

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	56
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	81-LBGA
Supplier Device Package	81-MAPBGA (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf5213lcvm66j

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	MCF	5213 Family Configurations
	1.1	Block Diagram
	1.2	Features
	1.3	Reset Signals
	1.4	PLL and Clock Signals
	1.5	Mode Selection
	1.6	External Interrupt Signals
	1.7	Queued Serial Peripheral Interface (QSPI)21
	1.8	I ² C I/O Signals
	1.9	UART Module Signals
	1.10	DMA Timer Signals
	1.11	ADC Signals
	1.12	General Purpose Timer Signals
	1.13	Pulse Width Modulator Signals
	1.14	Debug Support Signals
	1.15	EzPort Signal Descriptions
	1.16	Power and Ground Pins25
2		rical Characteristics
	2.1	Maximum Ratings
	2.2	Current Consumption
	2.3	Thermal Characteristics
	2.4	Flash Memory Characteristics
	2.5	ESD Protection
	2.6	DC Electrical Specifications
	2.7	Clock Source Electrical Specifications
	2.8	General Purpose I/O Timing
	2.9	Reset Timing
	2.10	I ² C Input/Output Timing Specifications
	2.11	Analog-to-Digital Converter (ADC) Parameters36
	2.12	Equivalent Circuit for ADC Inputs
	2.13	DMA Timers Timing Specifications
	2.14	QSPI Electrical Specifications
	2.15	JTAG and Boundary Scan Timing
_	2.16	Debug AC Timing Specifications
3		anical Outline Drawings
	3.1	64-pin LQFP Package
	3.2	64 QFN Package
	3.3	81 MAPBGA Package
	3.4	100-pin LQFP Package
4	Hevis	ion History
Lis	st of	Figures
		MCF5213 Block Diagram
		100 LOED Die Assissments 10

Figure 8. Equivalent Circuit for A/D Loading	
Figure 9.QSPI Timing	. 38
Figure 10.Test Clock Input Timing	. 39
Figure 11.Boundary Scan (JTAG) Timing	
Figure 12.Test Access Port Timing	
Figure 13.TRST Timing	
Figure 14.Real-Time Trace AC Timing	
Figure 15.BDM Serial Port AC Timing	42
List of Tables	
Table 1. MCF5213 Family Configurations	
Table 2. Orderable Part Number Summary	. 12
Table 3. Pin Functions by Primary and Alternate Purpose	
Table 4. Reset Signals	
Table 5. PLL and Clock Signals	. 20
Table 6. Mode Selection Signals	. 20
Table 7. Clocking Modes	. 20
Table 8. External Interrupt Signals	. 21
Table 9. Queued Serial Peripheral Interface (QSPI) Signals.	
Table 10.I ² C I/O Signals.	. 21
Table 11.UART Module Signals	
Table 12.DMA Timer Signals	
Table 13.ADC Signals	
Table 14.GPT Signals	
Table 15.PWM Signals.	
Table 16.Debug Support Signals	
Table 17.EzPort Signal Descriptions	
Table 18.Power and Ground Pins.	
Table 19.Absolute Maximum Ratings	
Table 20.Current Consumption in Low-Power Mode [,]	
Table 21. Typical Active Current Consumption Specifications.	
Table 22. Thermal Characteristics.	
Table 23.SGFM Flash Program and Erase Characteristics	
Table 24.SGFM Flash Module Life Characteristics	
Table 25.ESD Protection Characteristics,	
Table 26.DC Electrical Specifications	
Table 27.PLL Electrical Specifications	
Table 28.GPIO Timing	
Table 29.Reset and Configuration Override Timing	
Table 30.1 ² C Input Timing Specifications between I2C_SCL	. 34
and I2C_SDA.	25
	. 35
Table 31.I ² C Output Timing Specifications between I2C_SCL	05
and I2C_SDA.	
Table 32.ADC Parameters	
Table 33.Timer Module AC Timing Specifications Table 34.00Pl Made law AO Timing Specifications	
Table 34.QSPI Modules AC Timing Specifications.	
Table 35.JTAG and Boundary Scan Timing	
Table 36.Debug AC Timing Specification	
Table 37. Revision History	. 54

NP

1

MCF5213 Family Configurations

Table 1. MCF5213 Family Configurations

Module	5211	5212	5213	
ColdFire Version 2 Core with MAC (Multiply-Accumulate Unit)	•	•	•	
System Clock		66, 80 MHz	1	
Performance (Dhrystone 2.1 MIPS)	63	up to 76		
Flash / Static RAM (SRAM)	128/16 Kbytes	256/32	Kbytes	
Interrupt Controller (INTC)	•	•	•	
Fast Analog-to-Digital Converter (ADC)	•	•	•	
FlexCAN 2.0B Module	See note ¹	—	•	
Four-channel Direct-Memory Access (DMA)	•	•	•	
Watchdog Timer Module (WDT)	•	•	•	
Programmable Interval Timer Module (PIT)	2	2	2	
Four-Channel General-Purpose Timer	3	3	3	
32-bit DMA Timers	4	4	4	
QSPI	٠	•	•	
UARTs	3	3	3	
I ² C	•	•	•	
PWM	8	8	8	
General Purpose I/O Module (GPIO)	•	•	•	
Chip Configuration and Reset Controller Module	•	•	•	
Background Debug Mode (BDM)	•	•	•	
JTAG - IEEE 1149.1 Test Access Port ²	•	•	•	
Package	64 LQFP 64 QFN 81 MAPBGA	64 LQFP 81 MAPBGA	81 MAPBGA 100 LQFP	

¹ FlexCAN is available on the MCF5211 only in the 64 QFN package.

