

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	56800EX
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc56f84550vlf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- System
 - DMA controller
 - Integrated power-on reset (POR) and low-voltage interrupt (LVI) and brown-out reset module
 - Inter-module crossbar connection
 - JTAG/enhanced on-chip emulation (EOnCE) for unobtrusive, real-time debugging
- Operating characteristics
 - Single supply: 3.0 V to 3.6 V $\,$
 - 5 V-tolerant I/O
- LQFP packages:
 - 48-pin
 - 64-pin

Part									MC5	6F84								
Number	789	786	769	766	763	553	550	543	540	587	585	567	565	462	452	451	442	441
Standard channels	4	1	4	1	1	1	0	1	0	2x 12	1x 12, 1x9	2x 12	1x 12, 1x9	1x9	1x9	1x6	1x9	1x6
PWMB with input capture: Standard channels	1x 12	1x7	1x 12	1x7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DAC	1	1	1	1	1	1	1	1	1	1	1	0	0	1	0	0	0	0
Quad Decoder	1	1	1	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1
DMA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
CMP	4	4	4	4	4	4	3	4	3	4	4	4	4	4	4	3	4	3
QSCI	3	3	3	3	2	2	2	2	2	3	3	3	3	2	2	2	2	2
QSPI	3	2	3	2	2	2	2	2	2	3	2	3	2	2	2	2	2	2
I2C/SMBus	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
FlexCAN	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
LQFP package pin count	100	80	100	80	64	64	48	64	48	100	80	100	80	64	64	48	64	48

Table 1. 56F844x/5x/7x Family (continued)

1. This total assumes no FlexNVM is used with FlexRAM for EEPROM.

1.2 56800EX 32-bit Digital Signal Controller Core

- Efficient 32-bit 56800EX Digital Signal Processor (DSP) engine with modified dual Harvard architecture
 - Three internal address buses
 - Four internal data buses: two 32-bit primary buses, one 16-bit secondary data bus, and one 16-bit instruction bus
 - 32-bit data accesses
 - Support for concurrent instruction fetches in the same cycle and dual data accesses in the same cycle
 - 20 addressing modes
- As many as 80 million instructions per second (MIPS) at 80 MHz core frequency
- 162 basic instructions
- Instruction set supports both fractional arithmetic and integer arithmetic
- 32-bit internal primary data buses supporting 8-bit, 16-bit, and 32-bit data movement, addition, subtraction, and logical operation
- Single-cycle 16 × 16-bit -> 32-bit and 32 x 32-bit -> 64-bit multiplier-accumulator (MAC) with dual parallel moves

- Up to 16 KW FlexNVM, which can be used as additional program or data flash memory
- Up to 1 KW FlexRAM, which can be configured as enhanced EEPROM (used in conjunction with FlexNVM) or used as additional RAM

1.5 Interrupt Controller

- Five interrupt priority levels
 - Three user programmable priority levels for each interrupt source: level 0, 1, 2
 - Unmaskable level 3 interrupts include: illegal instruction, hardware stack overflow, misaligned data access, SWI3 instruction
 - Maskable level 3 interrupts include: EOnCE step counter, EOnCE breakpoint unit, EOnCE trace buffer
 - Lowest-priority software interrupt: level LP
- Support for nested interrupt: higher priority level interrupt request can interrupt lower priority interrupt subroutine
- Masking of interrupt priority level managed by the 56800EX core
- Two programmable fast interrupts that can be assigned to any interrupt source
- Notification to System Integration Module (SIM) to restart clock when in wait and stop states
- Ability to relocate interrupt vector table

1.6 Peripheral highlights

1.6.1 Enhanced Flex Pulse Width Modulator (eFlexPWM)

- Up to 12 output channels in each module
- 16 bits of resolution for center, edge aligned, and asymmetrical PWMs
- PWMA with NanoEdge high resolution
 - Fractional delay for enhanced resolution of the PWM period and edge placement
 - Arbitrary PWM edge placement
 - NanoEdge implementation: 312 ps PWM frequency and duty-cycle resolution
- Each complementary pair can operate with its own PWM frequency base and deadtime values
 - 4 time base in each PWM module
 - Independent top and bottom deadtime insertion for each complementary pair
- PWM outputs can operate as complementary pairs or independent channels
- Independent control of both edges of each PWM output
- Enhanced input capture and output compare functionality on each input

