

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	44
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	81-LBGA
Supplier Device Package	81-MAPBGA (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf5213lcvm66

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1

MCF5213 Family Configurations

Table 1. MCF5213 Family Configurations

Module	5211	5212	5213
ColdFire Version 2 Core with MAC (Multiply-Accumulate Unit)	•	•	•
System Clock		66, 80 MHz	1
Performance (Dhrystone 2.1 MIPS)	63	up t	o 76
Flash / Static RAM (SRAM)	128/16 Kbytes	256/32	Kbytes
Interrupt Controller (INTC)	٠	•	•
Fast Analog-to-Digital Converter (ADC)	•	•	•
FlexCAN 2.0B Module	See note ¹	—	•
Four-channel Direct-Memory Access (DMA)	•	•	•
Watchdog Timer Module (WDT)	•	•	•
Programmable Interval Timer Module (PIT)	2	2	2
Four-Channel General-Purpose Timer	3	3	3
32-bit DMA Timers	4	4	4
QSPI	٠	•	•
UARTs	3	3	3
I ² C	٠	•	•
PWM	8	8	8
General Purpose I/O Module (GPIO)	•	•	•
Chip Configuration and Reset Controller Module	•	•	•
Background Debug Mode (BDM)	•	•	•
JTAG - IEEE 1149.1 Test Access Port ²	•	•	•
Package	64 LQFP 64 QFN 81 MAPBGA	64 LQFP 81 MAPBGA	81 MAPBGA 100 LQFP

¹ FlexCAN is available on the MCF5211 only in the 64 QFN package.

² The full debug/trace interface is available only on the 100-pin packages. A reduced debug interface is bonded on smaller packages.

Figure 1 shows a top-level block diagram of the MCF5213. Package options for this family are described later in this document.

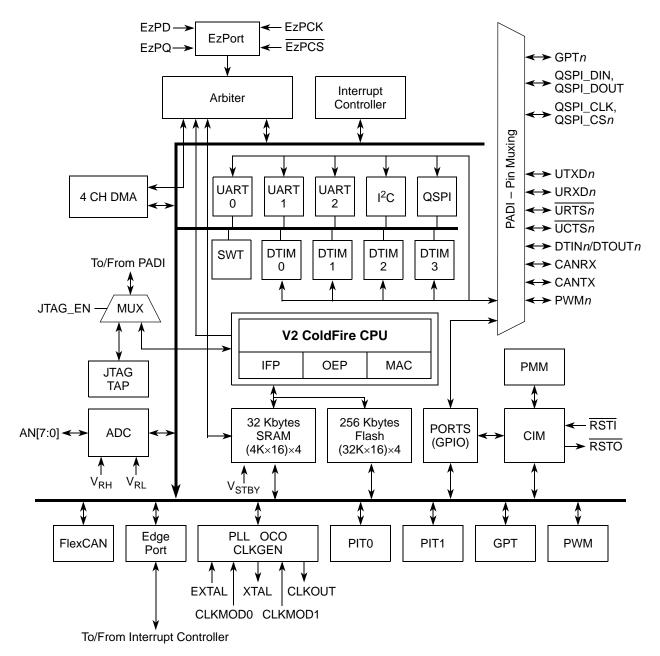


Figure 1. MCF5213 Block Diagram

1.1 Features

This document contains information on a new product under development. Freescale reserves the right to change or discontinue this product without notice. Specifications and information herein are subject to change without notice.

1.1.1 Feature Overview

The MCF5213 family includes the following features:

- Error-detection capabilities
- Modem support includes request-to-send (RTS) and clear-to-send (CTS) lines for two UARTs
- Transmit and receive FIFO buffers
- I²C module
 - Interchip bus interface for EEPROMs, LCD controllers, A/D converters, and keypads
 - Fully compatible with industry-standard I²C bus
 - Master and slave modes support multiple masters
 - Automatic interrupt generation with programmable level
- Queued serial peripheral interface (QSPI)
 - Full-duplex, three-wire synchronous transfers
 - Up to four chip selects available
 - Master mode operation only
 - Programmable bit rates up to half the CPU clock frequency
 - Up to 16 pre-programmed transfers
- Fast analog-to-digital converter (ADC)
 - Eight analog input channels
 - 12-bit resolution
 - Minimum 1.125 μs conversion time
 - Simultaneous sampling of two channels for motor control applications
 - Single-scan or continuous operation
 - Optional interrupts on conversion complete, zero crossing (sign change), or under/over low/high limit
 - Unused analog channels can be used as digital I/O
- Four 32-bit timers with DMA support
 - 12.5 ns resolution at 80 MHz
 - Programmable sources for clock input, including an external clock option
 - Programmable prescaler
 - Input capture capability with programmable trigger edge on input pin
 - Output compare with programmable mode for the output pin
 - Free run and restart modes
 - Maskable interrupts on input capture or output compare
 - DMA trigger capability on input capture or output compare
- Four-channel general purpose timer
 - 16-bit architecture
 - Programmable prescaler
 - Output pulse-widths variable from microseconds to seconds
 - Single 16-bit input pulse accumulator
 - Toggle-on-overflow feature for pulse-width modulator (PWM) generation
 - One dual-mode pulse accumulation channel
- Pulse-width modulation timer
 - Operates as eight channels with 8-bit resolution or four channels with 16-bit resolution
 - Programmable period and duty cycle
 - Programmable enable/disable for each channel
 - Software selectable polarity for each channel
 - Period and duty cycle are double buffered. Change takes effect when the end of the current period is reached (PWM counter reaches zero) or when the channel is disabled.

