

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	160KB (160K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 21x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f625rbpmc1-gte1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Product Lineup

Features		MB96620	Remark	
Product Type		Flash Memory Product		
Subclock		Subclock can be set by software		
Dual Opera	ation Flash Memory	RAM	-	
32.5KB + 3	32KB	4KB	MB96F622R, MB96F622A	Product Options
64.5KB + 3	32KB	10KB	MB96F623R, MB96F623A	R: MCU with CAN
128.5KB +	32KB	10KB	MB96F625R, MB96F625A	A: MCU without CAN
			LQFP-64	
Package			FPT-64P-M23/M24	
DMA			2ch	
USART			3ch	LIN-USART 2/7/8
00,	with automatic LIN-Head	er		
	transmission/reception	01	Yes (only 1ch)	LIN-USART 2
	with 16 byte RX- and			
	TX-FIFO		No	
I ² C			1ch	1 ² C 0
8/10-bit A/	Converter		21ch	AN 0 to 14/24/25/28 to 31
0/10/01/10	with Data Buffer		No	71110101014/24/20/201001
	with Pange Comparator		Vec	
	with Scap Disable		No	
	with ADC Pulse Detection	^	No	
16 hit Dala	With ADC Puise Delectio	11	30	BLT 1/2/6
TO-DIL REIO			301	
16-bit Free	-Running Timer (FRT)		4ch	FRT 2/3 does not have external
	-			clock input pin
			8ch	ICU 0/1/4 to 7/9/10
16-bit inpu	t Capture Unit (ICU)		(2 channels for LIN-USART)	(ICU 9/10 for LIN-USART)
16-bit Outp	out Compare Unit (OCU)		6ch	OCU 0/1/4 to 7
8/16-bit Pro	ogrammable Pulse Genera	tor (PPG)	8ch (16-bit) / 16ch (8-bit)	PPG 0/1/3/4/6/7/12/14
	with Timing point capture	;	Yes	
	with Start delay		No	
	with Ramp		No	
Quadrature	Position/Revolution Coun	ter		0000.0//
(QPRC)			2ch	QPRC 0/1
				CAN 2
CAN Interf	ace		1ch	32 Message Buffers
External In	terrupts (INT)		13ch	INT 0/2/3/4/7 to 15
Non-Maska	able Interrupt (NMI)		1ch	
Real Time	Clock (RTC)		1ch	
			50 (Dual clock mode)	
I/O Ports		52 (Single clock mode)		
Clock Calib	Clock Calibration Unit (CAL)		1ch	
Clock Outp	put Function		2ch	
				Low voltage detection function
Low Voltage Detection Function		Yes	can be	
				disabled by software
Hardware	Natchdog Timer		Yes	
On-chip R0	C-oscillator		Yes	
On-chip De	ebugger		Yes	

Note:

All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the general I/O port according to your function use.

Туре	Circuit	Remarks
0	Standby control	 Open-drain I/O Output 25mA, Vcc = 2.7V TTL input

