

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

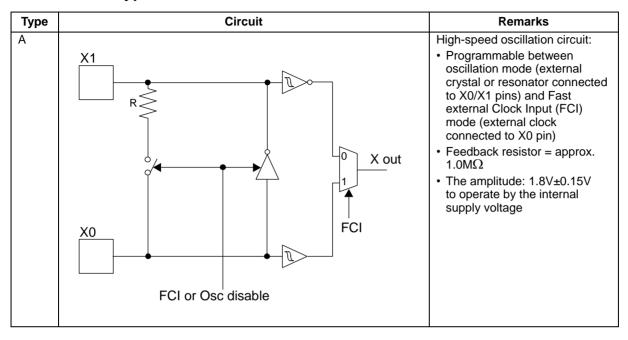
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

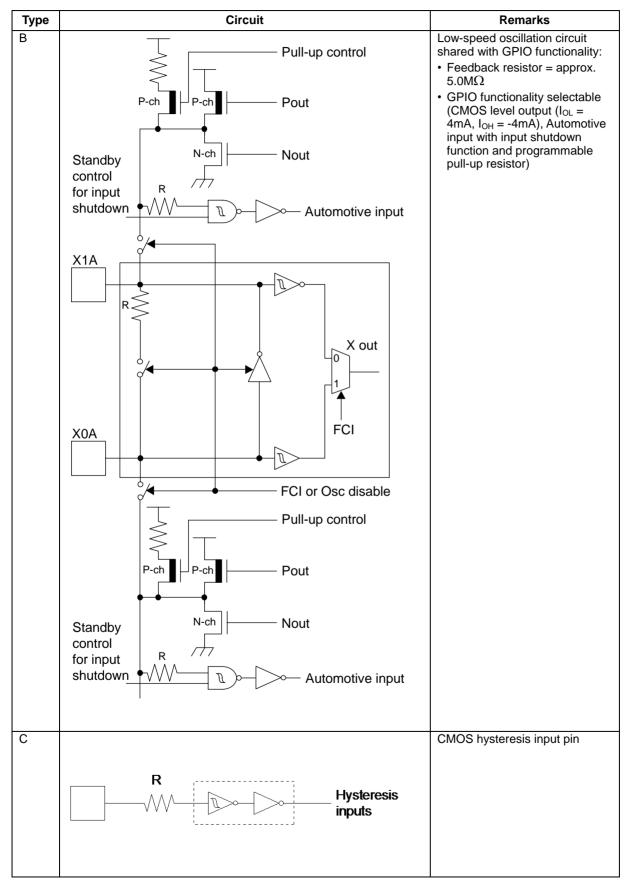
Details	
Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	160KB (160K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 21x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f625rbpmc-gse1

Contents

	Product Lineup	
	Block Diagram	
	Pin Assignment	
	Pin Description	
5. Pi	Pin Circuit Type	10
6. 1/0	O Circuit Type	12
7. M	Memory Map	17
8. R	RAMSTART Addresses	18
9. U	Jser ROM Memory Map For Flash Devices	19
10. Se	Serial Programming Communication Interface	20
	nterrupt Vector Table	
12. H	landling Precautions	25
12.1	Precautions for Product Design	25
12.2	Precautions for Package Mounting	26
12.3		
13. Ha	landling Devices	
13.1	Latch-up prevention	28
13.2	Unused pins handling	28
13.3		
	.1 Single phase external clock for Main oscillator	
	.2 Single phase external clock for Sub oscillator	
13.3.3	.3 Opposite phase external clock	
13.4	Notes on PLL clock mode operation	29
13.5	Power supply pins (V _{cc} /V _{ss})	
13.6	Crystal oscillator and ceramic resonator circuit	
13.7		
13.8	Pin handling when not using the A/D converter	
13.9	Notes on Power-on	30
13.10		
13.11		
13.12	2 Mode Pin (MD)	30
14. EI	lectrical Characteristics	
14.1	Absolute Maximum Ratings	
14.2	Recommended Operating Conditions	33
14.3		
	.1 Current Rating	
14.3.2	.2 Pin Characteristics	38
	AC Characteristics	
	.1 Main Clock Input Characteristics	
	.2 Sub Clock Input Characteristics	
	.3 Built-in RC Oscillation Characteristics	
	.4 Internal Clock Timing	
	.5 Operating Conditions of PLL	
	.6 Reset Input	
	.7 Power-on Reset Timing	
14.4.8	.8 USART Timing	45