² The full debug/trace interface is available only on the 100-pin packages. A reduced debug interface is bonded on smaller packages.

Figure 1 shows a top-level block diagram of the MCF5213. Package options for this family are described later in this document.

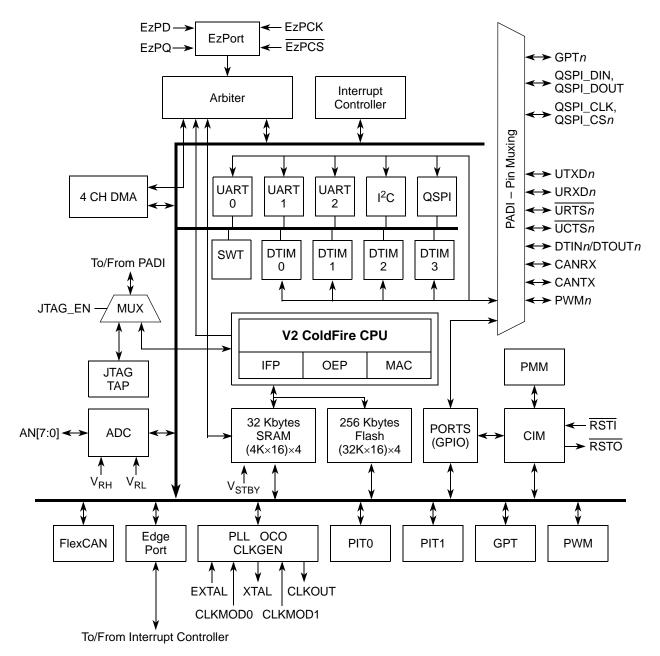


Figure 1. MCF5213 Block Diagram

1.1 Features

This document contains information on a new product under development. Freescale reserves the right to change or discontinue this product without notice. Specifications and information herein are subject to change without notice.

1.1.1 Feature Overview

The MCF5213 family includes the following features:

- Version 2 ColdFire variable-length RISC processor core
 - Static operation
 - 32-bit address and data paths on-chip
 - Up to 80 MHz processor core frequency
 - Sixteen general-purpose, 32-bit data and address registers
 - Implements ColdFire ISA_A with extensions to support the user stack pointer register and four new instructions for improved bit processing (ISA_A+)
 - Multiply-Accumulate (MAC) unit with 32-bit accumulator to support $16 \times 16 \rightarrow 32$ or $32 \times 32 \rightarrow 32$ operations
 - Illegal instruction decode that allows for 68-Kbyte emulation support
- System debug support
 - Real-time trace for determining dynamic execution path
 - Background debug mode (BDM) for in-circuit debugging (DEBUG_B+)
 - Real-time debug support, with six hardware breakpoints (4 PC, 1 address and 1 data) configurable into a 1- or 2-level trigger
- On-chip memories
 - 32-Kbyte dual-ported SRAM on CPU internal bus, supporting core and DMA access with standby power supply support
 - 256 Kbytes of interleaved flash memory supporting 2-1-1-1 accesses
- Power management
 - Fully static operation with processor sleep and whole chip stop modes
 - Rapid response to interrupts from the low-power sleep mode (wake-up feature)
 - Clock enable/disable for each peripheral when not used
- FlexCAN 2.0B module
 - Based on and includes all existing features of the Freescale TouCAN module
 - Full implementation of the CAN protocol specification version 2.0B
 - Standard data and remote frames (up to 109 bits long)
 - Extended data and remote frames (up to 127 bits long)
 - Zero to eight bytes data length
 - Programmable bit rate up to 1 Mbit/sec
 - Flexible message buffers (MBs), totalling up to 16 message buffers of 0–8 byte data length each, configurable as Rx or Tx, all supporting standard and extended messages
 - Unused MB space can be used as general purpose RAM space
 - Listen-only mode capability
 - Content-related addressing
 - No read/write semaphores
 - Three programmable mask registers: global for MBs 0-13, special for MB14, and special for MB15
 - Programmable transmit-first scheme: lowest ID or lowest buffer number
 - Time stamp based on 16-bit free-running timer
 - Global network time, synchronized by a specific message
 - Maskable interrupts
- Three universal asynchronous/synchronous receiver transmitters (UARTs)
 - 16-bit divider for clock generation
 - Interrupt control logic with maskable interrupts
 - DMA support
 - Data formats can be 5, 6, 7 or 8 bits with even, odd, or no parity
 - Up to two stop bits in 1/16 increments