1.6.7 Queued Serial Communications Interface (QSCI) Modules

- Operating clock up to two times CPU operating frequency
- Four-word-deep FIFOs available on both transmit and receive buffers
- Standard mark/space non-return-to-zero (NRZ) format
- 13-bit integer and 3-bit fractional baud rate selection
- Full-duplex or single-wire operation
- Programmable 8-bit or 9-bit data format
- Error detection capability
- Two receiver wakeup methods:
 - Idle line
 - Address mark
- 1/16 bit-time noise detection

1.6.8 Queued Serial Peripheral Interface (QSPI) Modules

- Maximum 25 Mbps baud rate
- Selectable baud rate clock sources for low baud rate communication
- Baud rate as low as Baudrate_Freq_in / 8192
- Full-duplex operation
- Master and slave modes
- Double-buffered operation with separate transmit and receive registers
- Four-word-deep FIFOs available on transmit and receive buffers
- Programmable length transmissions (2 bits to 16 bits)
- Programmable transmit and receive shift order (MSB as first bit transmitted)

1.6.9 Inter-Integrated Circuit (I2C)/System Management Bus (SMBus) Modules

- Compatible with I2C bus standard
- Support for System Management Bus (SMBus) specification, version2
- Multi-master operation
- General call recognition
- 10-bit address extension
- Dual slave addresses
- Programmable glitch input filter

1.6.10 Flex Controller Area Network (FlexCAN) Module

• Clock source from PLL or XOSC/CLKIN

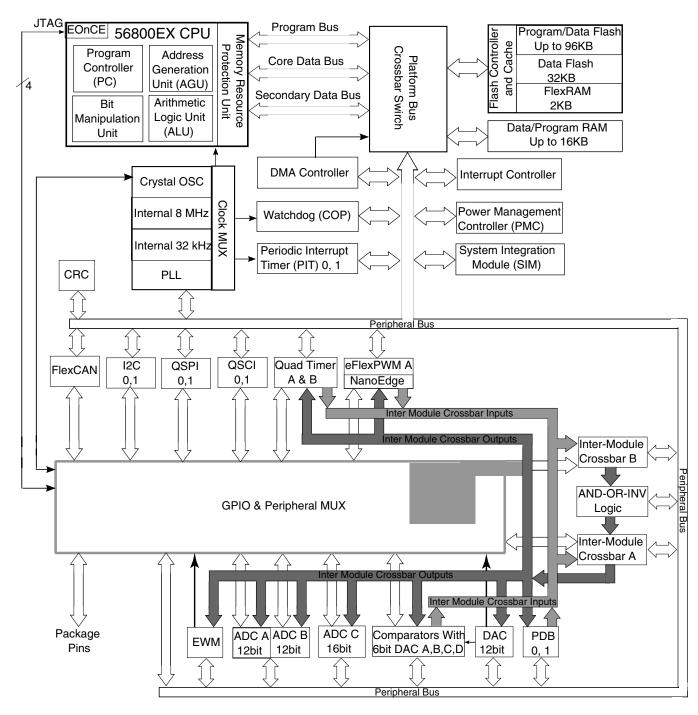


Figure 2. System Diagram

4.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

4.2 Format

Part numbers for this device have the following format: Q 56F8 4 C F P T PP N

4.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

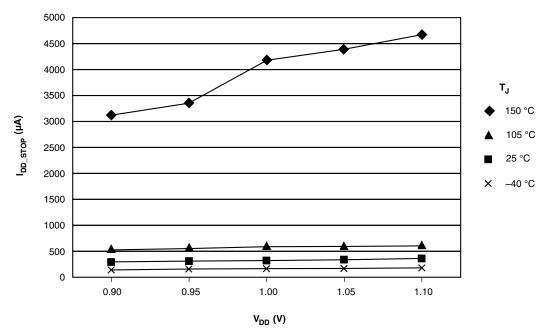
Field	Description	Values
Q	Qualification status	 MC = Fully qualified, general market flow PC = Prequalification
56F8	DSC family with flash memory and DSP56800/ DSP56800E/DSP56800EX core	• 56F8
4	DSC subfamily	• 4
С	Maximum CPU frequency (MHz)	 4 = 60 MHz 5 = 80 MHz 7 = 100 MHz
F	Primary program flash memory size	 4 = 64 KB 5 = 96 KB 6 = 128 KB 8 = 256 KB
P	Pin count	 0 and 1 = 48 2 and 3 = 64 4, 5, and 6 = 80 7, 8, and 9 = 100
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 LF = 48LQFP LH = 64LQFP LK = 80LQFP LL = 100LQFP
Ν	Packaging type	 R = Tape and reel (Blank) = Trays