5. Pin Circuit Type


Pin no.	I/O circuit type*	Pin name
1	Supply	AVss
2	G	AVRH
3	К	P06_2 / AN2
4	К	P06_3 / AN3 / PPG3
5	K	P06_4 / AN4 / PPG4
6	К	P06_5 / AN5
7	K	P06_6 / AN6 / PPG6
8	K	P06_7 / AN7 / PPG7
9	I	P05_0 / AN8 / SIN2 / INT3_R1
10	К	P05_1 / AN9 / SOT2
11	I	P05_2 / AN10 / SCK2
12	К	P05_3 / AN11 / TIN3 / WOT
13	К	P05_4 / AN12 / TOT3 / INT2_R
14	К	P05_5 / AN13 / INT0_R / NMI_R
15	К	P05_6 / AN14 / INT4_R
16	Н	P04_2 / IN6 / INT9_R / TTG6 / TTG14
17	Н	P04_3 / IN7 / TTG7 / TTG15
18	Supply	Vss
19	В	P04_0 / X0A
20	В	P04_1 / X1A
21	С	MD
22	Н	P17_0
23	0	DEBUG I/F
24	М	P00_0 / INT8 / SCK7_R / PPG0_B
25	Н	P00_1 / INT9 / SOT7_R / PPG1_B
26	М	P00_2 / INT10 / SIN7_R
27	М	P00_3 / INT11 / SCK8_R / PPG3_B
28	Н	P00_4 / INT12 / SOT8_R / PPG12_B
29	М	P00_5 / INT13 / SIN8_R / PPG14_B
30	Н	P00_6 / INT14
31	Н	P00_7 / INT15
32	Н	P01_0 / TIN1 / CKOT1 / OUT0_R

6. I/O Circuit Type

10. Serial Programming Communication Interface

USART pins for Flash serial programming (MD = 0, DEBUG I/F = 0, Serial Communication mode)

MB96620						
Pin Number	USART Number	Normal Function				
9		SIN2				
10	USART2	SOT2				
11		SCK2				
26		SIN7_R				
25	USART7	SOT7_R				
24		SCK7_R				
29		SIN8_R				
28	USART8	SOT8_R				
27		SCK8_R				

12. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

12.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

■ Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

■ Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

■Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

- 1. Preventing Over-Voltage and Over-Current Conditions
 - Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.
- 2. Protection of Output Pins
 - Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.
- 3. Handling of Unused Input Pins
 - Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

■Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

■Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

■Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

13. Handling Devices

Special care is required for the following when handling the device:

- · Latch-up prevention
- · Unused pins handling
- · External clock usage
- · Notes on PLL clock mode operation
- Power supply pins (V_{cc}/V^{ss})
- · Crystal oscillator and ceramic resonator circuit
- Turn on sequence of power supply to A/D converter and analog inputs
- · Pin handling when not using the A/D converter
- · Notes on Power-on
- · Stabilization of power supply voltage
- · Serial communication
- Mode Pin (MD)

13.1 Latch-up prevention

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between V_{cc} pins and V_{ss} pins.
- The AV_{CC} power supply is applied before the V_{CC} voltage.

Latch-up may increase the power supply current dramatically, causing thermal damages to the device.

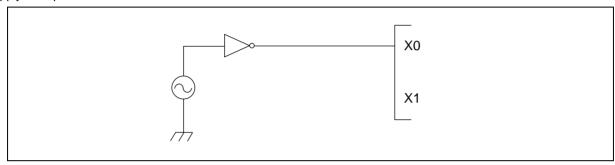
For the same reason, extra care is required to not let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage.

13.2 Unused pins handling

Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0).

Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent damage of the device. To prevent latch-up, they must therefore be pulled up or pulled down through resistors which should be more than $2k\Omega$.

Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with either input disabled or external pull-up/pull-down resistor as described above.

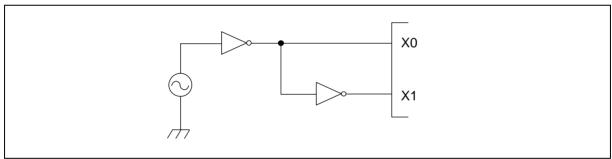

13.3 External clock usage

The permitted frequency range of an external clock depends on the oscillator type and configuration.