- Error-detection capabilities
- Modem support includes request-to-send (RTS) and clear-to-send (CTS) lines for two UARTs
- Transmit and receive FIFO buffers
- I²C module
 - Interchip bus interface for EEPROMs, LCD controllers, A/D converters, and keypads
 - Fully compatible with industry-standard I²C bus
 - Master and slave modes support multiple masters
 - Automatic interrupt generation with programmable level
- Queued serial peripheral interface (QSPI)
 - Full-duplex, three-wire synchronous transfers
 - Up to four chip selects available
 - Master mode operation only
 - Programmable bit rates up to half the CPU clock frequency
 - Up to 16 pre-programmed transfers
- Fast analog-to-digital converter (ADC)
 - Eight analog input channels
 - 12-bit resolution
 - Minimum 1.125 μs conversion time
 - Simultaneous sampling of two channels for motor control applications
 - Single-scan or continuous operation
 - Optional interrupts on conversion complete, zero crossing (sign change), or under/over low/high limit
 - Unused analog channels can be used as digital I/O
- Four 32-bit timers with DMA support
 - 12.5 ns resolution at 80 MHz
 - Programmable sources for clock input, including an external clock option
 - Programmable prescaler
 - Input capture capability with programmable trigger edge on input pin
 - Output compare with programmable mode for the output pin
 - Free run and restart modes
 - Maskable interrupts on input capture or output compare
 - DMA trigger capability on input capture or output compare
- Four-channel general purpose timer
 - 16-bit architecture
 - Programmable prescaler
 - Output pulse-widths variable from microseconds to seconds
 - Single 16-bit input pulse accumulator
 - Toggle-on-overflow feature for pulse-width modulator (PWM) generation
 - One dual-mode pulse accumulation channel
- Pulse-width modulation timer
 - Operates as eight channels with 8-bit resolution or four channels with 16-bit resolution
 - Programmable period and duty cycle
 - Programmable enable/disable for each channel
 - Software selectable polarity for each channel
 - Period and duty cycle are double buffered. Change takes effect when the end of the current period is reached (PWM counter reaches zero) or when the channel is disabled.

- System configuration during reset
- Selects one of six clock modes
- Configures output pad drive strength
- Unique part identification number and part revision number
- General purpose I/O interface
 - Up to 56 bits of general purpose I/O
 - Bit manipulation supported via set/clear functions
 - Programmable drive strengths
 - Unused peripheral pins may be used as extra GPIO
- JTAG support for system level board testing

1.1.2 V2 Core Overview

The version 2 ColdFire processor core is comprised of two separate pipelines decoupled by an instruction buffer. The two-stage instruction fetch pipeline (IFP) is responsible for instruction-address generation and instruction fetch. The instruction buffer is a first-in-first-out (FIFO) buffer that holds prefetched instructions awaiting execution in the operand execution pipeline (OEP). The OEP includes two pipeline stages. The first stage decodes instructions and selects operands (DSOC); the second stage (AGEX) performs instruction execution and calculates operand effective addresses, if needed.

The V2 core implements the ColdFire instruction set architecture revision A+ with added support for a separate user stack pointer register and four new instructions to assist in bit processing. Additionally, the MCF5213 core includes the multiply-accumulate (MAC) unit for improved signal processing capabilities. The MAC implements a three-stage arithmetic pipeline, optimized for 16×16 bit operations, with support for one 32-bit accumulator. Supported operands include 16- and 32-bit signed and unsigned integers, signed fractional operands, and a complete set of instructions to process these data types. The MAC provides support for execution of DSP operations within the context of a single processor at a minimal hardware cost.

1.1.3 Integrated Debug Module

The ColdFire processor core debug interface is provided to support system debugging with low-cost debug and emulator development tools. Through a standard debug interface, access to debug information and real-time tracing capability is provided on 100-lead packages. This allows the processor and system to be debugged at full speed without the need for costly in-circuit emulators.

The on-chip breakpoint resources include a total of nine programmable 32-bit registers: an address and an address mask register, a data and a data mask register, four PC registers, and one PC mask register. These registers can be accessed through the dedicated debug serial communication channel or from the processor's supervisor mode programming model. The breakpoint registers can be configured to generate triggers by combining the address, data, and PC conditions in a variety of single- or dual-level definitions. The trigger event can be programmed to generate a processor halt or initiate a debug interrupt exception. The MCF5213 implements revision B+ of the ColdFire Debug Architecture.

The MCF5213's interrupt servicing options during emulator mode allow real-time critical interrupt service routines to be serviced while processing a debug interrupt event. This ensures the system continues to operate even during debugging.