5.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.


5.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

5.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

MC56F8455x Advance Information Data Sheet, Rev. 2, 06/2012.

5.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	C°
V _{DD}	3.3 V supply voltage	3.3	V

6 Ratings

6.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

6.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level		3		1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

6.3 ESD handling ratings

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, use normal handling precautions to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM), and the charge device model (CDM).

All latch-up testing is in conformity with AEC-Q100 Stress Test Qualification.

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Characteristic ¹	Min	Max	Unit
ESD for Human Body Model (HBM)	-2000	+2000	V
ESD for Machine Model (MM)	-200	+200	V
ESD for Charge Device Model (CDM)	-500	+500	V
Latch-up current at TA= 85°C (I _{LAT})	-100	+100	mA

Table 3. ESD/Latch-up Protection

1. Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

6.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 4 may affect device reliability or cause permanent damage to the device.

Table 4.	Absolute N	Maximum	Ratings	$(V_{SS} = 0)$	V, V _{SSA} = 0 V)
----------	------------	---------	---------	----------------	----------------------------

Characteristic	Symbol	Notes ¹	Min	Max	Unit
Supply Voltage Range	V _{DD}		-0.3	4.0	V
Analog Supply Voltage Range	V _{DDA}		-0.3	4.0	V
ADC High Voltage Reference	V _{REFHx}		-0.3	4.0	V
Voltage difference V _{DD} to V _{DDA}	ΔV_{DD}		-0.3	0.3	V
Voltage difference V_{SS} to V_{SSA}	ΔV_{SS}		-0.3	0.3	V

Table continues on the next page...

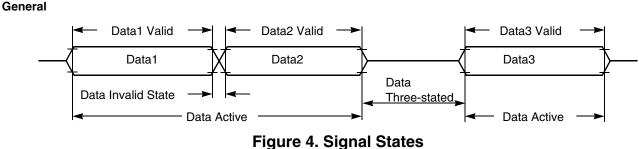


Figure 4. Signal States

7.3 Nonswitching electrical specifications

7.3.1 Voltage and current operating requirements

This section includes information about recommended operating conditions.

Recommended V_{DD} ramp rate is between 1 ms and 200 ms.

NOTE

Table 5.	Recommended Operating Conditions ($V_{REFLx} = 0 V$, $V_{SSA} = 0 V$,
	$V_{SS} = 0 V$)

Characteristic	Symbol	Notes ¹	Min	Тур	Мах	Unit
Supply voltage ²	V _{DD} , V _{DDA}		2.7	3.3	3.6	V
ADC (Cyclic) Reference Voltage High	V _{REFHA}		3.0		V _{DDA}	V
	V _{REFHB}					
ADC (SAR) Reference Voltage High	V _{REFHC}		2.0		V _{DDA}	V
Voltage difference V _{DD} to V _{DDA}	ΔVDD		-0.1	0	0.1	V
Voltage difference V_{SS} to V_{SSA}	ΔVSS		-0.1	0	0.1	V
Input Voltage High (digital inputs)	VIH	Pin Groups 1, 2	0.7 x V _{DD}		5.5	V
Input Voltage Low (digital inputs)	V _{IL}	Pin Groups 1, 2			0.35 x V _{DD}	V
Oscillator Input Voltage High	VIHOSC	Pin Group 4	2.0		V _{DD} + 0.3	V
XTAL driven by an external clock source						
Oscillator Input Voltage Low	VILOSC	Pin Group 4	-0.3		0.8	V
Output Source Current High (at V _{OH} min.) ³	I _{ОН}					
 Programmed for low drive strength 		Pin Group 1	_		-2	mA
 Programmed for high drive strength 		Pin Group 1	_		-9	
Output Source Current Low (at V _{OL} max.) ³	I _{OL}					
 Programmed for low drive strength 		Pin Groups 1, 2	_		2	mA
 Programmed for high drive strength 		Pin Groups 1, 2	_		9	

