

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	56
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	81-LBGA
Supplier Device Package	81-MAPBGA (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf5212lcvm80

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Error-detection capabilities
- Modem support includes request-to-send (RTS) and clear-to-send (CTS) lines for two UARTs
- Transmit and receive FIFO buffers
- I²C module
 - Interchip bus interface for EEPROMs, LCD controllers, A/D converters, and keypads
 - Fully compatible with industry-standard I²C bus
 - Master and slave modes support multiple masters
 - Automatic interrupt generation with programmable level
- Queued serial peripheral interface (QSPI)
 - Full-duplex, three-wire synchronous transfers
 - Up to four chip selects available
 - Master mode operation only
 - Programmable bit rates up to half the CPU clock frequency
 - Up to 16 pre-programmed transfers
- Fast analog-to-digital converter (ADC)
 - Eight analog input channels
 - 12-bit resolution
 - Minimum 1.125 μs conversion time
 - Simultaneous sampling of two channels for motor control applications
 - Single-scan or continuous operation
 - Optional interrupts on conversion complete, zero crossing (sign change), or under/over low/high limit
 - Unused analog channels can be used as digital I/O
- Four 32-bit timers with DMA support
 - 12.5 ns resolution at 80 MHz
 - Programmable sources for clock input, including an external clock option
 - Programmable prescaler
 - Input capture capability with programmable trigger edge on input pin
 - Output compare with programmable mode for the output pin
 - Free run and restart modes
 - Maskable interrupts on input capture or output compare
 - DMA trigger capability on input capture or output compare
- Four-channel general purpose timer
 - 16-bit architecture
 - Programmable prescaler
 - Output pulse-widths variable from microseconds to seconds
 - Single 16-bit input pulse accumulator
 - Toggle-on-overflow feature for pulse-width modulator (PWM) generation
 - One dual-mode pulse accumulation channel
- Pulse-width modulation timer
 - Operates as eight channels with 8-bit resolution or four channels with 16-bit resolution
 - Programmable period and duty cycle
 - Programmable enable/disable for each channel
 - Software selectable polarity for each channel
 - Period and duty cycle are double buffered. Change takes effect when the end of the current period is reached (PWM counter reaches zero) or when the channel is disabled.

- Programmable center or left aligned outputs on individual channels
- Four clock sources (A, B, SA, and SB) provide for a wide range of frequencies
- Emergency shutdown
- Two periodic interrupt timers (PITs)
 - 16-bit counter
 - Selectable as free running or count down
- Software watchdog timer
 - 32-bit counter
 - Low-power mode support
- Clock generation features
 - One to 48 MHz crystal, 8 MHz on-chip relaxation oscillator, or external oscillator reference options
 - Trimmed relaxation oscillator
 - Two to 10 MHz reference frequency for normal PLL mode with a pre-divider programmable from 1 to 8
 - System can be clocked from PLL or directly from crystal oscillator or relaxation oscillator
 - Low power modes supported
 - 2^n (n $\le 0 \le 15$) low-power divider for extremely low frequency operation
- Interrupt controller
 - Uniquely programmable vectors for all interrupt sources
 - Fully programmable level and priority for all peripheral interrupt sources
 - Seven external interrupt signals with fixed level and priority
 - Unique vector number for each interrupt source
 - Ability to mask any individual interrupt source or all interrupt sources (global mask-all)
 - Support for hardware and software interrupt acknowledge (IACK) cycles
 - Combinatorial path to provide wake-up from low-power modes
- DMA controller
 - Four fully programmable channels
 - Dual-address transfer support with 8-, 16-, and 32-bit data capability, along with support for 16-byte (4×32-bit) burst transfers
 - Source/destination address pointers that can increment or remain constant
 - 24-bit byte transfer counter per channel
 - Auto-alignment transfers supported for efficient block movement
 - Bursting and cycle steal support
 - Software-programmable DMA requesters for the UARTs (3) and 32-bit timers (4)
- Reset
 - Separate reset in and reset out signals
 - Seven sources of reset:
 - Power-on reset (POR)
 - External
 - Software
 - Watchdog
 - Loss of clock
 - Loss of lock
 - Low-voltage detection (LVD)
 - Status flag indication of source of last reset
- Chip integration module (CIM)

1.1.4 JTAG

The MCF5213 supports circuit board test strategies based on the Test Technology Committee of IEEE and the Joint Test Action Group (JTAG). The test logic includes a test access port (TAP) consisting of a 16-state controller, an instruction register, and three test registers (a 1-bit bypass register, a 256-bit boundary-scan register, and a 32-bit ID register). The boundary scan register links the device's pins into one shift register. Test logic, implemented using static logic design, is independent of the device system logic.

