	μS	
Chip erase time		T _A ≤ + 105°C	-	5.11	25.05	s	Includes write time prior to internal erase.

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C})$

Note:

While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.

To put it concrete, change the external power in the range of change ration of power supply voltage (-0.004V/ μ s to +0.004V/ μ s) after the external power falls below the detection voltage (V_{DLX})⁻¹.

Write/Erase cycles and data hold time

Write/Erase cycles (cycle)	Data hold time (year)
1,000	20 ^{*2}
10,000	10 ^{*2}
100,000	5 ^{*2}

^{*1}: See "Low Voltage Detection Function Characteristics".

^{*2}: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85°C).

15. Example Characteristics

This characteristic is an actual value of the arbitrary sample. It is not the guaranteed value.

■MB96F625

■MB96F625

Page	Section	Change Results
56	Electrical Characteristics 7. Flash Memory Write/Erase Characteristics	Changed the Note While the Flash memory is written or erased, shutdown of the external power (V _{CC}) is prohibited. In the application system where the external power (V _{CC}) might be shut down while writing, be sure to turn the power off by using an external voltage detector. \rightarrow
		While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.
60	Ordering Information	Deleted the Part number MCU with CAN controller MB96F622RBPMC-GTE2 MB96F622RBPMC1-GTE2 MB96F623RBPMC-GTE2 MB96F625RBPMC1-GTE2 MB96F625RBPMC1-GTE2 MCU without CAN controller MB96F622ABPMC-GTE2 MB96F622ABPMC1-GTE2 MB96F623ABPMC-GTE2 MB96F623ABPMC1-GTE2 MB96F625ABPMC1-GTE2 MB96F625ABPMC1-GTE2
Bovinion C	 > 1	
-		Company name and layout design change

NOTE: Please see "Document History" about later revised information.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/go/automotive
cypress.com/go/clocks
cypress.com/go/interface
cypress.com/go/powerpsoc
cypress.com/go/memory
cypress.com/go/psoc
cypress.com/go/touch
cypress.com/go/USB
cypress.com/go/wireless
cypress.com/spansionproducts

PSoC® Solutions psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

Cypress, the Cypress logo, Spansion[®], the Spansion logo, MirrorBit[®], MirrorBit[®] EclipseTM, ORNANDTM, Easy DesignSimTM, TraveoTM and combinations thereof, are trademarks and registered trademarks of Cypress Semiconductor Corp. ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2014-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.