- Programmable center or left aligned outputs on individual channels
- Four clock sources (A, B, SA, and SB) provide for a wide range of frequencies
- Emergency shutdown
- Two periodic interrupt timers (PITs)
 - 16-bit counter
 - Selectable as free running or count down
- Software watchdog timer
 - 32-bit counter
 - Low-power mode support
- Clock generation features
 - One to 48 MHz crystal, 8 MHz on-chip relaxation oscillator, or external oscillator reference options
 - Trimmed relaxation oscillator
 - Two to 10 MHz reference frequency for normal PLL mode with a pre-divider programmable from 1 to 8
 - System can be clocked from PLL or directly from crystal oscillator or relaxation oscillator
 - Low power modes supported
 - 2^n (n $\le 0 \le 15$) low-power divider for extremely low frequency operation
- Interrupt controller
 - Uniquely programmable vectors for all interrupt sources
 - Fully programmable level and priority for all peripheral interrupt sources
 - Seven external interrupt signals with fixed level and priority
 - Unique vector number for each interrupt source
 - Ability to mask any individual interrupt source or all interrupt sources (global mask-all)
 - Support for hardware and software interrupt acknowledge (IACK) cycles
 - Combinatorial path to provide wake-up from low-power modes
- DMA controller
 - Four fully programmable channels
 - Dual-address transfer support with 8-, 16-, and 32-bit data capability, along with support for 16-byte (4×32-bit) burst transfers
 - Source/destination address pointers that can increment or remain constant
 - 24-bit byte transfer counter per channel
 - Auto-alignment transfers supported for efficient block movement
 - Bursting and cycle steal support
 - Software-programmable DMA requesters for the UARTs (3) and 32-bit timers (4)
- Reset
 - Separate reset in and reset out signals
 - Seven sources of reset:
 - Power-on reset (POR)
 - External
 - Software
 - Watchdog
 - Loss of clock
 - Loss of lock
 - Low-voltage detection (LVD)
 - Status flag indication of source of last reset
- Chip integration module (CIM)

1.1.4 JTAG

The MCF5213 supports circuit board test strategies based on the Test Technology Committee of IEEE and the Joint Test Action Group (JTAG). The test logic includes a test access port (TAP) consisting of a 16-state controller, an instruction register, and three test registers (a 1-bit bypass register, a 256-bit boundary-scan register, and a 32-bit ID register). The boundary scan register links the device's pins into one shift register. Test logic, implemented using static logic design, is independent of the device system logic.

The MCF5213 implementation can:

- Perform boundary-scan operations to test circuit board electrical continuity
- Sample MCF5213 system pins during operation and transparently shift out the result in the boundary scan register
- Bypass the MCF5213 for a given circuit board test by effectively reducing the boundary-scan register to a single bit
- Disable the output drive to pins during circuit-board testing
- Drive output pins to stable levels

1.1.5 On-Chip Memories

1.1.5.1 SRAM

The dual-ported SRAM module provides a general-purpose 32-Kbyte memory block that the ColdFire core can access in a single cycle. The location of the memory block can be set to any 32-Kbyte boundary within the 4-Gbyte address space. This memory is ideal for storing critical code or data structures and for use as the system stack. Because the SRAM module is physically connected to the processor's high-speed local bus, it can quickly service core-initiated accesses or memory-referencing commands from the debug module.

The SRAM module is also accessible by the DMA. The dual-ported nature of the SRAM makes it ideal for implementing applications with double-buffer schemes, where the processor and a DMA device operate in alternate regions of the SRAM to maximize system performance.