The MCF5213 implementation can:

- Perform boundary-scan operations to test circuit board electrical continuity
- Sample MCF5213 system pins during operation and transparently shift out the result in the boundary scan register
- Bypass the MCF5213 for a given circuit board test by effectively reducing the boundary-scan register to a single bit
- Disable the output drive to pins during circuit-board testing
- Drive output pins to stable levels

1.1.5 On-Chip Memories

1.1.5.1 SRAM

The dual-ported SRAM module provides a general-purpose 32-Kbyte memory block that the ColdFire core can access in a single cycle. The location of the memory block can be set to any 32-Kbyte boundary within the 4-Gbyte address space. This memory is ideal for storing critical code or data structures and for use as the system stack. Because the SRAM module is physically connected to the processor's high-speed local bus, it can quickly service core-initiated accesses or memory-referencing commands from the debug module.

The SRAM module is also accessible by the DMA. The dual-ported nature of the SRAM makes it ideal for implementing applications with double-buffer schemes, where the processor and a DMA device operate in alternate regions of the SRAM to maximize system performance.

1.1.5.2 Flash Memory

The ColdFire flash module (CFM) is a non-volatile memory (NVM) module that connects to the processor's high-speed local bus. The CFM is constructed with four banks of 32-Kbyte×16-bit flash memory arrays to generate 256 Kbytes of 32-bit flash memory. These electrically erasable and programmable arrays serve as non-volatile program and data memory. The flash memory is ideal for program and data storage for single-chip applications, allowing for field reprogramming without requiring an external high voltage source. The CFM interfaces to the ColdFire core through an optimized read-only memory is used for all program, erase, and verify operations, as well as providing a read datapath for the DMA. Flash memory may also be programmed via the EzPort, which is a serial flash memory programming interface that allows the flash memory to be read, erased and programmed by an external controller in a format compatible with most SPI bus flash memory chips.

1.1.6 Power Management

The MCF5213 incorporates several low-power modes of operation entered under program control and exited by several external trigger events. An integrated power-on reset (POR) circuit monitors the input supply and forces an MCU reset as the supply voltage rises. The low voltage detector (LVD) monitors the supply voltage and is configurable to force a reset or interrupt condition if it falls below the LVD trip point. The RAM standby switch provides power to RAM when the supply voltage to the chip falls below the standby battery voltage.

1.1.20 Reset

The reset controller determines the source of reset, asserts the appropriate reset signals to the system, and keeps track of what caused the last reset. There are seven sources of reset:

- External reset input
- Power-on reset (POR)
- Watchdog timer
- Phase locked-loop (PLL) loss of lock
- PLL loss of clock
- Software
- Low-voltage detector (LVD)

Control of the LVD and its associated reset and interrupt are managed by the reset controller. Other registers provide status flags indicating the last source of reset and a control bit for software assertion of the $\overline{\text{RSTO}}$ pin.

1.1.21 GPIO

Nearly all pins on the MCF5213 have general purpose I/O capability and are grouped into 8-bit ports. Some ports do not use all eight bits. Each port has registers that configure, monitor, and control the port pins.

1.1.22 Part Numbers and Packaging

This product is RoHS-compliant. Refer to the product page at freescale.com or contact your sales office for up-to-date RoHS information.