See AC Characteristics for detailed modes and frequency limits. Single and opposite phase external clocks must be connected as follows:

13.3.1 Single phase external clock for Main oscillator

When using a single phase external clock for the Main oscillator, X0 pin must be driven and X1 pin left open. And supply 1.8V power to the external clock.



13.3.2 Single phase external clock for Sub oscillator

When using a single phase external clock for the Sub oscillator, "External clock mode" must be selected and X0A/P04_0 pin must be driven. X1A/P04_1 pin can be configured as GPIO.

13.3.3 Opposite phase external clock

When using an opposite phase external clock, X1 (X1A) pins must be supplied with a clock signal which has the opposite phase to the X0 (X0A) pins. Supply level on X0 and X1 pins must be 1.8V.

13.4 Notes on PLL clock mode operation

If the microcontroller is operated with PLL clock mode and no external oscillator is operating or no external clock is supplied, the microcontroller attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be guaranteed.

13.5 Power supply pins (V_{cc}/V_{ss})

It is required that all V_{CC} -level as well as all V_{SS} -level power supply pins are at the same potential. If there is more than one V_{CC} or V_{SS} level, the device may operate incorrectly or be damaged even within the guaranteed operating range.

 V_{cc} and V_{ss} pins must be connected to the device from the power supply with lowest possible impedance.

The smoothing capacitor at V_{cc} pin must use the one of a capacity value that is larger than Cs.

Besides this, as a measure against power supply noise, it is required to connect a bypass capacitor of about $0.1\mu F$ between V_{cc} and V_{ss} pins as close as possible to V_{cc} and V_{ss} pins.

Doromotor	Cumbal	Pin name	Conditions		Value		Unit	Remarks
Parameter	Symbol			Min	Тур	Max	Unit	
"H" level	V _{OH4}	4mA type	$4.5V \le V_{CC} \le 5.5V$ $I_{OH} = -4mA$ $2.7V \le V_{CC} < 4.5V$ $I_{OH} = -1.5mA$	V _{CC} - 0.5	-	V _{CC}	V	
output voltage	V _{OH3}	3mA type	$4.5V \le V_{CC} \le 5.5V$ $I_{OH} = -3mA$ $2.7V \le V_{CC} < 4.5V$ $I_{OH} = -1.5mA$	V _{CC} - 0.5	-	V _{CC}	V	
"L" level	V _{OL4}	4mA type	$4.5V \le V_{CC} \le 5.5V$ $I_{OL} = +4mA$ $2.7V \le V_{CC} < 4.5V$ $I_{OL} = +1.7mA$		-	0.4	V	
output voltage	V _{OL3}	3mA type	$2.7V \le V_{CC} < 5.5V$ $I_{OL} = +3mA$	-	-	0.4	V	
Vo	V _{OLD}	DEBUG I/F	$V_{CC} = 2.7V$ $I_{OL} = +25mA$	0	-	0.25	V	
Input leak current	I _{IL}	Pnn_m	$V_{SS} < V_I < V_{CC}$ $AV_{SS} < V_I <$ AV_{CC} , $AVRH$	- 1	-	+ 1	μА	
Pull-up resistance value	R _{PU}	Pnn_m	V _{CC} = 5.0V ±10%	25	50	100	kΩ	
Input capacitance	C _{IN}	Other than C, Vcc, Vss, AVcc, AVss, AVRH	-	-	5	15	pF	

14.4.3 Built-in RC Oscillation Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

Parameter	Symbol		Value		Unit	Remarks
Parameter	Syllibol	Min	Тур	Max	Onit	Remarks
Clock frequency	f	50	100	200	kHz	When using slow frequency of RC oscillator
Clock frequency	f _{RC}	1	2	4	MHz	When using fast frequency of RC oscillator
RC clock stabilization	t	80	160	320	μ\$	When using slow frequency of RC oscillator (16 RC clock cycles)
time	T RCSTAB	64	128	256	μS	When using fast frequency of RC oscillator (256 RC clock cycles)