11. Interrupt Vector Table

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
0	3FC _H	CALLV0	No	-	CALLV instruction
1	3F8 _H	CALLV1	No	-	CALLV instruction
2	3F4 _H	CALLV2	No	-	CALLV instruction
3	3F0 _H	CALLV3	No	-	CALLV instruction
4	3EC _H	CALLV4	No	-	CALLV instruction
5	3E8 _H	CALLV5	No	-	CALLV instruction
6	3E4 _H	CALLV6	No	-	CALLV instruction
7	3E0 _H	CALLV7	No	-	CALLV instruction
8	3DC _H	RESET	No	-	Reset vector
9	3D8 _H	INT9	No	-	INT9 instruction
10	3D4 _H	EXCEPTION	No	-	Undefined instruction execution
11	3D0 _H	NMI	No	-	Non-Maskable Interrupt
12	3CC _H	DLY	No	12	Delayed Interrupt
13	3C8 _H	RC_TIMER	No	13	RC Clock Timer
14	3C4 _H	MC_TIMER	No	14	Main Clock Timer
15	3C0 _H	SC_TIMER	No	15	Sub Clock Timer
16	3BC _H	LVDI	No	16	Low Voltage Detector
17	3B8 _H	EXTINT0	Yes	17	External Interrupt 0
18	3B4 _H	-	-	18	Reserved
19	3B0 _H	EXTINT2	Yes	19	External Interrupt 2
20	3AC _H	EXTINT3	Yes	20	External Interrupt 3
21	3А8 _Н	EXTINT4	Yes	21	External Interrupt 4
22	3A4 _H	-	-	22	Reserved
23	3A0 _H	-	-	23	Reserved
24	39C _Н	EXTINT7	Yes	24	External Interrupt 7
25	398н	EXTINT8	Yes	25	External Interrupt 8
26	394 _Н	EXTINT9	Yes	26	External Interrupt 9
27	390 _H	EXTINT10	Yes	27	External Interrupt 10
28	38C _H	EXTINT11	Yes	28	External Interrupt 11
29	388 _H	EXTINT12	Yes	29	External Interrupt 12
30	384 _H	EXTINT13	Yes	30	External Interrupt 13
31	380 _H	EXTINT14	Yes	31	External Interrupt 14
32	37C _H	EXTINT15	Yes	32	External Interrupt 15
33	378 _H	-	-	33	Reserved
34	374 _H	-	-	34	Reserved
35	370 _H	CAN2	No	35	CAN Controller 2
36	36C _H	-	-	36	Reserved
37	368 _H	-	-	37	Reserved
38	364 _H	PPG0	Yes	38	Programmable Pulse Generator 0
39	360н	PPG1	Yes	39	Programmable Pulse Generator 1

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
81	2B8 _H	OCU4	Yes	81	Output Compare Unit 4
82	2B4 _H	OCU5	Yes	82	Output Compare Unit 5
83	2B0 _H	OCU6	Yes	83	Output Compare Unit 6
84	2AC _H	OCU7	Yes	84	Output Compare Unit 7
85	2A8 _H	-	-	85	Reserved
86	2A4 _H	-	-	86	Reserved
87	2A0 _H	-	-	87	Reserved
88	29C _Н	-	-	88	Reserved
89	298н	FRT0	Yes	89	Free-Running Timer 0
90	294 _H	FRT1	Yes	90	Free-Running Timer 1
91	290 _H	FRT2	Yes	91	Free-Running Timer 2
92	28C _H	FRT3	Yes	92	Free-Running Timer 3
93	288 _H	RTC0	No	93	Real Time Clock
94	284 _Н	CAL0	No	94	Clock Calibration Unit
95	280 _Н	-	-	95	Reserved
96	27С _Н	IIC0	Yes	96	I ² C interface 0
97	278 _Н	-	-	97	Reserved
98	274 _H	ADC0	Yes	98	A/D Converter 0
99	270 _H	-	-	99	Reserved
100	26C _H	-	-	100	Reserved
101	268 _H	-	-	101	Reserved
102	264 _H	-	-	102	Reserved
103	260н	-	-	103	Reserved
104	25C _H	-	-	104	Reserved
105	258 _H	LINR2	Yes	105	LIN USART 2 RX
106	254 _Н	LINT2	Yes	106	LIN USART 2 TX
107	250 _Н	-	-	107	Reserved
108	24C _Н	-	-	108	Reserved
109	248 _H	-	-	109	Reserved
110	244 _H	-	-	110	Reserved
111	240 _H	-	-	111	Reserved
112	23Cн	-	-	112	Reserved
113	238 _H	-	-	113	Reserved
114	234 _H	-	-	114	Reserved
115	230 _H	LINR7	Yes	115	LIN USART 7 RX
116	22C _H	LINT7	Yes	116	LIN USART 7 TX
117	228 _H	LINR8	Yes	117	LIN USART 8 RX
118	224 _H	LINT8	Yes	118	LIN USART 8 TX
119	220 _H	-	-	119	Reserved
120	21C _H	-	-	120	Reserved
121	218 _H	-	-	121	Reserved
122	214 _H	-	-	122 Reserved	