1. Default Mode

- Pin Group 1: GPIO, TDI, TDO, TMS, TCK
- Pin Group 2: RESET, GPIOA7
- Pin Group 3: ADC and Comparator Analog Inputs

7.3.5 Power consumption operating behaviors

Table 9.	Current	Consum	otion
	•••••••	001104111	

Mode	Maximum Conditions Frequency			at 3.3 V, j°C		ım at 3.6 05°C
			I _{DD} 1	I _{DDA}	ا _{DD} 1	I _{DDA}
RUN	80 MHz	 80 MHz Device Clock Regulators are in full regulation Relaxation Oscillator on PLL powered on Continuous MAC instructions with fetches from Program Flash All peripheral modules enabled. TMRs and SCIs using 1X Clock NanoEdge within PWMA using 2X clock ADC/DAC powered on and clocked at 5 MHz² Comparator powered on 	TBD	TBD	TBD	TBD
WAIT	80 MHz	 80 MHz Device Clock Regulators are in full regulation Relaxation Oscillator on PLL powered on Processor Core in WAIT state All Peripheral modules enabled. TMRs and SCIs using 1X Clock NanoEdge within PWMA using 2X clock ADC/DAC/Comparator powered off 	TBD	TBD	TBD	TBD
STOP	4 MHz	 4 MHz Device Clock Regulators are in full regulation Relaxation Oscillator on PLL powered off Processor Core in STOP state All peripheral module and core clocks are off ADC/DAC/Comparator powered off 	TBD	TBD	TBD	TBD
LPRUN (LsRUN)	2 MHz	 200 kHz Device Clock from Relaxation Oscillator (ROSC) ROSC in standby mode Regulators are in standby PLL disabled Repeat NOP instructions All peripheral modules enabled, except NanoEdge and cyclic ADCs³ Simple loop with running from platform instruction buffer 	TBD	TBD	TBD	TBD
LPWAIT (LsWAIT)	2 MHz	 200 kHz Device Clock from Relaxation Oscillator (ROSC) ROSC in standby mode Regulators are in standby PLL disabled All peripheral modules enabled, except NanoEdge and cyclic ADCs³ Processor core in wait mode 	TBD	TBD	TBD	TBD

Table continues on the next page...

7.4.1 Device clock specifications

Table 12. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
Normal run mode		9			
fsysclk	Device (system and core) clock frequencyusing relaxation oscillatorusing external clock source	0.001 0	80 80	MHz	
f _{IPBUS}	IP bus clock		80	MHz	

7.4.2 General Switching Timing

Table 13. Switching Timing

Symbol	Description	Min	Max	Unit	Notes
	GPIO pin interrupt pulse width ¹ Synchronous path	1.5		IP Bus Clock Cycles	2
	Port rise and fall time (high drive strength), Slew disabled 2.7 $\leq V_{DD} \leq 3.6V$.	5.5	15.1	ns	3
	Port rise and fall time (high drive strength), Slew enabled 2.7 $\leq V_{DD} \leq 3.6V$.	1.5	6.8	ns	3
	Port rise and fall time (low drive strength). Slew disabled . 2.7 $\leq V_{DD} \leq 3.6V$	8.2	17.8	ns	4
	Port rise and fall time (low drive strength). Slew enabled . 2.7 $\leq V_{DD} \leq 3.6V$	3.2	9.2	ns	4

1. Applies to a pin only when it is configured as GPIO and configured to cause an interrupt by appropriately programming GPIOn_IPOLR and GPIOn_IENR.

- 2. The greater synchronous and asynchronous timing must be met.
- 3. 75 pF load
- 4. 15 pF load

7.5 Thermal specifications

7.5.1 Thermal operating requirements

Table 14. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature (extended industrial)	-40	105	°C

7.5.2 Thermal attributes

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To account for $P_{I/O}$ in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is very small.