To support program trace, the V2 debug module provides processor status (PST[3:0]) and debug data (DDATA[3:0]) ports. These buses and the PSTCLK output provide execution status, captured operand data, and branch target addresses defining processor activity at the CPU's clock rate. The MCF5213 includes a new debug signal, ALLPST. This signal is the logical AND of the processor status (PST[3:0]) signals and is useful for detecting when the processor is in a halted state (PST[3:0] = 1111).

The full debug/trace interface is available only on the 100-pin packages. However, every product features the dedicated debug serial communication channel (DSI, DSO, DSCLK) and the ALLPST signal.

1.1.7 FlexCAN

The FlexCAN module is a communication controller implementing version 2.0 of the CAN protocol parts A and B. The CAN protocol can be used as an industrial control serial data bus, meeting the specific requirements of reliable operation in a harsh EMI environment with high bandwidth. This instantiation of FlexCAN has 16 message buffers.

1.1.8 UARTs

The MCF5213 has three full-duplex UARTs that function independently. The three UARTs can be clocked by the system bus clock, eliminating the need for an external clock source. On smaller packages, the third UART is multiplexed with other digital I/O functions.

1.1.9 I²C Bus

The I^2C bus is a two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange and minimizes the interconnection between devices. This bus is suitable for applications requiring occasional communications over a short distance between many devices.

1.1.10 QSPI

The queued serial peripheral interface (QSPI) provides a synchronous serial peripheral interface with queued transfer capability. It allows up to 16 transfers to be queued at once, minimizing the need for CPU intervention between transfers.

1.1.11 Fast ADC

The fast ADC consists of an eight-channel input select multiplexer and two independent sample and hold (S/H) circuits feeding separate 12-bit ADCs. The two separate converters store their results in accessible buffers for further processing.

The ADC can be configured to perform a single scan and halt, a scan when triggered, or a programmed scan sequence repeatedly until manually stopped.

The ADC can be configured for sequential or simultaneous conversion. When configured for sequential conversions, up to eight channels can be sampled and stored in any order specified by the channel list register. Both ADCs may be required during a scan, depending on the inputs to be sampled.

During a simultaneous conversion, both S/H circuits are used to capture two different channels at the same time. This configuration requires that a single channel may not be sampled by both S/H circuits simultaneously.

Optional interrupts can be generated at the end of the scan sequence if a channel is out of range (measures below the low threshold limit or above the high threshold limit set in the limit registers) or at several different zero crossing conditions.

1.1.12 DMA Timers (DTIM0–DTIM3)

There are four independent, DMA transfer capable 32-bit timers (DTIM0, DTIM1, DTIM2, and DTIM3) on the MCF5213. Each module incorporates a 32-bit timer with a separate register set for configuration and control. The timers can be configured to operate from the system clock or from an external clock source using one of the DTIN*n* signals. If the system clock is selected, it can be divided by 16 or 1. The input clock is further divided by a user-programmable 8-bit prescaler that clocks the actual timer counter register (TCR*n*). Each of these timers can be configured for input capture or reference (output) compare mode. Timer events may optionally cause interrupt requests or DMA transfers.

1.1.13 General Purpose Timer (GPT)

The general purpose timer (GPT) is a four-channel timer module consisting of a 16-bit programmable counter driven by a seven-stage programmable prescaler. Each of the four channels can be configured for input capture or output compare. Additionally, channel three, can be configured as a pulse accumulator.

A timer overflow function allows software to extend the timing capability of the system beyond the 16-bit range of the counter. The input capture and output compare functions allow simultaneous input waveform measurements and output waveform generation. The input capture function can capture the time of a selected transition edge. The output compare function can generate output waveforms and timer software delays. The 16-bit pulse accumulator can operate as a simple event counter or a gated time accumulator.

1.1.14 Periodic Interrupt Timers (PIT0 and PIT1)

The two periodic interrupt timers (PIT0 and PIT1) are 16-bit timers that provide interrupts at regular intervals with minimal processor intervention. Each timer can count down from the value written in its PIT modulus register or it can be a free-running down-counter.

1.1.15 Pulse-Width Modulation (PWM) Timers

The MCF5213 has an 8-channel, 8-bit PWM timer. Each channel has a programmable period and duty cycle as well as a dedicated counter. Each of the modulators can create independent continuous waveforms with software-selectable duty rates from 0% to 100%. The PWM outputs have programmable polarity, and can be programmed as left aligned outputs or center aligned outputs. For higher period and duty cycle resolution, each pair of adjacent channels ([7:6], [5:4], [3:2], and [1:0]) can be concatenated to form a single 16-bit channel. The module can, therefore, be configured to support 8/0, 6/1, 4/2, 2/3, or 0/4 8-/16-bit channels.

1.1.16 Software Watchdog Timer

The watchdog timer is a 32-bit timer that facilitates recovery from runaway code. The watchdog counter is a free-running down-counter that generates a reset on underflow. To prevent a reset, software must periodically restart the countdown.