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
123	210 _H	-	-	123	Reserved
124	20C _H	-	-	124	Reserved
125	208 _H	-	-	125	Reserved
126	204 _H	-	-	126	Reserved
127	200 _Н	-	-	127	Reserved
128	1FC _H	-	-	128	Reserved
129	1F8 _H	-	-	129	Reserved
130	1F4 _H	-	-	130	Reserved
131	1F0 _H	-	-	131	Reserved
132	1EC _H	-	-	132	Reserved
133	1E8 _H	FLASHA	Yes	133	Flash memory A interrupt
134	1E4 _H	-	-	134	Reserved
135	1E0 _H	-	-	135	Reserved
136	1DC _H	-	-	136	Reserved
137	1D8 _H	QPRC0	Yes	137	Quad Position/Revolution counter 0
138	1D4 _H	QPRC1	Yes	138	Quad Position/Revolution counter 1
139	1D0 _H	ADCRC0	No	139	A/D Converter 0 - Range Comparator
140	1CC _H	-	-	140	Reserved
141	1C8 _Н	-	-	141	Reserved
142	1C4 _H	-	-	142	Reserved
143	1C0 _H	-	-	143	Reserved

12. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

12.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

1. Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

2. Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.

3. Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

■Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

■Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

■Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

■ Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- 3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 $M\Omega$).

Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.

- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

12.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

1. Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

2. Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

3. Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

4. Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

5. Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

13.3 External clock usage

The permitted frequency range of an external clock depends on the oscillator type and configuration.

See AC Characteristics for detailed modes and frequency limits. Single and opposite phase external clocks must be connected as follows:

13.3.1 Single phase external clock for Main oscillator

When using a single phase external clock for the Main oscillator, X0 pin must be driven and X1 pin left open. And supply 1.8V power to the external clock.

13.3.2 Single phase external clock for Sub oscillator

When using a single phase external clock for the Sub oscillator, "External clock mode" must be selected and

X0A/P04_0 pin must be driven. X1A/P04_1 pin can be configured as GPIO.

13.3.3 Opposite phase external clock

When using an opposite phase external clock, X1 (X1A) pins must be supplied with a clock signal which has the opposite phase to the X0 (X0A) pins. Supply level on X0 and X1 pins must be 1.8V.

13.4 Notes on PLL clock mode operation

If the microcontroller is operated with PLL clock mode and no external oscillator is operating or no external clock is supplied, the microcontroller attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be guaranteed.

13.5 Power supply pins (V_{cc}/V_{ss})

It is required that all V_{CC} -level as well as all V_{SS} -level power supply pins are at the same potential. If there is more than one V_{CC} or V_{SS} level, the device may operate incorrectly or be damaged even within the guaranteed operating range.

V_{cc} and V_{ss} pins must be connected to the device from the power supply with lowest possible impedance.

The smoothing capacitor at V_{cc} pin must use the one of a capacity value that is larger than Cs.

Besides this, as a measure against power supply noise, it is required to connect a bypass capacitor of about 0.1μ F between V_{cc} and V_{ss} pins as close as possible to V_{cc} and V_{ss} pins.

14. Electrical Characteristics

14.1 Absolute Maximum Ratings

Parameter	Parameter Symbol Condition Rating		ting	Unit	Remarks	
i di diffeter	Oymbol	Condition	Min	Max	Onit	Remarks
Power supply voltage*1	V _{CC}	-	V _{SS} - 0.3	V _{SS} + 6.0	V	
Analog power supply voltage* ¹	AV _{CC}	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{CC} = AV_{CC}^{*2}$
Analog reference voltage* ¹	AVRH	-	V _{SS} - 0.3	V _{SS} + 6.0	V	AV _{CC} ≥ AVRH, AVRH ≥ AV _{SS}
Input voltage*1	VI	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{I} \le V_{CC} + 0.3 V^{*3}$
Output voltage*1	Vo	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_0 \le V_{CC} + 0.3 V^{*3}$
Maximum Clamp Current	I _{CLAMP}	-	-4.0	+4.0	mA	Applicable to general purpose I/O pins * ⁴
Total Maximum Clamp Current	Σ I _{CLAMP}	-	-	17	mA	Applicable to general purpose I/O pins * ⁴
"L" level maximum output current	I _{OL}	-	-	15	mA	
"L" level average output current	I _{OLAV}	-	-	4	mA	
"L" level maximum overall output current	Σl _{OL}	-	-	42	mA	
"L" level average overall output current	ΣI _{OLAV}	-	-	21	mA	
"H" level maximum output current	I _{OH}	-	-	-15	mA	
"H" level average output current	I _{OHAV}	-	-	-4	mA	
"H" level maximum overall output current	ΣI _{OH}	-	-	-42	mA	
"H" level average overall output current	Σι _{ομαν}	-	-	-21	mA	
Power consumption* ⁵	P _D	T _A = +125°C	-	352 ^{*6}	mW	
Operating ambient temperature	T _A	-	-40	+125 ^{*7}	°C	
Storage temperature	T _{STG}	-	-55	+150	°C	