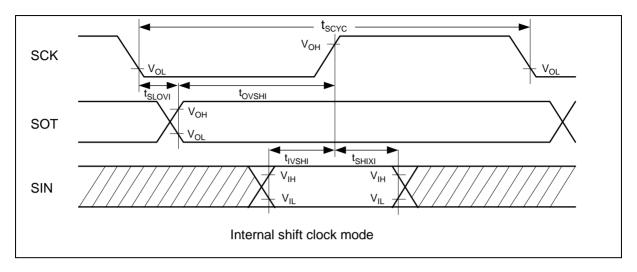
14.4.4 Internal Clock Timing

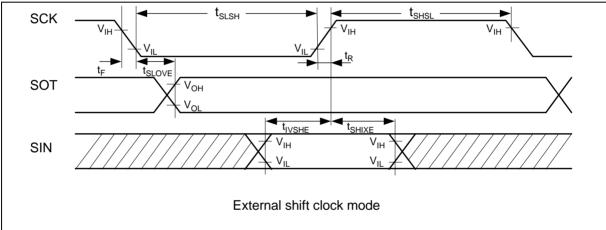
 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

Parameter	Cumbal	Va	Unit	
Parameter	Symbol	Min	Max	Unit
Internal System clock frequency (CLKS1 and CLKS2)	f _{CLKS1} , f _{CLKS2}	-	54	MHz
Internal CPU clock frequency (CLKB), Internal peripheral clock frequency (CLKP1)	fclкв, fclкp1	-	32	MHz
Internal peripheral clock frequency (CLKP2)	f _{CLKP2}	-	32	MHz

14.4.8 USART Timing

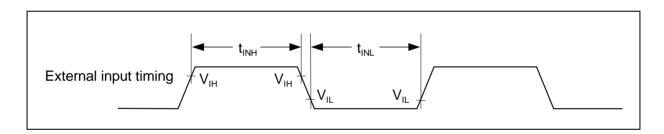
 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}, C_L = 50pF)$


Parameter	Symbo	Pin	Conditions	$4.5V \le V_{CC} < 5.5V$		$2.7V \le V_{CC} < 4.5V$		Unit
r arameter	ı	name	Conditions	Min	Max	Min	Max	Offic
Serial clock cycle time	t _{SCYC}	SCKn		4t _{CLKP1}	-	4t _{CLKP1}	-	ns
$SCK \downarrow \to SOT$ delay time	t _{SLOVI}	SCKn , SOTn		- 20	+ 20	- 30	+ 30	ns
SOT → SCK ↑ delay time	t _{OVSHI}	SCKn , SOTn	Internal shift	N×t _{CLKP1} - 20	-	N×t _{CLKP1} - 30	-	ns
$SIN \rightarrow SCK \uparrow setup time$	t _{IVSHI}	SCKn , SINn	GIOGIC MIGGE	t _{CLKP1} + 45	-	t _{CLKP1} + 55	-	ns
$SCK \uparrow \rightarrow SIN \text{ hold time}$	t _{SHIXI}	SCKn , SINn		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
$SCK \downarrow \to SOT$ delay time	t _{SLOVE}	SCKn , SOTn	External	-	2t _{CLKP1} + 45	-	2t _{CLKP1} + 55	ns
$SIN \rightarrow SCK \uparrow setup time$	t _{IVSHE}	SCKn , SINn	shift clock mode	t _{CLKP1} /2 + 10	-	t _{CLKP1} /2 + 10	-	ns
$SCK \uparrow \rightarrow SIN \text{ hold time}$	t _{SHIXE}	SCKn , SINn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
SCK fall time	t _F	SCKn		-	20	-	20	ns
SCK rise time	t _R	SCKn		-	20	-	20	ns


Notes:

- AC characteristic in CLK synchronized mode.
- C_L is the load capacity value of pins when testing.
- Depending on the used machine clock frequency, the maximum possible baud rate can be limited by some parameters. These parameters are shown in "MB96600 series HARDWARE MANUAL".
- t_{CLKP1} indicates the peripheral clock 1 (CLKP1), Unit: ns
- These characteristics only guarantee the same relocate port number. For example, the combination of SCKn and SOTn_R is not guaranteed.
- *: Parameter N depends on t_{SCYC} and can be calculated as follows:
 - If $t_{SCYC} = 2 \times k \times t_{CLKP1}$, then N = k, where k is an integer > 2
- If $t_{SCYC} = (2 \times k + 1) \times t_{CLKP1}$, then N = k + 1, where k is an integer > 1 Examples:

t _{SCYC}	N
4 × t _{CLKP1}	2
$5 \times t_{CLKP1}, 6 \times t_{CLKP1}$	3
$7 \times t_{CLKP1}, 8 \times t_{CLKP1}$	4