1.1.17 Phase-Locked Loop (PLL)

The clock module contains a crystal oscillator, 8 MHz on-chip relaxation oscillator (OCO), phase-locked loop (PLL), reduced frequency divider (RFD), low-power divider status/control registers, and control logic. To improve noise immunity, the PLL, crystal oscillator, and relaxation oscillator have their own power supply inputs: VDDPLL and VSSPLL. All other circuits are powered by the normal supply pins, VDD and VSS.

1.1.18 Interrupt Controller (INTC)

The MCF5213 has a single interrupt controller that supports up to 63 interrupt sources. There are 56 programmable sources, 49 of which are assigned to unique peripheral interrupt requests. The remaining seven sources are unassigned and may be used for software interrupt requests.

1.1.19 DMA Controller

The direct memory access (DMA) controller provides an efficient way to move blocks of data with minimal processor intervention. It has four channels that allow byte, word, longword, or 16-byte burst line transfers. These transfers are triggered by software explicitly setting a DCR*n*[START] bit or by the occurrence of certain UART or DMA timer events.

1.5 External Interrupt Signals

Table 8 describes the external interrupt signals.

Table 8. External Interrupt Signals

Signal Name	Abbreviation	Function	I/O
External Interrupts	IRQ[7:1]	External interrupt sources.	I

1.6 Queued Serial Peripheral Interface (QSPI)

Table 9 describes the QSPI signals.

Signal Name	Abbreviation	Function	I/O
QSPI Synchronous Serial Output	QSPI_DOUT	Provides the serial data from the QSPI and can be programmed to be driven on the rising or falling edge of QSPI_CLK.	0
QSPI Synchronous Serial Data Input	QSPI_DIN	Provides the serial data to the QSPI and can be programmed to be sampled on the rising or falling edge of QSPI_CLK.	I
QSPI Serial Clock	QSPI_CLK	Provides the serial clock from the QSPI. The polarity and phase of QSPI_CLK are programmable.	0
Synchronous Peripheral Chip Selects	QSPI_CS[3:0]	QSPI peripheral chip select; can be programmed to be active high or low.	0

1.7 I²C I/O Signals

Table 10 describes the I²C serial interface module signals.

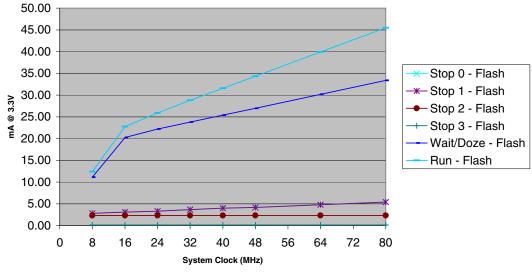
Table 10. I²C I/O Signals

Signal Name	Abbreviation	Function	I/O
Serial Clock		Open-drain clock signal for the for the I^2C interface. When the bus is In master mode, this clock is driven by the I^2C module; when the bus is in slave mode, this clock becomes the clock input.	I/O
Serial Data	SDA	Open-drain signal that serves as the data input/output for the I ² C interface.	I/O

2.2 Current Consumption

Mode	8MHz (Typ) ³	16MHz (Typ) ²	64MHz (Typ) ²	80MHz (Typ) ²	Units	
Stop mode 3 (Stop 11) ⁴		0.13				
Stop mode 2 (Stop 10) ⁴		2.29				
Stop mode 1 (Stop 01) ^{4,5}	2.80	3.08	4.76	5.38		
Stop mode 0 (Stop 00) ⁴	2.80	3.08	4.76	5.39		
Wait / Doze	11.12	20.23	30.17	33.36		
Run	12.40	22.74	39.92	45.47		

Table 20. Current Consumption in Low-Power Mode^{1,2}


¹ All values are measured with a 3.30 V power supply

² Refer to the Power Management chapter in the MCF5213 Reference Manual for more information on low-power modes.

³ CLKOUT and all peripheral clocks except UART0 and CFM off before entering low power mode. CLKOUT is disabled. All code executed from flash memory. Code run from SRAM reduces power consumption further. Tests performed at room temperature.

⁴ See the description of the Low-Power Control Register (LPCR) in the MCF5213 Reference Manual for more information on stop modes 0–3.

⁵ Results are identical to STOP 00 for typical values because they only differ by CLKOUT power consumption. CLKOUT is already disabled in this instance prior to entering low power mode.

Typical Current Consumption in Low-Power Modes

2.5 ESD Protection

Characteristics	Symbol	Value	Units
ESD target for Human Body Model	HBM	2000	V
ESD target for Machine Model	MM	200	V
HBM circuit description	R _{series}	1500	Ω
	С	100	pF
MM circuit description	R _{series}	0	Ω
	С	200	pF
Number of pulses per pin (HBM) Positive pulses Negative pulses 	_	1	_
Number of pulses per pin (MM) Positive pulses Negative pulses 		3 3	
Interval of pulses		1	sec