Freescale Part Number	Description	Speed	Package	Temperature
MCF5211CAE66	MCF5211 ColdFire Microcontroller	66 MHz	64 LQFP	-40 to +85 °C
MCF5211CEP66	MCF5211 ColdFire Microcontroller, FlexCAN	66 MHz	64 QFN	-40 to +85 °C
MCF5211LCEP66	MCF5211 ColdFire Microcontroller	66 MHz	64 QFN	-40 to +85 °C
MCF5211LCVM66	MCF5211 ColdFire Microcontroller	66 MHz	81 MAPBGA	-40 to +85 °C
MCF5211LCVM80	MCF5211 ColdFire Microcontroller	80 MHz	81 MAPBGA	-40 to +85 °C
MCF5212CAE66	MCF5212 ColdFire Microcontroller	66 MHz	64 LQFP	-40 to +85 °C
MCF5212LCVM66	MCF5212 ColdFire Microcontroller	66 MHz	81 MAPBGA	-40 to +85 °C
MCF5212LCVM80	MCF5212 ColdFire Microcontroller	80 MHz	81 MAPBGA	-40 to +85 °C
MCF5213CAF66	MCF5213 ColdFire Microcontroller, FlexCAN	66 MHz	100 LQFP	-40 to +85 °C
MCF5213CAF80	MCF5213 ColdFire Microcontroller, FlexCAN	80 MHz	100 LQFP	-40 to +85 °C
MCF5213LCVM66	MCF5213 ColdFire Microcontroller, FlexCAN	66 MHz	81 MAPBGA	-40 to +85 °C
MCF5213LCVM80	MCF5213 ColdFire Microcontroller, FlexCAN	80 MHz	81 MAPBGA	-40 to +85 °C

Table 2. Orderable Part Number Summary

Figure 2 shows the pinout configuration for the 100 LQFP.

Figure 2. 100 LQFP Pin Assignments

Figure 3 shows the pinout configuration for the 81 MAPBGA.

	1	2	3	4	5	6	7	8	9
A	V _{SS}	UTXD1	RSTI	IRQ5	IRQ3	ALLPST	TDO	TMS	V _{SS}
в	URTS1	URXD1	RSTO	IRQ6	IRQ2	TRST	TDI	V _{DD} PLL	EXTAL
С	UCTS0	TEST	UCTS1	IRQ7	IRQ4	IRQ1	TCLK	V _{SS} PLL	XTAL
D	URXD0	UTXD0	URTS0	V _{SS}	V _{DD}	V _{SS}	PWM7	GPT3	GPT2
Е	SCL	SDA	V _{DD}	PWM5	GPT1				
F	QSPI_CS3	QSPI_CS2	QSPI_DIN	V _{SS}	V _{DD}	V _{SS}	GPT0	V _{STBY}	AN4
G	QSPI_DOUT	QSPI_CLK	RCON	DTIN1	CLKMOD0	AN2	AN3	AN5	AN6
Н	QSPI_CS0	QSPI_CS1	DTIN3	DTIN0	CLKMOD1	AN1	V _{SSA}	V _{DDA}	AN7
J	V _{SS}	JTAG_EN	DTIN2	PWM3	PWM1	AN0	V _{RL}	V _{RH}	V _{SSA}

Figure 3. 81 MAPBGA Pin Assignments

Pin Group	Primary Function	Secondary Function	Tertiary Function	Quaternary Function	Drive Strength / Control ¹	Slew Rate / Control ¹	Pull-up / Pull-down ²	Pin on 100 LQFP	Pin on 81 MAPBGA	Pin on 64 LQFP/QFN
ADC	AN7	—		GPIO	Low	FAST	—	51	H9	33
	AN6	_		GPIO	Low	FAST	—	52	G9	34
	AN5	_		GPIO	Low	FAST	—	53	G8	35
	AN4	—	_	GPIO	Low	FAST	—	54	F9	36
	AN3	—	_	GPIO	Low	FAST	—	46	G7	28
	AN2	_		GPIO	Low	FAST	—	45	G6	27
	AN1	—	_	GPIO	Low	FAST	—	44	H6	26
	AN0	—	_	GPIO	Low	FAST	—	43	J6	25
	SYNCA ³	—		—	N/A	N/A	—	—	—	—
	SYNCB ³	—		—	N/A	N/A	—	—	_	—
	VDDA	—	_	—	N/A	N/A	—	50	H8	32
	VSSA	—		—	N/A	N/A	—	47	H7, J9	29
	VRH	—	_	—	N/A	N/A	—	49	J8	31
	VRL	—	_	—	N/A	N/A	—	48	J7	30
Clock	EXTAL	—	_	—	N/A	N/A	—	73	B9	47
Generation	XTAL	—	_	—	N/A	N/A	—	72	C9	46
	VDDPLL	—		—	N/A	N/A	—	74	B8	48
	VSSPLL	—		—	N/A	N/A	—	71	C8	45
Debug Data	ALLPST	—		—	High	FAST	—	86	A6	55
	DDATA[3:0]	—		GPIO	High	FAST	—	84,83,78,77	—	—
	PST[3:0]	—		GPIO	High	FAST	—	70,69,66,65	—	—
l ² C	SCL	CANTX ⁴	UTXD2	GPIO	PDSR[0]	PSRR[0]	pull-up ⁵	10	E1	8
	SDA	CANRX ³	URXD2	GPIO	PDSR[0]	PSRR[0]	pull-up ⁵	11	E2	9