14.4.9 External Input Timing

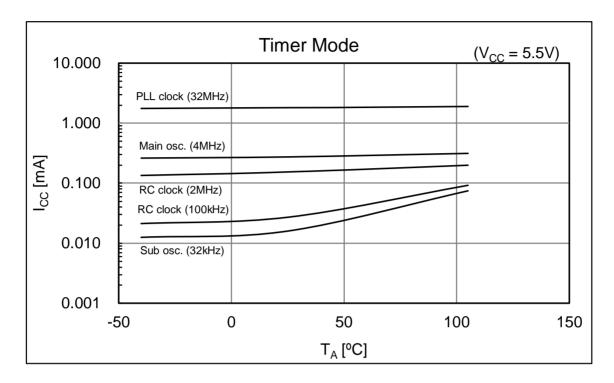
(V_{CC} = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40°C to + 125°C)

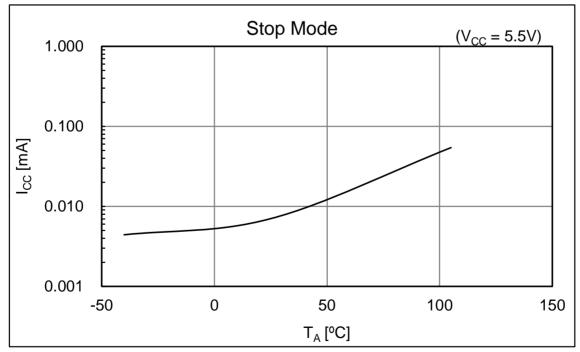
Parameter	Symbol	Pin name	Value		Unit	Remarks
Parameter	Syllibol	Pin name	Min	Max	Ullit	Remarks
		Pnn_m				General Purpose I/O
		ADTG_R				A/D Converter trigger input
		TINn				Reload Timer
	t _{INH} , t _{INL} IND AIND BIND	TTGn	2t _{CLKP1} +200 (t _{CLKP1} = -1/f _{CLKP1})*			PPG trigger input
		FRCKn		-	ns	Free-Running Timer input clock
Input pulse width		INn				Input Capture
		AINn, BINn, ZINn				Quadrature Position/Revolution Counter
		INTn, INTn_R, INTn_R1	200	-	ns	External Interrupt
	NMI_R					Non-Maskable Interrupt

^{*:} t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode.

14.5 A/D Converter

14.5.1 Electrical Characteristics for the A/D Converter


 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$


	Value Unit Barranta						
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	Remarks
Resolution	-	-	-	-	10	bit	
Total error	-	-	- 3.0	-	+ 3.0	LSB	
Nonlinearity error	-	-	- 2.5	-	+ 2.5	LSB	
Differential Nonlinearity error	-	-	- 1.9	-	+ 1.9	LSB	
Zero transition voltage	V _{OT}	ANn	Тур - 20	AV _{SS} + 0.5LSB	Typ + 20	mV	
Full scale transition voltage	V _{FST}	ANn	Typ - 20	AVRH - 1.5LSB	Typ + 20	mV	
Compare time*	_		1.0	-	5.0	μS	$4.5V \le AV_{CC} \le 5.5V$
Compare time	_	-	2.2	-	8.0	μS	$2.7V \le AV_{CC} < 4.5V$
Committee a time a*	_		0.5	-	-	μS	$4.5V \le AV_{CC} \le 5.5V$
Sampling time*	-	-	1.2	-	-	μS	$2.7V \le AV_{CC} < 4.5V$
Danier annuali:	I _A		-	2.0	3.1	mA	A/D Converter active
Power supply current	I _{AH}	AV _{CC}	-	-	3.3	μА	A/D Converter not operated
Reference power supply current	I _R	AVRH	-	520	810	μА	A/D Converter active
(between AVRH and AV _{SS})	I _{RH}		-	-	1.0	μА	A/D Converter not operated
Analog input	C _{VIN}	AN8, 9, 12, 13	-	-	15.5	pF	Normal outputs
capacity	OVIN	AN16 to 23	-	-	17.4	pF	High current outputs
Analog impedance	D	ANn	-	-	1450	Ω	$4.5V \le AV_{CC} \le 5.5V$
Analog impedance	R _{VIN}	AINII	-	-	2700	Ω	$2.7V \le AV_{CC} < 4.5V$
Analog port input current (during	1	AN8, 9, 12, 13	- 1.0	-	+ 1.0	μА	AV _{SS} < V _{AIN} <
conversion)	I _{AIN}	AN16 to 23	- 3.0	-	+ 3.0	μА	AV _{CC} , AVRH
Analog input voltage	V _{AIN}	ANn	AV _{SS}	-	AVRH	V	
Reference voltage range	-	AVRH	AV _{CC} - 0.1	-	AV _{CC}	V	
Variation between channels	-	ANn	-	-	4.0	LSB	

^{*:} Time for each channel.