1.1.5.2 Flash Memory

The ColdFire flash module (CFM) is a non-volatile memory (NVM) module that connects to the processor's high-speed local bus. The CFM is constructed with four banks of 32-Kbyte×16-bit flash memory arrays to generate 256 Kbytes of 32-bit flash memory. These electrically erasable and programmable arrays serve as non-volatile program and data memory. The flash memory is ideal for program and data storage for single-chip applications, allowing for field reprogramming without requiring an external high voltage source. The CFM interfaces to the ColdFire core through an optimized read-only memory is used for all program, erase, and verify operations, as well as providing a read datapath for the DMA. Flash memory may also be programmed via the EzPort, which is a serial flash memory programming interface that allows the flash memory to be read, erased and programmed by an external controller in a format compatible with most SPI bus flash memory chips.

1.1.6 Power Management

The MCF5213 incorporates several low-power modes of operation entered under program control and exited by several external trigger events. An integrated power-on reset (POR) circuit monitors the input supply and forces an MCU reset as the supply voltage rises. The low voltage detector (LVD) monitors the supply voltage and is configurable to force a reset or interrupt condition if it falls below the LVD trip point. The RAM standby switch provides power to RAM when the supply voltage to the chip falls below the standby battery voltage.

1.1.13 General Purpose Timer (GPT)

The general purpose timer (GPT) is a four-channel timer module consisting of a 16-bit programmable counter driven by a seven-stage programmable prescaler. Each of the four channels can be configured for input capture or output compare. Additionally, channel three, can be configured as a pulse accumulator.

A timer overflow function allows software to extend the timing capability of the system beyond the 16-bit range of the counter. The input capture and output compare functions allow simultaneous input waveform measurements and output waveform generation. The input capture function can capture the time of a selected transition edge. The output compare function can generate output waveforms and timer software delays. The 16-bit pulse accumulator can operate as a simple event counter or a gated time accumulator.

1.1.14 Periodic Interrupt Timers (PIT0 and PIT1)

The two periodic interrupt timers (PIT0 and PIT1) are 16-bit timers that provide interrupts at regular intervals with minimal processor intervention. Each timer can count down from the value written in its PIT modulus register or it can be a free-running down-counter.

1.1.15 Pulse-Width Modulation (PWM) Timers

The MCF5213 has an 8-channel, 8-bit PWM timer. Each channel has a programmable period and duty cycle as well as a dedicated counter. Each of the modulators can create independent continuous waveforms with software-selectable duty rates from 0% to 100%. The PWM outputs have programmable polarity, and can be programmed as left aligned outputs or center aligned outputs. For higher period and duty cycle resolution, each pair of adjacent channels ([7:6], [5:4], [3:2], and [1:0]) can be concatenated to form a single 16-bit channel. The module can, therefore, be configured to support 8/0, 6/1, 4/2, 2/3, or 0/4 8-/16-bit channels.

1.1.16 Software Watchdog Timer

The watchdog timer is a 32-bit timer that facilitates recovery from runaway code. The watchdog counter is a free-running down-counter that generates a reset on underflow. To prevent a reset, software must periodically restart the countdown.

1.1.17 Phase-Locked Loop (PLL)

The clock module contains a crystal oscillator, 8 MHz on-chip relaxation oscillator (OCO), phase-locked loop (PLL), reduced frequency divider (RFD), low-power divider status/control registers, and control logic. To improve noise immunity, the PLL, crystal oscillator, and relaxation oscillator have their own power supply inputs: VDDPLL and VSSPLL. All other circuits are powered by the normal supply pins, VDD and VSS.

1.1.18 Interrupt Controller (INTC)

The MCF5213 has a single interrupt controller that supports up to 63 interrupt sources. There are 56 programmable sources, 49 of which are assigned to unique peripheral interrupt requests. The remaining seven sources are unassigned and may be used for software interrupt requests.

1.1.19 DMA Controller

The direct memory access (DMA) controller provides an efficient way to move blocks of data with minimal processor intervention. It has four channels that allow byte, word, longword, or 16-byte burst line transfers. These transfers are triggered by software explicitly setting a DCR*n*[START] bit or by the occurrence of certain UART or DMA timer events.

1.1.20 Reset

The reset controller determines the source of reset, asserts the appropriate reset signals to the system, and keeps track of what caused the last reset. There are seven sources of reset:

- External reset input
- Power-on reset (POR)
- Watchdog timer
- Phase locked-loop (PLL) loss of lock
- PLL loss of clock
- Software
- Low-voltage detector (LVD)

Control of the LVD and its associated reset and interrupt are managed by the reset controller. Other registers provide status flags indicating the last source of reset and a control bit for software assertion of the $\overline{\text{RSTO}}$ pin.

1.1.21 GPIO

Nearly all pins on the MCF5213 have general purpose I/O capability and are grouped into 8-bit ports. Some ports do not use all eight bits. Each port has registers that configure, monitor, and control the port pins.