Table 3. Pin Functions by Primary and Alternate Purpose

MCF5213 Family Configurations

16

1.2 Reset Signals

Table 4 describes signals used to reset the chip or as a reset indication.

Table 4. Reset Signals

Signal Name	Abbreviation	Function	I/O
Reset In	RSTI	Primary reset input to the device. Asserting $\overline{\text{RSTI}}$ for at least 8 CPU clock cycles immediately resets the CPU and peripherals.	I
Reset Out	RSTO	Driven low for 1024 CPU clocks after the reset source has deasserted.	0

1.3 PLL and Clock Signals

Table 5 describes signals used to support the on-chip clock generation circuitry.

Table 5. PLL and Clock Signals

Signal Name	Abbreviation	Function	I/O
External Clock In	EXTAL	Crystal oscillator or external clock input except when the on-chip relaxation oscillator is used.	I
Crystal	XTAL	Crystal oscillator output except when CLKMOD1=1, then sampled as part of the clock mode selection mechanism.	0
Clock Out	CLKOUT	This output signal reflects the internal system clock.	0

1.4 Mode Selection

Table 6 describes signals used in mode selection; Table 7 describes the particular clocking modes.

 Table 6. Mode Selection Signals

Signal Name	Abbreviation	Function	I/O
Clock Mode Selection	CLKMOD[1:0]	Selects the clock boot mode.	I
Reset Configuration	RCON	The Serial Flash Programming mode is entered by asserting the $\overline{\text{RCON}}$ pin (with the TEST pin negated) as the chip comes out of reset. During this mode, the EzPort has access to the flash memory which can be programmed from an external device.	
Test	TEST	Reserved for factory testing only and in normal modes of operation should be connected to VSS to prevent unintentional activation of test functions.	I

Table 7. Clocking Modes

CLKMOD[1:0]	XTAL	Configure the clock mode.
00	0	PLL disabled, clock driven by external oscillator
00	1	PLL disabled, clock driven by on-chip oscillator
01	N/A	PLL disabled, clock driven by crystal
10	0	PLL in normal mode, clock driven by external oscillator
10	1	PLL in normal mode, clock driven by on-chip oscillator
11	N/A	PLL in normal mode, clock driven by crystal

1.15 Power and Ground Pins

The pins described in Table 18 provide system power and ground to the chip. Multiple pins are provided for adequate current capability. All power supply pins must have adequate bypass capacitance for high-frequency noise suppression.

Table 18. Power and Ground Pins

Signal Name	Abbreviation	Function
PLL Analog Supply	VDDPLL, VSSPLL	Dedicated power supply signals to isolate the sensitive PLL analog circuitry from the normal levels of noise present on the digital power supply.
Positive Supply	VDD	These pins supply positive power to the core logic.
Ground	VSS	This pin is the negative supply (ground) to the chip.

2 Electrical Characteristics

This section contains electrical specification tables and reference timing diagrams for the MCF5213 microcontroller unit, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

Electrical Characteristics

2.1 Maximum Ratings

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +4.0	V
Clock synthesizer supply voltage	V _{DDPLL}	-0.3 to +4.0	V
RAM standby supply voltage	V _{STBY}	-0.3 to +4.0	V
Digital input voltage ³	V _{IN}	-0.3 to +4.0	V
EXTAL pin voltage	V _{EXTAL}	0 to 3.3	V
XTAL pin voltage	V _{XTAL}	0 to 3.3	V
Instantaneous maximum current Single pin limit (applies to all pins) ^{4, 5}	I _{DD}	25	mA
Operating temperature range (packaged)	T _A (T _L - T _H)	-40 to 85	°C
Storage temperature range	T _{stg}	-65 to 150	°C

Table 19. Absolute Maximum Ratings^{1, 2}

¹ Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

² This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (V_{SS} or V_{DD}).