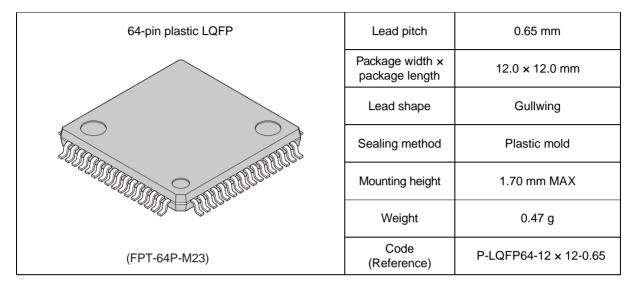
■MB96F625

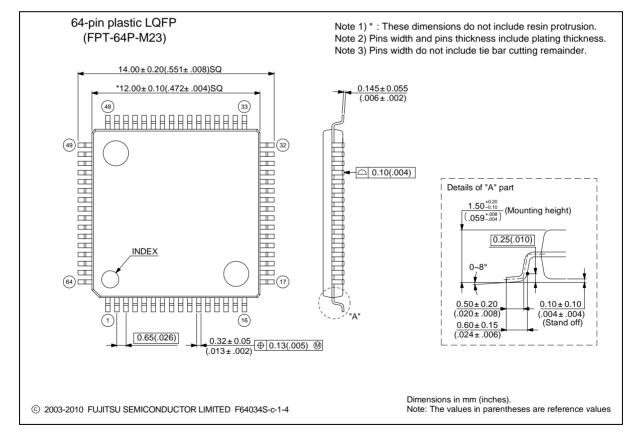
16. Ordering Information

MCU with CAN controller

Part number	Flash memory	Package*
MB96F622RBPMC-GSE1		CA min min min stip LOED
MB96F622RBPMC-GSE2		64-pin plastic LQFP (FPT-64P-M23)
MB96F622RBPMC-GTE1	Flash A	(11 1-041 -WZO)
MB96F622RBPMC1-GSE1	(64.5KB)	04 : 1 :: 1055
MB96F622RBPMC1-GSE2		64-pin plastic LQFP (FPT-64P-M24)
MB96F622RBPMC1-GTE1		(11 1-041 -WZ4)
MB96F623RBPMC-GSE1		04 : 1 :: 1 055
MB96F623RBPMC-GSE2		64-pin plastic LQFP (FPT-64P-M23)
MB96F623RBPMC-GTE1	Flash A	(11 1-041 -WZO)
MB96F623RBPMC1-GSE1	(96.5KB)	04 : 1 :: 1055
MB96F623RBPMC1-GSE2		64-pin plastic LQFP (FPT-64P-M24)
MB96F623RBPMC1-GTE1		(11 1 OHI WIZH)
MB96F625RBPMC-GSE1		04 1 1 1 1050
MB96F625RBPMC-GSE2		64-pin plastic LQFP (FPT-64P-M23)
MB96F625RBPMC-GTE1	Flash A	(11 1-041 -WZO)
MB96F625RBPMC1-GSE1	(160.5KB)	CA min relaction LOED
MB96F625RBPMC1-GSE2		64-pin plastic LQFP (FPT-64P-M24)
MB96F625RBPMC1-GTE1		(11107111127)

^{*:} For details about package, see "PACKAGE DIMENSION".