1.1.22 Part Numbers and Packaging

This product is RoHS-compliant. Refer to the product page at freescale.com or contact your sales office for up-to-date RoHS information.

Freescale Part Number	Description	Speed	Package	Temperature
MCF5211CAE66	MCF5211 ColdFire Microcontroller	66 MHz	64 LQFP	-40 to +85 °C
MCF5211CEP66	MCF5211 ColdFire Microcontroller, FlexCAN	66 MHz	64 QFN	-40 to +85 °C
MCF5211LCEP66	MCF5211 ColdFire Microcontroller	66 MHz	64 QFN	-40 to +85 °C
MCF5211LCVM66	MCF5211 ColdFire Microcontroller	66 MHz	81 MAPBGA	-40 to +85 °C
MCF5211LCVM80	MCF5211 ColdFire Microcontroller	80 MHz	81 MAPBGA	-40 to +85 °C
MCF5212CAE66	MCF5212 ColdFire Microcontroller	66 MHz	64 LQFP	-40 to +85 °C
MCF5212LCVM66	MCF5212 ColdFire Microcontroller	66 MHz	81 MAPBGA	-40 to +85 °C
MCF5212LCVM80	MCF5212 ColdFire Microcontroller	80 MHz	81 MAPBGA	-40 to +85 °C
MCF5213CAF66	MCF5213 ColdFire Microcontroller, FlexCAN	66 MHz	100 LQFP	-40 to +85 °C
MCF5213CAF80	MCF5213 ColdFire Microcontroller, FlexCAN	80 MHz	100 LQFP	-40 to +85 °C
MCF5213LCVM66	MCF5213 ColdFire Microcontroller, FlexCAN	66 MHz	81 MAPBGA	-40 to +85 °C
MCF5213LCVM80	MCF5213 ColdFire Microcontroller, FlexCAN	80 MHz	81 MAPBGA	-40 to +85 °C

Table 2. Orderable Part Number Summary

1.8 UART Module Signals

Table 11 describes the UART module signals.

Table 11	. UART	Module	Signals
----------	--------	--------	---------

Signal Name	Abbreviation	Function	I/O
Transmit Serial Data Output	UTXDn	Transmitter serial data outputs for the UART modules. The output is held high (mark condition) when the transmitter is disabled, idle, or in the local loopback mode. Data is shifted out, LSB first, on this pin at the falling edge of the serial clock source.	0
Receive Serial Data Input	URXDn	Receiver serial data inputs for the UART modules. Data is received on this pin LSB first. When the UART clock is stopped for power-down mode, any transition on this pin restarts the clock.	I
Clear-to-Send	UCTSn	Indication to the UART modules that they can begin data transmission.	Ι
Request-to-Send	URTSn	Automatic request-to-send outputs from the UART modules. This signal can also be configured to be asserted and negated as a function of the RxFIFO level.	0

1.9 DMA Timer Signals

Table 12 describes the signals of the four DMA timer modules.

Table 12. DMA Timer Signals

Signal Name	Abbreviation	Function	I/O
DMA Timer Input	DTIN	Event input to the DMA timer modules.	Ι
DMA Timer Output	DTOUT	Programmable output from the DMA timer modules.	0

1.10 ADC Signals

Table 13 describes the signals of the Analog-to-Digital Converter.

Table 13. ADC Signals

Signal Name	Abbreviation	Function	I/O
Analog Inputs	AN[7:0]	Inputs to the analog-to-digital converter.	I
Analog Reference	V _{RH}	Reference voltage high and low inputs.	I
	V _{RL}		I
Analog Supply	V _{DDA}	Isolate the ADC circuitry from power supply noise.	
	V _{SSA}		
ADC Sync Inputs	SYNCA / SYNCB	These signals can initiate an analog-to-digital conversion process.	I

1.11 General Purpose Timer Signals

Table 14 describes the general purpose timer signals.

Table 14. GPT Signals

Signal Name	Abbreviation	Function	I/O
General Purpose Timer Input/Output	GPT[3:0]	Inputs to or outputs from the general purpose timer module.	I/O

1.12 Pulse Width Modulator Signals

Table 15 describes the PWM signals.

Signal Name	Abbreviation	Function	I/O
PWM Output Channels	PWM[7:0]	Pulse width modulated output for PWM channels.	0

1.13 Debug Support Signals

These signals are used as the interface to the on-chip JTAG controller and the BDM logic.