Board type	Symbol	Description	48 LQFP	64 LQFP	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	70	64	°C/W	1, 2
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	46	46	°C/W	1, 3
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	57	52	°C/W	1,3
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	39	39	°C/W	1,3
_	R _{0JB}	Thermal resistance, junction to board	23	28	°C/W	4
_	R _{θJC}	Thermal resistance, junction to case	17	15	°C/W	5
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	3	3	°C/W	6

See Thermal Design Considerations for more detail on thermal design considerations.

Peripheral operating requirements and behaviors

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air) with the single layer board horizontal. For the LQFP, the board meets the JESD51-3 specification.
- 3. Determined according to JEDEC Standard JESD51-6, *Integrated Circuits Thermal Test Method Environmental Conditions Forced Convection (Moving Air)* with the board horizontal.
- 4. Determined according to JEDEC Standard JESD51-8, *Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board*. Board temperature is measured on the top surface of the board near the package.
- 5. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 6. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

8 Peripheral operating requirements and behaviors

8.1 Core modules

8.1.1 JTAG Timing

		5			
Characteristic	Symbol	Min	Мах	Unit	See Figure
TCK frequency of operation	f _{OP}	DC	SYS_CLK/8	MHz	Figure 5
TCK clock pulse width	t _{PW}	50		ns	Figure 5
TMS, TDI data set-up time	t _{DS}	5		ns	Figure 6
TMS, TDI data hold time	t _{DH}	5		ns	Figure 6
TCK low to TDO data valid	t _{DV}	—	30	ns	Figure 6
TCK low to TDO tri-state	t _{TS}	—	30	ns	Figure 6

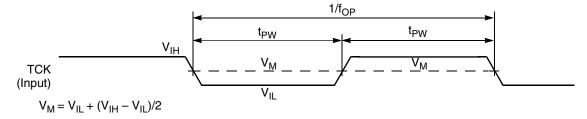


Figure 5. Test Clock Input Timing Diagram

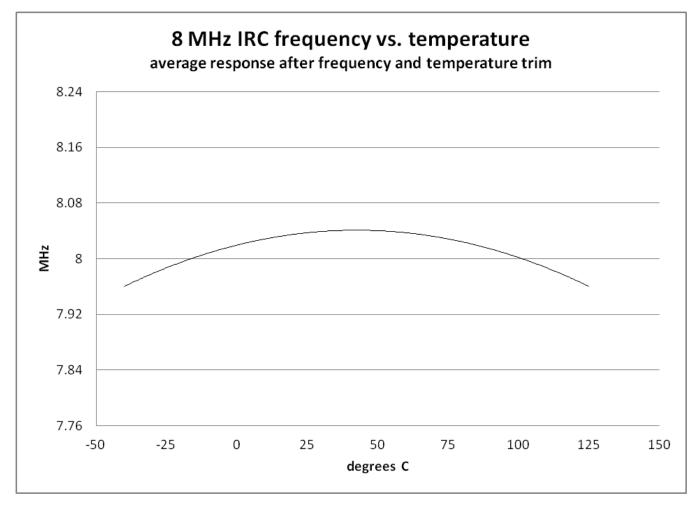


Figure 8. Relaxation Oscillator Temperature Variation (Typical) After Trim (Preliminary)

8.4 Memories and memory interfaces

8.4.1 Flash Memory Characteristics Table 22. Flash Timing Parameters

Characteristic	Symbol	Min	Тур	Max	Unit
Longword Program high-voltage time ¹	thvpgm4	—	63	143	μs
Sector Erase high-voltage time ²	thversscr	—	13	113	ms
Erase Block high-voltage time for 256 KB	thversblk256k	—	52	452	ms

1. There is additional overhead that is part of the programming sequence. See the device Reference Manual for detail.

2. Specifies page erase time.

7. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/ files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1