^{*1}: This parameter is based on Vss = AVss = 0V.

- ^{*2}: AVcc and Vcc must be set to the same voltage. It is required that AVcc does not exceed Vcc and that the voltage at the analog inputs does not exceed AVcc when the power is switched on.
- *3: VI and Vo should not exceed Vcc + 0.3V. VI should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating. Input/Output voltages of standard ports depend on Vcc.
- ^{*4}: Applicable to all general purpose I/O pins (Pnn_m).
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{CC} pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset.

- The DEBUG I/F pin has only a protective diode against V_{SS}. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V.
- · Sample recommended circuits:

^{*5}: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows: $P_D = P_{IO} + P_{INT}$

 $P_{IO} = \Sigma (V_{OL} \times I_{OL} + V_{OH} \times I_{OH})$ (I/O load power dissipation, sum is performed on all I/O ports)

 $P_{INT} = V_{CC} \times (I_{CC} + I_A)$ (internal power dissipation)

 I_{CC} is the total core current consumption into V_{CC} as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming.

 I_A is the analog current consumption into AV_{CC}.

^{*6}: Worst case value for a package mounted on single layer PCB at specified T_A without air flow.

^{*7}: Write/erase to a large sector in flash memory is warranted with TA \leq + 105°C.

WARNING

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Parameter	Symbol	Pin	Conditions	Value			Unit	Pomarks
Farameter	Symbol	name	Conditions	Min	Тур	Max	Unit	Remarks
			PLL Sleep mode with	-	6.5	-	mA	T _A = +25°C
	I _{CCSPLL}		CLKS1/2 = CLKP1/2 = 32MHz (CLKRC and CLKSC	-	-	13	mA	T _A = +105°C
			stopped)	-	-	14	mA	T _A = +125°C
			Main Sleep mode with CLKS1/2 = CLKP1/2 =	-	0.9	-	mA	T _A = +25°C
			4MHz, SMCR:LPMSS = 0	-	-	4	mA	T _A = +105°C
		Vcc	(CLKPLL, CLKRC and CLKSC stopped)	-	-	5	mA	T _A = +125°C
	I _{CCSRCH}		RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKMC, CLKPLL and CLKSC stopped)	-	0.5	-	mA	T _A = +25°C
Power supply current in Sleep modes ^{*1}				-	-	3.5	mA	T _A = +105°C
				-	-	4.5	mA	T _A = +125°C
			RC Sleep mode with	-	0.06	-	mA	T _A = +25°C
			CLKS1/2 = CLKP1/2 = CLKRC = 100kHz (CLKMC, CLKPLL and	-	-	2.7	mA	T _A = +105°C
			CLKSC stopped)	-	-	3.7	mA	T _A = +125°C
	Iccssub		Sub Sleep mode with CLKS1/2 = CLKP1/2 = 32kHz, (CLKMC, CLKPLL and	-	0.04	-	mA	T _A = +25°C
				-	-	2.5	mA	T _A = +105°C
			CLKRC stopped)	-	-	3.5	mA	T _A = +125°C