Signal Name	Abbreviation	Function	I/O
JTAG Enable	JTAG_EN	Select between debug module and JTAG signals at reset.	I
Test Reset	TRST	This active-low signal is used to initialize the JTAG logic asynchronously.	I
Test Clock	TCLK	Used to synchronize the JTAG logic.	I
Test Mode Select	TMS	Used to sequence the JTAG state machine. TMS is sampled on the rising edge of TCLK.	I
Test Data Input	TDI	Serial input for test instructions and data. TDI is sampled on the rising edge of TCLK.	I
Test Data Output	TDO	Serial output for test instructions and data. TDO is tri-stateable and is actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCLK.	0
Development Serial Clock	DSCLK	Development Serial Clock - Internally synchronized input. (The logic level on DSCLK is validated if it has the same value on two consecutive rising bus clock edges.) Clocks the serial communication port to the debug module during packet transfers. Maximum frequency is PSTCLK/5. At the synchronized rising edge of DSCLK, the data input on DSI is sampled and DSO changes state.	I
Breakpoint	ВКРТ	Breakpoint - Input used to request a manual breakpoint. Assertion of BKPT puts the processor into a halted state after the current instruction completes. Halt status is reflected on processor status/debug data signals (PST[3:0] and PSTDDATA[7:0]) as the value 0xF. If CSR[BKD] is set (disabling normal BKPT functionality), asserting BKPT generates a debug interrupt exception in the processor.	I

Table 16. Debug Support Signals

Electrical Characteristics

Τ_A

The average chip-junction temperature (T_.) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JMA})$$
(1)

Where:

= ambient temperature, °C

= package thermal resistance, junction-to-ambient, °C/W Θ_{JA}

 P_D $= P_{INT} + P_{I/O}$

= chip internal power, $I_{DD} \times V_{DD}$, watts PINT

= power dissipation on input and output pins - user determined, watts P_{I/O}

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{\rm D} = K \div (T_{\rm J} + 273^{\circ}C)$$
 (2)

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273 \text{ °C}) + \Theta_{JMA} \times P_D^2 (3)$$

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A. Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A.

Flash Memory Characteristics 2.4

The flash memory characteristics are shown in Table 23 and Table 24.

Table 23. SGFM Flash Program and Erase Characteristics $(V_{DDE} = 2.7 \text{ to } 3.6 \text{ V})$

Parameter	Symbol	Min	Тур	Max	l
System clock (read only)	f _{sys(R)}	0	—	66.67 or 80 ¹	1
System clock (program/erase) ²	f _{svs(P/E)}	0.15	_	66.67 or 80 ¹	ľ

t_{sys(P/E)}

Depending on packaging; see Table 2.

2 Refer to the flash memory section for more information

Table 24. SGFM Flash Module Life Characteristics

 $(V_{DDF} = 2.7 \text{ to } 3.6 \text{ V})$

Parameter	Symbol	Value	Unit
Maximum number of guaranteed program/erase cycles ¹ before failure	P/E	10,000 ²	Cycles
Data retention at average operating temperature of 85°C	Retention	10	Years

¹ A program/erase cycle is defined as switching the bits from $1 \rightarrow 0 \rightarrow 1$.

² Reprogramming of a flash memory array block prior to erase is not required.

Unit MHz

MHz

2.5 ESD Protection

Characteristics	Symbol	Value	Units
ESD target for Human Body Model	HBM	2000	V
ESD target for Machine Model	MM	200	V
HBM circuit description	R _{series}	1500	Ω
	С	100	pF
MM circuit description	R _{series}	0	Ω
	С	200	pF
Number of pulses per pin (HBM) Positive pulses Negative pulses 	_	1	_
Number of pulses per pin (MM) Positive pulses Negative pulses 		3 3	
Interval of pulses		1	sec

Table 25. ESD Protection Characteristics^{1, 2}

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

2.6 DC Electrical Specifications

Table 26. DC Electrical Specifications ¹

Characteristic	Symbol	Min	Max	Unit
Supply voltage	V _{DD}	3.0	3.6	V
Standby voltage	V _{STBY}	3.0	3.6	V
Input high voltage	V _{IH}	$0.7 \times V_{DD}$	4.0	V
Input low voltage	V _{IL}	$V_{SS} - 0.3$	$0.35\times V_{DD}$	V
Input hysteresis	V _{HYS}	$0.06 \times V_{DD}$	_	mV
Low-voltage detect trip voltage (V _{DD} falling)	V _{LVD}	2.15	2.3	V
Low-voltage detect hysteresis (V _{DD} rising)	V _{LVDHYS}	60	120	mV
Input leakage current V _{in} = V _{DD} or V _{SS} , digital pins	l _{in}	-1.0	1.0	μA
Output high voltage (all input/output and all output pins) $I_{OH} = -2.0 \text{ mA}$	V _{OH}	V _{DD} – 0.5	_	V
Output low voltage (all input/output and all output pins) $I_{OL} = 2.0 mA$	V _{OL}	_	0.5	V

Electrical Characteristics

Figure 7 shows timing for the values in Table 30 and Table 31.