³ Input must be current limited to the I_{DD} value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

- $^4\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}
- ⁵ The power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in the external power supply going out of regulation. Ensure that the external V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (e.g., no clock).

Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit
Output high voltage (high drive) I _{OH} = -5 mA	V _{OH}	V _{DD} – 0.5	_	V
Output low voltage (high drive) I _{OL} = 5 mA	V _{OL}	—	0.5	V
Output high voltage (low drive) I _{OH} = -2 mA	V _{OH}	V _{DD} - 0.5	_	V
Output low voltage (low drive) I _{OL} = 2 mA	V _{OL}	_	0.5	V
Weak internal pull Up device current, tested at V _{IL} Max. ²	I _{APU}	-10	-130	μA
Input Capacitance ³ All input-only pins All input/output (three-state) pins 	C _{in}	_	7 7	pF

Table 26. DC Electrical Specifications (continued)¹

¹ Refer to Table 27 for additional PLL specifications.

² Refer to Table 3 for pins having internal pull-up devices.

³ This parameter is characterized before qualification rather than 100% tested.

2.7 Clock Source Electrical Specifications

Table 27. PLL Electrical Specifications

(V_{DD} and V_{DDPLL} = 2.7 to 3.6 V, V_{SS} = V_{SSPLL} = 0 V)

Characteristic	Symbol	Min	Мах	Unit
PLL reference frequency range • Crystal reference • External reference	f _{ref_crystal} f _{ref_ext}	2 2	10.0 10.0	MHz
System frequency ¹ • External clock mode • On-chip PLL frequency	f _{sys}	0 f _{ref} / 32	66.67 or 80 ² 66.67 or 80 ²	MHz
Loss of reference frequency ^{3, 5}	f _{LOR}	100	1000	kHz
Self clocked mode frequency ⁴	f _{SCM}	1	5	MHz
Crystal start-up time ^{5, 6}	t _{cst}	—	10	ms
EXTAL input high voltage External reference 	V _{IHEXT}	2.0	V _{DD}	V
EXTAL input low voltage External reference 	V _{ILEXT}	V _{SS}	0.8	V
PLL lock time ^{4,7}	t _{lpll}	_	500	μs
Duty cycle of reference ⁴	t _{dc}	40	60	% f _{ref}

Electrical Characteristics

Table 32. AD	C Parameters	¹ (continued)
--------------	--------------	--------------------------

Name	Characteristic	Min	Typical	Мах	Unit
THD	Total harmonic distortion	—	-75	—	dB
SFDR	Spurious free dynamic range	—	67 to 70.3	—	dB
SINAD	Signal-to-noise plus distortion	—	61 to 63.9	—	dB
ENOB	Effective number of bits	9.1	10.6	—	Bits

¹ All measurements are preliminary pending full characterization, and made at $V_{DD} = 3.3V$, $V_{REFH} = 3.3V$, and $V_{REFL} =$ ground

 $^2~$ INL measured from V_{IN} = V_{REFL} to V_{IN} = V_{REFH}

³ LSB = Least Significant Bit

 $^4~$ INL measured from V_{IN} = 0.1V_{REFH} to V_{IN} = 0.9V_{REFH}

 $^5\,$ Includes power-up of ADC and $V_{REF}\,$

⁶ ADC clock cycles

⁷ Current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the ADC

2.12 Equivalent Circuit for ADC Inputs

Figure 10-17 shows the ADC input circuit during sample and hold. S1 and S2 are always open/closed at the same time that S3 is closed/open. When S1/S2 are closed & S3 is open, one input of the sample and hold circuit moves to $(V_{REFH}-V_{REFL})/2$, while the other charges to the analog input voltage. When the switches are flipped, the charge on C1 and C2 are averaged via S3, with the result that a single-ended analog input is switched to a differential voltage centered about $(V_{REFH}-V_{REFL})/2$. The switches switch on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). There are additional capacitances associated with the analog input pad, routing, etc., but these do not filter into the S/H output voltage, as S1 provides isolation during the charge-sharing phase. One aspect of this circuit is that there is an on-going input current, which is a function of the analog input voltage, V_{REF} and the ADC clock frequency.