Parameter	Symbol	Pin	Conditions	Min	Value	Mass	Unit	Remarks
		name		Min	Тур	мах		
			PLL Timer mode with CLKPLL =	-	1800	2245	μΑ	T _A = +25°C
	I _{CCTPLL}		32MHz (CLKRC and CLKSC stopped)	-	-	3165	μΑ	T _A = +105°C
				-	-	3975	μΑ	T _A = +125°C
			Main Timer mode with CLKMC = 4MHz, SMCR:LPMSS = 0 (CLKPLL, CLKRC and CLKSC stopped)	-	285	325	μA	T _A = +25°C
	ICCTMAIN			-	-	1085	μA	T _A = +105°C
		Vcc		-	-	1930	μΑ	T _A = +125°C
Power supply	Icctrch		RC Timer mode with CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKPLL, CLKMC and CLKSC stopped)	-	160	210	μA	T _A = +25°C
current in				-	-	1025	μA	T _A = +105°C
niner modes				-	-	1840	μA	T _A = +125°C
			RC Timer mode with	-	35	75	μA	T _A = +25°C
	I _{CCTRCL}		CLKRC = 100kHz (CLKPLL, CLKMC and CLKSC	-	-	855	μA	T _A = +105°C
			stopped)	-	-	1640	μA	T _A = +125°C
	Ісстѕив		Sub Timer mode with CLKSC = 32kHz (CLKMC, CLKPLL and CLKRC	-	25	65	μA	T _A = +25°C
				-	-	830	μΑ	T _A = +105°C
			stopped)	-	-	1620	μA	T _A = +125°C

14.4.2 Sub Clock Input Characteristics

Baramotor	Symbol	Pin	Conditions		Value			Pomarks	
Farameter	Symbol	name	Conditions	Min	Тур	Max	Unit	Remarks	
Input frequency		VOA	-	-	32.768	-	kHz	When using an oscillation circuit	
	f _{CL}	XIA, X1A	-	-	-	100	kHz	When using an opposite phase external clock	
		X0A	-	-	-	50	kHz	When using a single phase external clock	
Input clock cycle	t _{CYLL}	-	-	10	-	-	μS		
Input clock pulse width	-	-	P _{WH} /t _{CYLL} , P _{WL} /t _{CYLL}	30	-	70	%		

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C})$

14.5.2 Accuracy and Setting of the A/D Converter Sampling Time

If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision.

To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (Tsamp) depends on the external driving impedance R_{ext} , the board capacitance of the A/D converter input pin C_{ext} and the AV_{CC} voltage level. The following replacement model can be used for the calculation:

Rext: External driving impedance

Cext: Capacitance of PCB at A/D converter input

C_{VIN}: Analog input capacity (I/O, analog switch and ADC are contained)

R_{VIN}: Analog input impedance (I/O, analog switch and ADC are contained)

The following approximation formula for the replacement model above can be used: Tsamp = 7.62 × (Rext × Cext + (Rext + R_{VIN}) × C_{VIN})

- Do not select a sampling time below the absolute minimum permitted value. ($0.5\mu s$ for $4.5V \le AV_{CC} \le 5.5V$, $1.2\mu s$ for $2.7V \le AV_{CC} < 4.5V$)
- If the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu F$ to the analog input pin.
- A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL (static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
- The accuracy gets worse as |AVRH AV_{SS}| becomes smaller.

14.6 Low Voltage Detection Function Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Parameter	Symbol	Conditions		Value		Unit
Falailletei	Symbol	Conditions	Min	Тур	Max	Unit
	V _{DL0}	$CILCR:LVL = 0000_B$	2.70	2.90	3.10	V
	V _{DL1}	$CILCR:LVL = 0001_{B}$	2.79	3.00	3.21	V
$\begin{tabular}{ c c c c } \hline Parameter & Symbol & Conditions \\ \hline & V_{DL0} & CILCR:LVL = 0000_B \\ \hline & V_{DL1} & CILCR:LVL = 0001_B \\ \hline & V_{DL2} & CILCR:LVL = 0010_B \\ \hline & V_{DL3} & CILCR:LVL = 0011_B \\ \hline & V_{DL4} & CILCR:LVL = 0011_B \\ \hline & V_{DL4} & CILCR:LVL = 0100_B \\ \hline & V_{DL5} & CILCR:LVL = 0111_B \\ \hline & V_{DL6} & CILCR:LVL = 0111_B \\ \hline & V_{DL6} & CILCR:LVL = 1001_B \\ \hline & Power supply voltage \\ change rate2 & dV/dt & - \\ \hline & Hysteresis width & V_{HYS} & CILCR:LVHYS=0 \\ \hline & CILCR:LVHYS=1 \\ \hline & Stabilization time & T_{LVDSTAB} & - \\ \hline & Detection delay time & t_d & - \\ \hline \end{tabular}$	$CILCR:LVL = 0010_B$	2.98	3.20	3.42	V	
Detected voltage ^{*1}	V _{DL3}	$CILCR:LVL = 0011_B$	3.26	3.50	3.74	V
	V _{DL4}	$CILCR:LVL = 0100_B$	3.45	3.70	3.95	V
	V _{DL5}	$CILCR:LVL = 0111_B$	3.73	4.00	4.27	V
	V _{DL6}	$CILCR:LVL = 1001_B$	3.91	4.20	4.49	V
Power supply voltage change rate ²	dV/dt	-	- 0.004	-	+ 0.004	V/µs
I hant and a in a single		CILCR:LVHYS=0	-	-	50	mV
Hysteresis width	VHYS	CILCR:LVHYS=1	80	100	120	mV
Stabilization time	T _{LVDSTAB}	-	-	-	75	μs
Detection delay time	t _d	-	-	-	30	μS