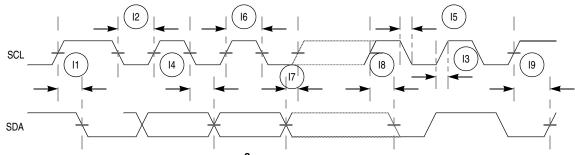


Figure 7. I²C Input/Output Timings

2.11 Analog-to-Digital Converter (ADC) Parameters

Table 32 lists specifications for the analog-to-digital converter.

Table	32.	ADC	Parame	ters ¹
-------	-----	-----	--------	-------------------

Name	Characteristic	Min	Typical	Max	Unit
V _{REFL}	Low reference voltage	V _{SS}	—	V _{REFH}	V
V _{REFH}	High reference voltage	V _{REFL}	—	V _{DDA}	V
V _{DDA}	ADC analog supply voltage	3.0	3.3	3.6	V
V _{ADIN}	Input voltages	V _{REFL}		V _{REFH}	V
RES	Resolution	12	—	12	Bits
INL	Integral non-linearity (full input signal range) ²	_	±2.5	±3	LSB ³
INL	Integral non-linearity (10% to 90% input signal range) ⁴	_	±2.5	±3	LSB
DNL	Differential non-linearity	_	-1 < DNL < +1	<+1	LSB
	Monotonicity	GUARANTEED			
f _{ADIC}	ADC internal clock	0.1	—	5.0	MHz
R _{AD}	Conversion range	V _{REFL}		V _{REFH}	V
t _{ADPU}	ADC power-up time ⁵	_	6	13	t _{AIC} cycles ⁶
t _{REC}	Recovery from auto standby	_	0	1	t _{AIC} cycles
t _{ADC}	Conversion time	_	6	_	t _{AIC} cycles
t _{ADS}	Sample time	_	1	_	t _{AIC} cycles
C _{ADI}	Input capacitance	_	See Figure 8	_	pF
X _{IN}	Input impedance	_	See Figure 8	_	W
I _{ADI}	Input injection current ⁷ , per pin	_		3	mA
I _{VREFH}	V _{REFH} current	_	0	_	m
V _{OFFSET}	Offset voltage internal reference	_	±8	±15	mV
E _{GAIN}	Gain error (transfer path)	.99	1	1.01	—
V _{OFFSET}	Offset voltage external reference	_	±3	TBD	mV
SNR	Signal-to-noise ratio	_	62 to 66	—	dB

2.15 JTAG and Boundary Scan Timing

Table 35. JTAG and Boundary Scan Timing

Num	Characteristics ¹	Symbol	Min	Max	Unit
J1	TCLK frequency of operation	f _{JCYC}	DC	1/4	f _{sys/2}
J2	TCLK cycle period	t _{JCYC}	$4 \times t_{CYC}$	—	ns
J3	TCLK clock pulse width	t _{JCW}	26	—	ns
J4	TCLK rise and fall times	t _{JCRF}	0	3	ns
J5	Boundary scan input data setup time to TCLK rise	t _{BSDST}	4	—	ns
J6	Boundary scan input data hold time after TCLK rise	t _{BSDHT}	26	—	ns
J7	TCLK low to boundary scan output data valid	t _{BSDV}	0	33	ns
J8	TCLK low to boundary scan output high Z	t _{BSDZ}	0	33	ns
J9	TMS, TDI input data setup time to TCLK rise	t _{TAPBST}	4	—	ns
J10	TMS, TDI Input data hold time after TCLK rise	t _{TAPBHT}	10	—	ns
J11	TCLK low to TDO data valid	t _{TDODV}	0	26	ns
J12	TCLK low to TDO high Z	t _{TDODZ}	0	8	ns
J13	TRST assert time	t _{TRSTAT}	100	—	ns
J14	TRST setup time (negation) to TCLK high	t _{TRSTST}	10	—	ns

¹ JTAG_EN is expected to be a static signal. Hence, it is not associated with any timing.