MCU without CAN controller


Part number	Flash memory	Package*	
MB96F622ABPMC-GSE1		64-pin plastic LQFP (FPT-64P-M23)	
MB96F622ABPMC-GSE2			
MB96F622ABPMC-GTE1	Flash A		
MB96F622ABPMC1-GSE1	(64.5KB)	64-pin plastic LQFP (FPT-64P-M24)	
MB96F622ABPMC1-GSE2			
MB96F622ABPMC1-GTE1			
MB96F623ABPMC-GSE1		64-pin plastic LQFP (FPT-64P-M23)	
MB96F623ABPMC-GSE2	Flash A (96.5KB)		
MB96F623ABPMC-GTE1			
MB96F623ABPMC1-GSE1		64-pin plastic LQFP (FPT-64P-M24)	
MB96F623ABPMC1-GSE2			
MB96F623ABPMC1-GTE1			
MB96F625ABPMC-GSE1		64-pin plastic LQFP (FPT-64P-M23)	
MB96F625ABPMC-GSE2			
MB96F625ABPMC-GTE1	Flash A (160.5KB)		
MB96F625ABPMC1-GSE1		64-pin plastic LQFP (FPT-64P-M24)	
MB96F625ABPMC1-GSE2			
MB96F625ABPMC1-GTE1			

^{*:} For details about package, see "PACKAGE DIMENSION".

17. Package Dimension

18. Major Changes

Spansion Publication Number: MB96620_DS704-00008

Page	Section	Change Results
Revision 2	2.0	
4	Features	Changed the description of "External Interrupts" Interrupt mask and pending bit per channel
		Interrupt mask bit per channel
25 to 28	Handling Precautions	Added a section
	Electrical Characteristics 3. Dc Characteristics (1) Current Rating	Changed the Conditions for I _{CCSRCH} CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 2MHz, →
36		CLKS1/2 = CLKP1/2 = CLKRC = 2MHz, Changed the Conditions for I _{CCSRCL} CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 100kHz
		\rightarrow CLKS1/2 = CLKP1/2 = CLKRC = 100kHz
37		Changed the Conditions for I _{CCTPLL} PLL Timer mode with CLKP1 = 32MHz →
		PLL Timer mode with CLKPLL = 32MHz
		Changed the Value of "Power supply current in Timer modes" I_{CCTPLL} Typ: 2480 μ A \rightarrow 1800 μ A ($T_A = +25$ °C)
		Max: 2710μA \rightarrow 2245μA ($T_A = +25$ °C) Max: 3985μA \rightarrow 3165μA ($T_A = +105$ °C)
		Max: $4830\mu A \rightarrow 3975\mu A$ (T _A = $+125^{\circ}$ C) Changed the Conditions for I _{CCTRCL} RC Timer mode with CLKRC = $100kHz$,
		SMCR:LPMSS = 0 (CLKPLL, CLKMC and CLKSC stopped)
		RC Timer mode with CLKRC = 100kHz (CLKPLL, CLKMC and CLKSC stopped)
		Changed the annotation *2
38		Power supply for "On Chip Debugger" part is not included. Power supply current in Run mode does not include
		Flash Write / Erase current. →
		The current for "On Chip Debugger" part is not included.
49	4. Ac Characteristics	Added parameter, "Noise filter" and an annotation *5 for it
	(10) I ² c Timing 5. A/D Converter	Added t _{SP} to the figure Deleted the unit "[Min]" from approximation formula of
51	(2) Accuracy And Setting Of The A/D Converter Sampling Time	Sampling time
56	7. Flash Memory Write/Erase Characteristics	Changed the condition $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, VD=1.8V\pm0.15V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$
		\rightarrow (V _{CC} = AV _{CC} = 2.7V to 5.5V, V _{SS} = AV _{SS} = 0V, T _A = -40°C to + 125°C)

Document History

Document Title: MB96620 Series F²MC-16FX 16-Bit Microcontroller

Document Number: 002-04712

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	-	KSUN	01/31/2014	Migrated to Cypress and assigned document number 002-04712. No change to document contents or format.
*A	5137624	KSUN	02/17/2016	Updated to Cypress format.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive Clocks & Buffers

Interface

Lighting & Power Control

Memory PSoC

Touch Sensing

USB Controllers Wireless/RF

Spansion Products

cypress.com/go/automotive

cypress.com/go/clocks cypress.com/go/interface

cypress.com/go/powerpsoc

cypress.com/go/memory

cypress.com/go/psoc

cypress.com/go/touch cypress.com/go/USB

cypress.com/go/wireless

cypress.com/spansionproducts

PSoC® Solutions

psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

Cypress, the Cypress logo, Spansion®, the Spansion logo, MirrorBit®, MirrorBit® Eclipse™, ORNAND™, Easy DesignSim™, Traveo™ and combinations thereof, are trademarks and registered trademarks of Cypress Semiconductor Corp. ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2014-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.