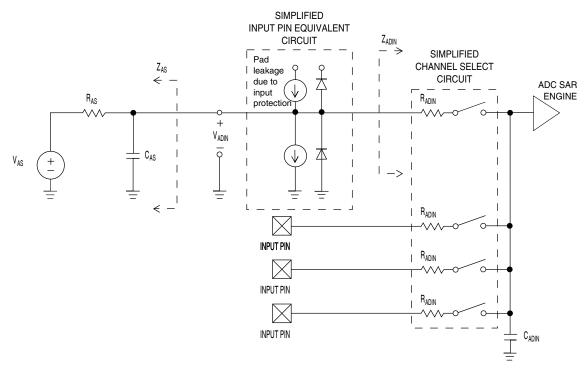


Figure 10. ADC input impedance equivalency diagram

8.5.2.2 16-bit ADC electrical characteristics Table 27. 16-bit ADC characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current			—	1.7	mA	3
	ADC	ADLPC=1, ADHSC=0	1.2	2.4	3.9	MHz	$t_{ADACK} = 1/$
	asynchronous clock source	ADLPC=1, ADHSC=1	3.0	4.0	7.3	MHz	f _{ADACK}
f _{ADACK}		ADLPC=0, ADHSC=0	2.4	5.2	6.1	MHz	
		ADLPC=0, ADHSC=1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	r for sample t	imes			
TUE	Total unadjusted	12 bit modes	_	±4	±6.8	LSB ⁴	5
	error	• <12 bit modes		±1.4	±2.1		
DNL	Differential non-	16 bit modes	_	-1 to +4		LSB ⁴	5
	linearity	12 bit modes	_	±0.7	TBD		
		• <12 bit modes	_	±0.2	-0.3 to 0.5		
INL	Integral non-	16 bit modes	—	±7.0		LSB ⁴	5
	linearity	12 bit modes	—	±1.0	-2.7 to +1.9		
		 <12 bit modes 		±0.5	-0.7 to +0.5		

Table continues on the next page...

System modules

Parameter	Conditions/Comments	Symbol	Min	Тур	Max	Unit
Integral non-linearity ²	Range of input digital words:	INL	_	+/- 3	+/- 4	LSB ³
	410 to 3891 (\$19A - \$F33)					
	5% to 95% of full range					
Differential non-	Range of input digital words:	DNL		+/- 0.8	+/- 0.9	LSB ³
linearity ²	410 to 3891 (\$19A - \$F33)					
	5% to 95% of full range					
Monotonicity	> 6 sigma monotonicity,			guaranteed		—
	< 3.4 ppm non-monotonicity					
Offset error ²	Range of input digital words:	V _{OFFSET}	—	+ 25	+ 35	mV
	410 to 3891 (\$19A - \$F33)					
	5% to 95% of full range					
Gain error ²	Range of input digital words: 410 to 3891 (\$19A - \$F33) 5% to 95% of full range	E _{GAIN}	_	+/- 0.5	+/- 1.5	%
	DAC C	Dutput				
Output voltage range	Within 40 mV of either V_{SSA} or V_{DDA}	V _{OUT}	V _{SSA} + 0.04 V		V _{DDA} - 0.04 V	V
	AC Speci	fications				
Signal-to-noise ratio		SNR		85	_	dB
Spurious free dynamic range		SFDR	—	-72	—	dB
Effective number of bits		ENOB		11	—	bits

Table 28. DAC Parameters (continued)

1. Settling time is swing range from V_{SSA} to V_{DDA}

2. No guaranteed specification within 5% of V_{DDA} or V_{SSA}

3. LSB = 0.806mV

8.5.4 CMP and 6-bit DAC electrical specifications Table 29. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	2.7	—	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	—	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	—	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV

Table continues on the next page...

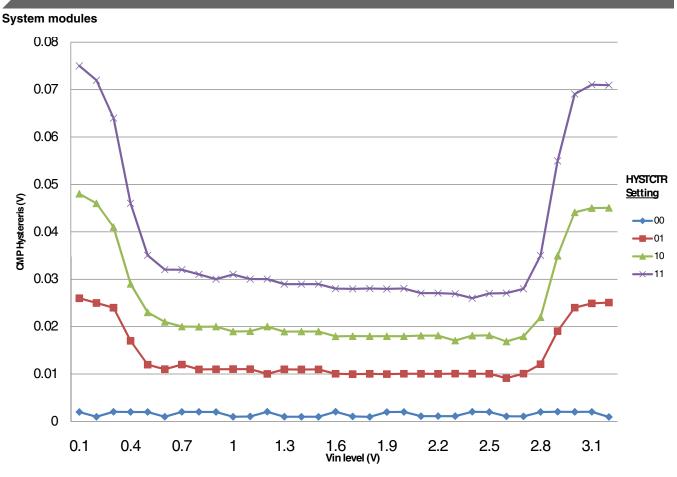


Figure 12. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 0)

8.6.2 Quad Timer Timing

Parameters listed are guaranteed by design.