^{*1}: If the power supply voltage fluctuates within the time less than the detection delay time (t_d), there is a possibility that the low voltage detection will occur or stop after the power supply voltage passes the detection range.

^{*2}: In order to perform the low voltage detection at the detection voltage (V_{DLX}), be sure to suppress fluctuation of the power supply voltage within the limits of the change ration of power supply voltage.

14.7 Flash Memory Write/Erase Characteristics

		,		, ,,				
Boron	notor	Conditions		Value)	Unit	Bomorko	
Falailletei		Conditions	Min	Тур	Max	Unit	Remarks	
Sector erase time	Large Sector	Ta≤+105°C	-	1.6	7.5	s		
	Small Sector	-	-	0.4	2.1	S	Includes write time prior to internal erase.	
	Security Sector	-	-	0.31	1.65	S		
Word (16-bit) write	Large Sector	Ta≤+ 105°C	-	25	400	μS	Not including system-level	
time	Small Sector	-	-	25	400	μS	time.	
Chip erase time		T _A ≤ + 105°C	-	5.11	25.05	s	Includes write time prior to internal erase.	

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C})$

Note:

While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.

To put it concrete, change the external power in the range of change ration of power supply voltage (-0.004V/ μ s to +0.004V/ μ s) after the external power falls below the detection voltage (V_{DLX})⁻¹.

Write/Erase cycles and data hold time

Write/Erase cycles (cycle)	Data hold time (year)
1,000	20 ^{*2}
10,000	10 ^{*2}
100,000	5 ^{*2}

^{*1}: See "Low Voltage Detection Function Characteristics".

^{*2}: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85°C).

■MB96F625

64-pin plastic LQFP	Lead pitch	0.50 mm
	Package width × package length	10.0 × 10.0 mm
	Lead shape	Gullwing
	Sealing method	Plastic mold
	Mounting height	1.70 mm MAX
	Weight	0.32 g
(FPT-64P-M24)	Code (Reference)	P-LFQFP64-10×10-0.50

Page	Section	Change Results
56	Electrical Characteristics 7. Flash Memory Write/Erase Characteristics	Changed the Note While the Flash memory is written or erased, shutdown of the external power (V _{CC}) is prohibited. In the application system where the external power (V _{CC}) might be shut down while writing, be sure to turn the power off by using an external voltage detector. \rightarrow
		While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.
60	Ordering Information	Deleted the Part number MCU with CAN controller MB96F622RBPMC-GTE2 MB96F622RBPMC1-GTE2 MB96F623RBPMC-GTE2 MB96F625RBPMC1-GTE2 MB96F625RBPMC1-GTE2 MCU without CAN controller MB96F622ABPMC-GTE2 MB96F622ABPMC1-GTE2 MB96F623ABPMC-GTE2 MB96F623ABPMC1-GTE2 MB96F625ABPMC1-GTE2 MB96F625ABPMC1-GTE2
Bovinion C	 > 1	
-		Company name and layout design change

NOTE: Please see "Document History" about later revised information.