Table 25. ESD Protection Characteristics^{1, 2}

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

2.6 DC Electrical Specifications

Table 26. DC Electrical Specifications ¹

Characteristic	Symbol	Min	Max	Unit
Supply voltage	V _{DD}	3.0	3.6	V
Standby voltage	V _{STBY}	3.0	3.6	V
Input high voltage	V _{IH}	$0.7 \times V_{DD}$	4.0	V
Input low voltage	V _{IL}	$V_{SS} - 0.3$	$0.35\times V_{DD}$	V
Input hysteresis	V _{HYS}	$0.06 \times V_{DD}$	_	mV
Low-voltage detect trip voltage (V _{DD} falling)	V _{LVD}	2.15	2.3	V
Low-voltage detect hysteresis (V _{DD} rising)	V _{LVDHYS}	60	120	mV
Input leakage current V _{in} = V _{DD} or V _{SS} , digital pins	l _{in}	-1.0	1.0	μA
Output high voltage (all input/output and all output pins) $I_{OH} = -2.0 \text{ mA}$	V _{OH}	V _{DD} – 0.5	_	V
Output low voltage (all input/output and all output pins) $I_{OL} = 2.0 mA$	V _{OL}	_	0.5	V

Electrical Characteristics

Table 27. PLL Electrical Specifications (continued)

(V_{DD} and V_{DDPLL} = 2.7 to 3.6 V, V_{SS} = V_{SSPLL} = 0 V)

Characteristic	Symbol	Min	Мах	Unit
Frequency un-LOCK range	f _{UL}	-1.5	1.5	% f _{ref}
Frequency LOCK range	f _{LCK}	-0.75	0.75	% f _{ref}
 CLKOUT period jitter ^{4, 5, 8, 9}, measured at f_{SYS} Max Peak-to-peak (clock edge to clock edge) Long term (averaged over 2 ms interval) 	C _{jitter}	_	10 .01	% f _{sys}
On-chip oscillator frequency	f _{oco}	7.84	8.16	MHz

¹ All internal registers retain data at 0 Hz.

- ² Depending on packaging; see Table 2.
- ³ Loss of Reference Frequency is the reference frequency detected internally, which transitions the PLL into self clocked mode.
- ⁴ Self clocked mode frequency is the frequency at which the PLL operates when the reference frequency falls below f_{LOR} with default MFD/RFD settings.
- ⁵ This parameter is characterized before qualification rather than 100% tested.
- ⁶ Proper PC board layout procedures must be followed to achieve specifications.
- ⁷ This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).
- ⁸ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDPLL} and V_{SSPLL} and variation in crystal oscillator frequency increase the C_{jitter} percentage for a given interval.
- ⁹ Based on slow system clock of 40 MHz measured at f_{svs} max.

2.8 General Purpose I/O Timing

GPIO can be configured for certain pins of the QSPI, DDR Control, timer, UART, and Interrupt interfaces. When in GPIO mode, the timing specification for these pins is given in Table 28 and Figure 5.

The GPIO timing is met under the following load test conditions:

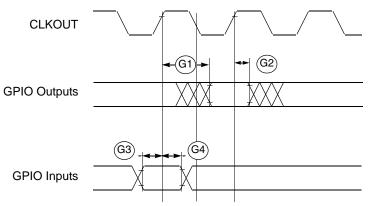

- 50 pF / 50 Ω for high drive
- $25 \text{ pF} / 25 \Omega$ for low drive

Table 28. GPIO Timing

NUM	Characteristic	Symbol	Min	Max	Unit
G1	CLKOUT High to GPIO Output Valid	t _{CHPOV}	_	10	ns
G2	CLKOUT High to GPIO Output Invalid	t _{CHPOI}	1.5	—	ns
G3	GPIO Input Valid to CLKOUT High	t _{PVCH}	9	—	ns
G4	CLKOUT High to GPIO Input Invalid	t _{CHPI}	1.5	—	ns

Electrical Characteristics

Figure 5. GPIO Timing

2.9 Reset Timing

Table 29. Reset and Configuration Override Timing

(V _{DD} = 2.7 to 3.6	V, V _{SS} = 0 V, T	$_{\Lambda} = T_{L} \text{ to } T_{H})^{1}$
	/ 00 /	

NUM	Characteristic	Symbol	Min	Мах	Unit
R1	RSTI input valid to CLKOUT High	t _{RVCH}	9	_	ns
R2	CLKOUT High to RSTI Input invalid	t _{CHRI}	1.5	_	ns
R3	RSTI input valid time ²	t _{RIVT}	5	_	t _{CYC}
R4	CLKOUT High to RSTO Valid	t _{CHROV}	—	10	ns

¹ All AC timing is shown with respect to 50% V_{DD} levels unless otherwise noted.

² During low power STOP, the synchronizers for the RSTI input are bypassed and RSTI is asserted asynchronously to the system. Thus, RSTI must be held a minimum of 100 ns.

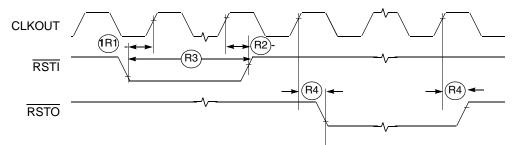


Figure 6. RSTI and Configuration Override Timing

2.10 I²C Input/Output Timing Specifications

Table 30 lists specifications for the I^2C input timing parameters shown in Figure 7.