Characteristic	Symbol	Min ¹	Max	Unit	See Figure
Timer input period	P _{IN}	2T + 6	—	ns	Figure 14
Timer input high/low period	P _{INHL}	1T + 3	_	ns	Figure 14
Timer output period	P _{OUT}	25	_	ns	Figure 14
Timer output high/low period	P _{OUTHL}	12.5	_	ns	Figure 14

Table 31. Timer Timing

1. T = clock cycle. For 80 MHz operation, T = 12.5 ns.

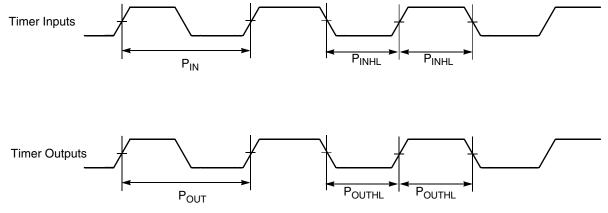


Figure 14. Timer Timing

8.7 Communication interfaces

8.7.1 Queued Serial Peripheral Interface (SPI) Timing

Parameters listed are guaranteed by design.

Characteristic	Symbol	Min	Max	Unit	See Figure
Cycle time	t _C				Figure 15
Master		45	_	ns	Figure 16
Slave		45	_	ns	Figure 17
					Figure 18

Table continues on the next page...

64 LQFP	48 LQFP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3
37	29	GPIOC11	GPIOC11	CANTX	SCL1	TXD1	
38	30	GPIOC12	GPIOC12	CANRX	SDA1	RXD1	
39	-	GPIOF2	GPIOF2	SCL1	XB_OUT6		
40	-	GPIOF3	GPIOF3	SDA1	XB_OUT7		
41	-	GPIOF4	GPIOF4	TXD1	XB_OUT8		
42	_	GPIOF5	GPIOF5	RXD1	XB_OUT9		
43	31	VSS	VSS				
44	32	VDD	VDD				
45	33	GPIOE0	GPIOE0	PWMA_0B			
46	34	GPIOE1	GPIOE1	PWMA_0A			
47	35	GPIOE2	GPIOE2	PWMA_1B			
48	36	GPIOE3	GPIOE3	PWMA_1A			
49	37	GPIOC13	GPIOC13	TA3	XB_IN6	EWM_OUT_B	
50	38	GPIOF1	GPIOF1	CLKO1	XB_IN7	CMPD_O	
51	39	GPIOE4	GPIOE4	PWMA_2B	XB_IN2		
52	40	GPIOE5	GPIOE5	PWMA_2A	XB_IN3		
53	-	GPIOE6	GPIOE6	PWMA_3B	XB_IN4	PWMB_2B	
54	Ι	GPIOE7	GPIOE7	PWMA_3A	XB_IN5	PWMB_2A	
55	41	GPIOC14	GPIOC14	SDA0	XB_OUT4		
56	42	GPIOC15	GPIOC15	SCL0	XB_OUT5		
57	43	VCAP	VCAP				
58	-	GPIOF6	GPIOF6	TB2	PWMA_3X	PWMB_3X	XB_IN2
59	-	GPIOF7	GPIOF7	TB3	CMPC_O	SS1_B	XB_IN3
60	44	VDD	VDD				
61	45	VSS	VSS				
62	46			GPIOD1			
63	47			GPIOD3			
64	48			GPIOD0			

11.2 Pinout diagrams

The following diagrams show pinouts for the packages. For each pin, the diagrams show the default function. However, many signals may be multiplexed onto a single pin.