- 1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8pF
- 2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04pF
- 3. Equivalent resistance for the channel select mux; $100 \Omega s$
- 4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only connected to it at sampling time; 1.4pF
- 5. Equivalent input impedance, when the input is selected = 1

 $\frac{1}{(ADC Clock Rate) \times (1.4 \times 10^{-12})}$

Figure 8. Equivalent Circuit for A/D Loading

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.
- 4. DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.
- 5. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.
- A. THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.
- /7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.
- AND 0.25 mm FROM THE LEAD TIP.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE PRINT VERSION NO		DT TO SCALE	
TITLE: 64LD LQFP, 10 X 10 X 1.4 PKG,		DOCUMENT NO): 98ASS23234₩	REV: D
		CASE NUMBER: 840F-02 06 APR 200		06 APR 2005
O.5 PITCH, CASE OU	CASE OUTLINE STANDARD: JEDEC MS-026 BCD			

NP

Mechanical Outline Drawings

3.2 64 QFN Package

Mechanical Outline Drawings

NP

	MECHANICAL OUTLINES DICTIONARY		DOCUMENT NO: 98ASA10690		SA10690D	
			PAGE:	1740	C	
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	0		
	·					
NOTES:						
1. ALL DIMENSIONS ARE IN MI	LLIMETERS.					
2. INTERPRET DIMENSIONS AN	D TOLERANCES PE	ER ASME Y14.5M-	1994.			
3. THE COMPLETE JEDEC DES	IGNATOR FOR THIS	S PACKAGE IS: HI	F-PQFN.			
A. COPLANARITY APPLIES TO	LEADS, CORNER L	EADS AND DIE A	ТТАСН РА	AD.		
5. MIN METAL GAP SHOULD B	E 0.2MM.					
TITLE: THERMALLY ENHANCE	ed quad	CASE NUMBER: 1	740-01			
FLAT NON-LEADED PAC	FLAT NON-LEADED PACKAGE (QFN)		STANDARD: JEDEC MO-220 VMMD-3			
64 TERMINAL, 0.5 PITCH	(9 X 9 X 1)	PACKAGE CODE:	6200	SHEET:	3 OF 4	

Mechanical Outline Drawings

3.3 81 MAPBGA Package

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: PBGA, LOW PROFILE	Ε,	DOCUMENT NO): 98ASA10670D	REV: O
81 I/O, 10 X 10 PKG,		CASE NUMBER: 1662-01 04 FEB 2005		04 FEB 2005
1 MM PITCH (MAP))	STANDARD: NO	N-JEDEC	

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- /3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.		LOUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: PBGA, LOW PROFIL	Е,	DOCUMENT NO): 98ASA10670D	REV: O
81 I/O, 10 X 10 PK	<g,< th=""><td>CASE NUMBER</td><td>: 1662–01</td><td>04 FEB 2005</td></g,<>	CASE NUMBER	: 1662–01	04 FEB 2005
1 MM PITCH (MAP	·)	STANDARD: NO	N-JEDEC	

Mechanical Outline Drawings

3.4 100-pin LQFP Package

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: 100 LEAD LQFP 14 X 14 0 5 PITCH 1 4 THICK		DOCUMENT NO): 98ASS23308W	REV: G
		CASE NUMBER	2: 983–03	07 APR 2005
		STANDARD: NO	N-JEDEC	

Mechanical Outline Drawings

VIEW B

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	T TO SCALE
пте: 100 LEAD LQFP 14 X 14, 0.5 PITCH, 1.4 THICK		DOCUMENT NO): 98ASS23308W	REV: G
		CASE NUMBER	2: 983–03	07 APR 2005
		STANDARD: NO	N-JEDEC	

Revision History

4 Revision History

Table 37. Revision History

Revision	Description
2	 Formatting, layout, spelling, and grammar corrections. Added revision history. Corrected signal names in block diagram to match those in signal description table. Added the following footnote to the MCF5211 FlexCAN entry:
3	 Formatting, layout, spelling, and grammar corrections. Synchronized the "Pin Functions by Primary and Alternate Purpose" table in this document and the reference manual. Restructured the part number summary table to include full orderable parts, and changed its name (was "Part Number Summary", is "Orderable Part Number Summary"). Updated the family configurations table to show that FlexCAN is not available on the MCF5212. Added specifications for V_{LVD} and V_{LVDHYS} to the "DC electrical specifications" table.