Table 30. I ² C Input Timing Specifications between I2C_SCL an	d I2C_SDA
---	-----------

Num	Characteristic	Min	Max	Units
11	Start condition hold time	$2 \times t_{CYC}$		ns
12	Clock low period	$8 imes t_{CYC}$	_	ns
13	SCL/SDA rise time ($V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V}$)	_	1	ms
14	Data hold time	0	_	ns
15	SCL/SDA fall time ($V_{IH} = 2.4 \text{ V}$ to $V_{IL} = 0.5 \text{ V}$)	_	1	ms
16	Clock high time	$4 \times t_{CYC}$	_	ns
17	Data setup time	0		ns
18	Start condition setup time (for repeated start condition only)	$2 \times t_{CYC}$	—	ns
19	Stop condition setup time	$2 \times t_{CYC}$	_	ns

Table 31 lists specifications for the I^2C output timing parameters shown in Figure 7.

Table 31. I²C Output Timing Specifications between I2C_SCL and I2C_SDA

Num	Characteristic	Min	Max	Units
11 ¹	Start condition hold time	$6 \times t_{CYC}$	—	ns
12 ¹	Clock low period	$10 \times t_{CYC}$	—	ns
13 ²	I2C_SCL/I2C_SDA rise time $(V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V})$	—	_	μs
14 ¹	Data hold time	$7 \times t_{CYC}$	—	ns
15 ³	I2C_SCL/I2C_SDA fall time $(V_{IH} = 2.4 \text{ V to } V_{IL} = 0.5 \text{ V})$	—	3	ns
16 ¹	Clock high time	$10 \times t_{CYC}$	—	ns
17 ¹	Data setup time	$2 \times t_{CYC}$	_	ns
18 ¹	Start condition setup time (for repeated start condition only)	$20 \times t_{CYC}$	—	ns
19 ¹	Stop condition setup time	$10 \times t_{CYC}$	—	ns

¹ Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 31. The I²C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 31 are minimum values.

² Because SCL and SDA are open-collector-type outputs, which the processor can only actively drive low, the time SCL or SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.

³ Specified at a nominal 50-pF load.

Electrical Characteristics

2.13 DMA Timers Timing Specifications

Table 33 lists timer module AC timings.

Table 33. Timer Module AC Timing Specifications

Name	Characteristic ¹	Min	Max	Unit
T1	DTIN0 / DTIN1 / DTIN2 / DTIN3 cycle time	$3 imes t_{CYC}$	_	ns
T2	DTIN0 / DTIN1 / DTIN2 / DTIN3 pulse width	$1 \times t_{CYC}$		ns

¹ All timing references to CLKOUT are given to its rising edge.

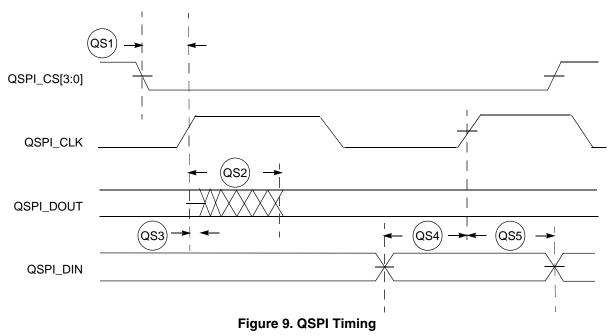

2.14 **QSPI Electrical Specifications**

Table 34 lists QSPI timings.

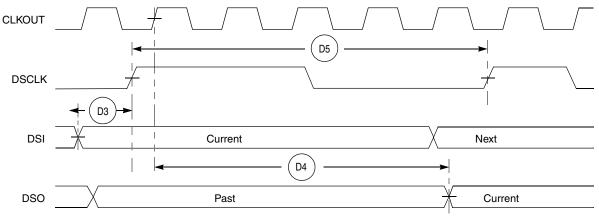
Table 34. QSPI Modules AC Timing Specifications

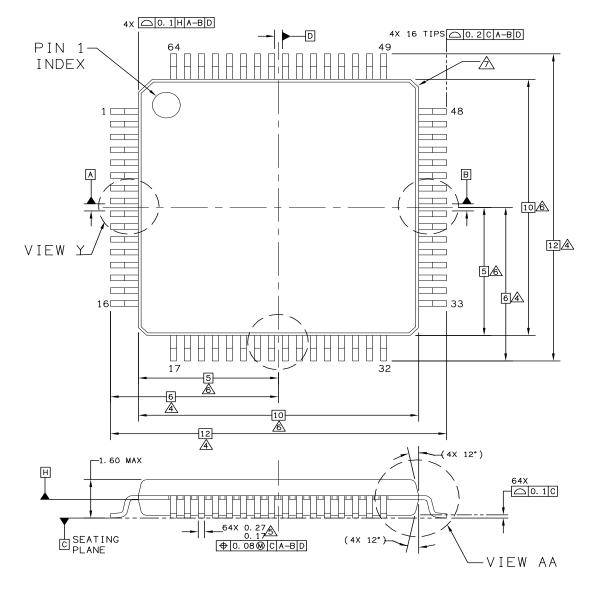
Name	Characteristic	Min	Max	Unit
QS1	QSPI_CS[3:0] to QSPI_CLK	1	510	t _{CYC}
QS2	QSPI_CLK high to QSPI_DOUT valid	_	10	ns
QS3	QSPI_CLK high to QSPI_DOUT invalid (Output hold)	2	_	ns
QS4	QSPI_DIN to QSPI_CLK (Input setup)	9	_	ns
QS5	QSPI_DIN to QSPI_CLK (Input hold)	9		ns