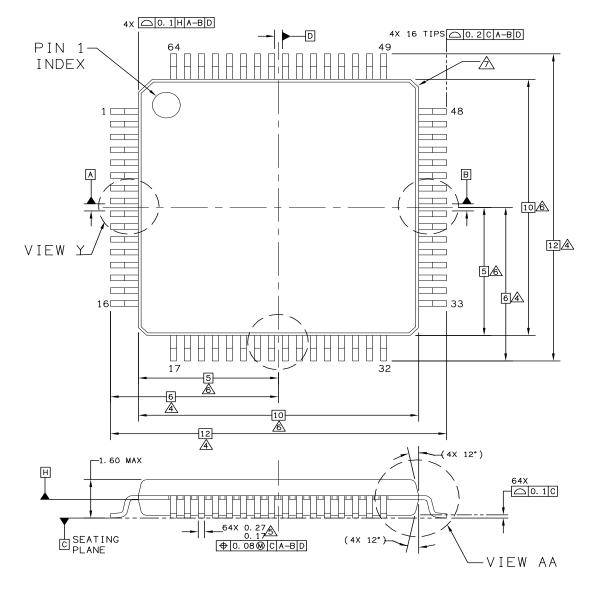
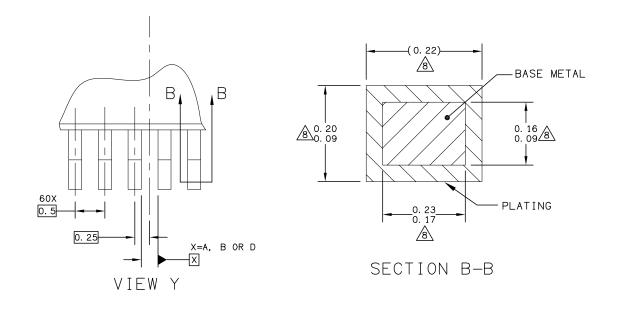
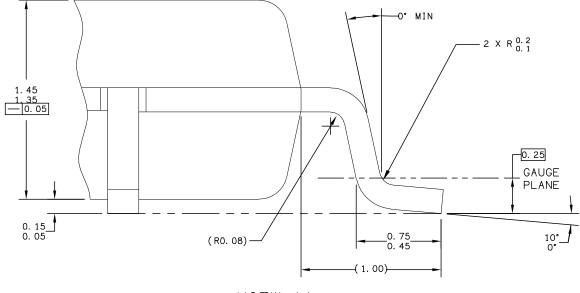
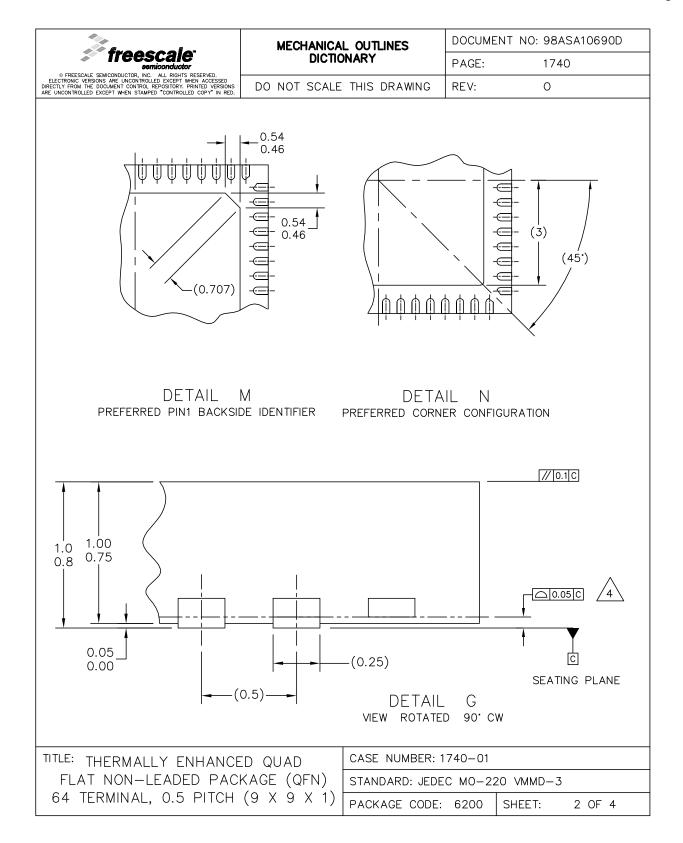


Figure 10. Test Clock Input Timing


This section describes the physical properties of the MCF5213 and its derivatives.


3.1 64-pin LQFP Package

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NO	DT TO SCALE
^{title:} 64LD LQFP, 10 X 10 X 1.4 PKG, 0.5 PITCH, CASE OUTLINE		DOCUMENT NO): 98ASS23234₩	REV: D
		CASE NUMBER	R: 840F-02	06 APR 2005
		STANDARD: JE	DEC MS-026 BCD	