The values in Table 34 correspond to Figure 9.

Electrical Characteristics

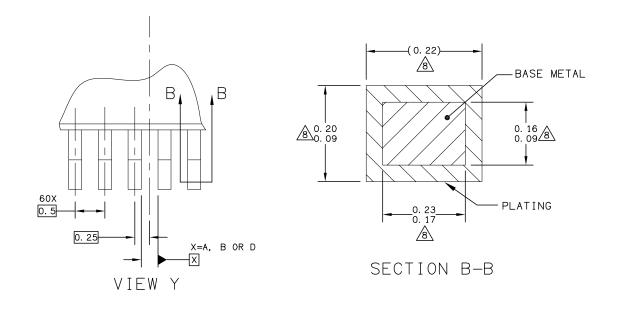
Figure 15 shows BDM serial port AC timing for the values in Table 36.

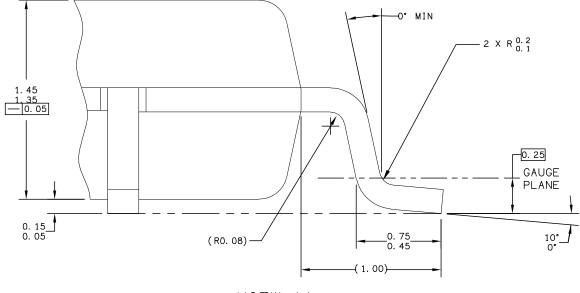



Figure 15. BDM Serial Port AC Timing

3 Mechanical Outline Drawings

This section describes the physical properties of the MCF5213 and its derivatives.


3.1 64-pin LQFP Package



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	Mechanica	L OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: 64LD LQFP,		DOCUMENT NO: 98ASS23234W		REV: D
10 X 10 X 1.4 P		CASE NUMBER: 840F-02		06 APR 2005
0.5 PITCH, CASE OU	JTLINE	STANDARD: JEDEC MS-026 BCD		

Mechanical Outline Drawings

VIEW AA

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	Mechanica	L OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: 64LD LQFP,		DOCUMENT NO): 98ASS23234₩	REV: D
10 X 10 X 1.4 P	,	CASE NUMBER: 840F-02		06 APR 2005
0.5 PITCH, CASE OU	ITLINE	STANDARD: JEDEC MS-026 BCD		

Mechanical Outline Drawings

NP

	MECHANICA	MECHANICAL OUTLINES		DOCUMENT NO: 98ASA1	
		NARY	PAGE:	17	40
© FREESCALE SEMICONDUCTOR, INC. ALL RICHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED ECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED VERSIONS E UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	0	
NOTES:					
1. ALL DIMENSIONS ARE IN MIL	LIMETERS.				
2. INTERPRET DIMENSIONS AND	D TOLERANCES PE	ER ASME Y14.5M-	-1994.		
3. THE COMPLETE JEDEC DESIG	GNATOR FOR THIS	S PACKAGE IS: H	IF-PQFN.		
4. COPLANARITY APPLIES TO L	EADS, CORNER L	EADS AND DIE A	TTACH P	AD.	
5. MIN METAL GAP SHOULD BE					
TLE: THERMALLY ENHANCE	D QUAD	CASE NUMBER:	1740-01		
TLE: THERMALLY ENHANCE FLAT NON-LEADED PACE 64 TERMINAL, 0.5 PITCH	KAGE (QFN)	CASE NUMBER:		20 VMMD-3	3

Revision History

4 Revision History

Table 37. Revision History

Revision	Description
2	 Formatting, layout, spelling, and grammar corrections. Added revision history. Corrected signal names in block diagram to match those in signal description table. Added the following footnote to the MCF5211 FlexCAN entry:
3	 Formatting, layout, spelling, and grammar corrections. Synchronized the "Pin Functions by Primary and Alternate Purpose" table in this document and the reference manual. Restructured the part number summary table to include full orderable parts, and changed its name (was "Part Number Summary", is "Orderable Part Number Summary"). Updated the family configurations table to show that FlexCAN is not available on the MCF5212. Added specifications for V_{LVD} and V_{LVDHYS} to the "DC electrical specifications" table.