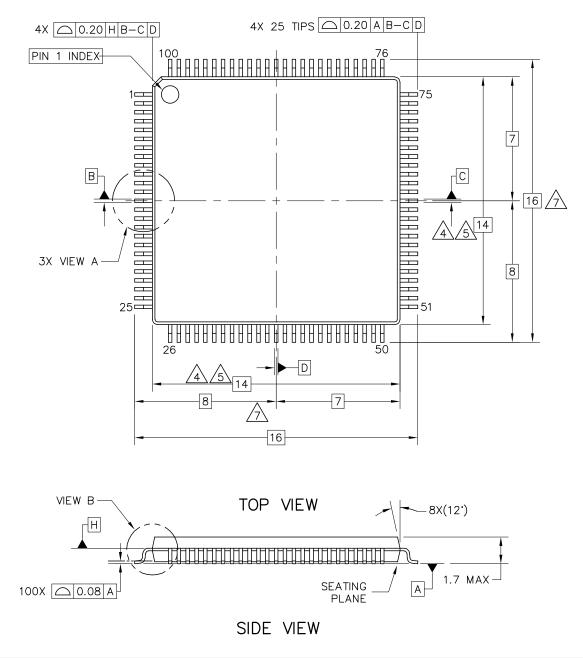


VIEW AA

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	Mechanica	L OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: 64LD LQFP,		DOCUMENT NO): 98ASS23234₩	REV: D
		CASE NUMBER: 840F-02 06 APR 20		
		STANDARD: JE	DEC MS-026 BCD	

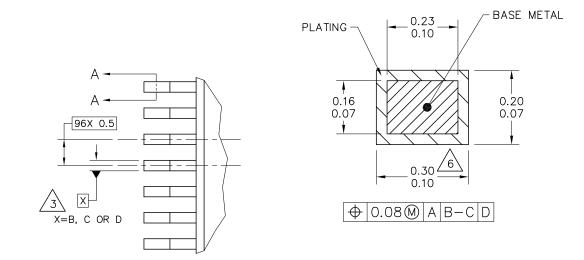
NP

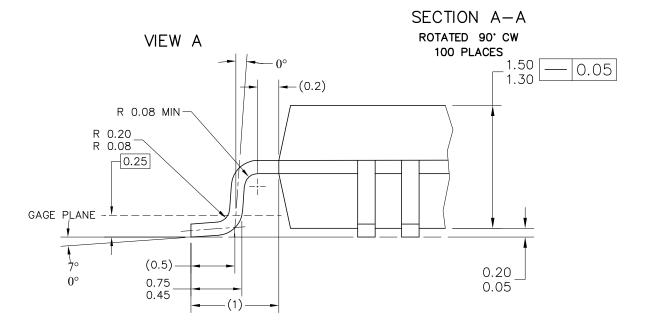
	MECHANICAL OUTLINES	DOCUMENT NO: 98ASA10690D			
		NARY	PAGE:	17	40
© FREESCALE SEMICONDUCTOR, INC. ALL RICHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED ECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED VERSIONS E UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	0	
NOTES:					
1. ALL DIMENSIONS ARE IN MIL	LIMETERS.				
2. INTERPRET DIMENSIONS AND	D TOLERANCES PE	ER ASME Y14.5M-	-1994.		
3. THE COMPLETE JEDEC DESIG	GNATOR FOR THIS	S PACKAGE IS: H	IF-PQFN.		
4. COPLANARITY APPLIES TO L	EADS, CORNER L	EADS AND DIE A	TTACH P	AD.	
5. MIN METAL GAP SHOULD BE					
TLE: THERMALLY ENHANCE	D QUAD	CASE NUMBER:	1740-01		
TLE: THERMALLY ENHANCE FLAT NON-LEADED PACE 64 TERMINAL, 0.5 PITCH	KAGE (QFN)	CASE NUMBER:		20 VMMD-3	3



Mechanical Outline Drawings

			DOCUMENT NO: 98ASA10690D		
	REVISION HISTORY		PAGE: 1740		
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL. REPOSITORY, PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.			REV:	0	
LTR ORIGINATOR	REVISIONS			DRAFTER	DATE
O ERIC TRIPLETT RELEASED FO	R PRODUCTION			TAYLOR LIU	27JUL2005
			740 01		
TITLE: THERMALLY ENHANCE FLAT NON-LEADED PAC		CASE NUMBER: 1 STANDARD: JEDE			
64 TERMINAL, 0.5 PITCH	(9 X 9 X 1)	PACKAGE CODE:		SHEET:	4 OF 4


3.4 100-pin LQFP Package



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			PRINT VERSION NO	T TO SCALE
TITLE: 100 LEAD LQFP 14 X 14, 0.5 PITCH, 1.4 THICK		DOCUMENT NO): 98ASS23308W	REV: G
		CASE NUMBER	8: 983–03	07 APR 2005
		STANDARD: NO	DN-JEDEC	

Mechanical Outline Drawings

VIEW B

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: 100 LEAD LQFP 14 X 14, 0.5 PITCH, 1.4 THICK		DOCUMENT NO: 98ASS23308W		REV: G
		CASE NUMBER: 983-03		07 APR 2005
		STANDARD: NO	DN-JEDEC	