

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	43
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21344cdfp-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Specifications

Tables 1.1 and 1.2 outline the Specifications for R8C/34C Group.

Itom	- Eurotion	Specification
CPU	Central processing	R8C CPU core
	unit	Number of fundamental instructions: 89
		Minimum Instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V)
		200 ns (f(XIN) = 5 MHz, VCC = 1.8 to 5.5 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		 Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits → 32 bits
		 Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM, Data	Refer to Table 1.3 Product List for R8C/34C Group.
	flash	
Power Supply	Voltage detection	Power-on reset
Voltage	circuit	 Voltage detection 3 (detection level of voltage detection 0 and voltage
Detection		detection 1 selectable)
I/O Ports	Programmable I/O	Input-only: 1 pin
	ports	 CMOS I/O ports: 43, selectable pull-up resistor
		High current drive ports: 43
Clock	Clock generation	4 circuits: XIN clock oscillation circuit,
	circuits	XCIN clock oscillation circuit (32 kHz).
		High-speed on-chip oscillator (with frequency adjustment function).
		Low-speed on-chip oscillator
		Oscillation stop detection: XIN clock oscillation stop detection function
		• Frequency divider circuit: Dividing selectable 1 2 4 8 and 16
		Low power consumption modes:
		Standard operating mode (high-speed clock low-speed clock high-speed
		on chip oscillator low speed on chip oscillator) wait mode, stop mode
		Pool time clock (timer DE)
Intorrunto		Nedi-unite Clock (uniter NE)
interrupts		• Number of Interrupt Vectors, 69
		• External Interrupt: 9 (INT × 5, Key Input × 4)
Matabala a Tira		Phoney levels. 7 levels
watchoog nine	er	• 14 bits X 1 (with prescale)
		• Reset start selectable
		Low-speed on-cnip oscillator for watchdog timer selectable
DIC (Data Tra	nster Controller)	
		Activation sources: 33
-		Iransfer modes: 2 (normal mode, repeat mode)
Timer	Timer RA	8 bits x 1 (with 8-bit prescaler)
		niner mode (penda liner), paise output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
	Time or DD	measurement mode
	Timer RB	8 DITS X 1 (WITH 8-DIT prescaler)
		niner mode (penod timer), programmable waveform generation mode (P www
		output), programmable one-shot generation mode, programmable wait one-
	Timer DC	Shot generation mode
	Timer RC	To bits X T (with 4 capture/compare registers)
		(output 3 pins) DWM2 mode (DWM output pin)
		16 hits x 2 (with 1 canture/compare registers)
		Timer mode (input capture function, output compare function). PWM mode
		(output 6 pins), reset synchronous PWM mode (output three-phase
		waveforms (6 pins) sawtooth wave modulation) complementary PWM mode
		(output three-phase waveforms (6 pins), triangular wave modulation), PM/M3
		mode (PWM output 2 pins with fixed period)
	Timer RF	8 hite v 1
		Real-time clock mode (count seconds, minutes, hours, days of week) output
		compare mode

Table 1.1 Specifications for R8C/34C Group (1)

Current of Aug 2010

1.2 Product List

Table 1.3 lists Product List for R8C/34C Group, and Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/34C Group.

Part No	ROM Capacity		RAM	Backago Typo	Pomorke	
Fait NO.	Program ROM	Data flash	Capacity	Fackage Type	Remarks	
R5F21344CNFP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLQP0048KB-A	N version	
R5F21345CNFP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PLQP0048KB-A		
R5F21346CNFP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLQP0048KB-A		
R5F21344CDFP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLQP0048KB-A	D version	
R5F21345CDFP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PLQP0048KB-A		
R5F21346CDFP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLQP0048KB-A		

Figure 1.1 Part Number, Memory Size, and Package of R8C/34C Group

1.4 Pin Assignment

Figure 1.3 shows the Pin Assignment (Top View). Tables 1.4 and 1.5 outline the Pin Name Information by Pin Number.

Item	Pin Name	I/O Type	Description
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter and D/A converter
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter
	ADTRG	I	A/D external trigger input pin
D/A converter	DA0, DA1	0	D/A converter output pins
Comparator B	IVCMP1, IVCMP3	I	Comparator B analog voltage input pins
	IVREF1, IVREF3	I	Comparator B reference voltage input pins
I/O port	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0, P3_1, P3_3 to P3_5, P3_7, P4_3 to P4_7, P6_0 to P6_7	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. All ports can be used as LED drive ports.
Input port	P4_2	I	Input-only port

Table 1.7Pin Functions (2)

I: Input O: Output I/O: Input and output

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

3. Memory

3.1 R8C/34C Group

Figure 3.1 is a Memory Map of R8C/34C Group. The R8C/34C Group has a 1-Mbyte address space from addresses 00000h to FFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 32-Kbyte internal ROM area is allocated addresses 08000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM area is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh. Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

Figure 3.1 Memory Map of R8C/34C Group

Special Function Registers (SFRs) 4.

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.12 list the special function registers. Table 4.13 lists the ID Code Areas and Option Function Select Area.

Address	Register	Symbol	After Reset	
0000h				
0001h				
0002h				
0003h				
0004h	Processor Mode Register 0	PM0	00h	
0005h	Processor Mode Register 1	PM1	00h	
0006h	System Clock Control Register 0	CM0	00101000b	
0007h	System Clock Control Register 1	CM1	0010000b	
0008h	Module Standby Control Register	MSTCR	00h	
0009h	System Clock Control Register 3	CM3	00h	
000Ah	Protect Register	PRCR	00h	
000Bh	Reset Source Determination Register	RSTFR	0XXXXXXXb ⁽²⁾	
000Ch	Oscillation Stop Detection Register	OCD	00000100b	
000Dh	Watchdog Timer Reset Register	WDTR	XXh	
000Eh	Watchdog Timer Start Register	WDTS	XXh	
000Fh	Watchdog Timer Control Register	WDTC	00111111b	
0010h				
0011h				
0012h				
0013h				
0014h				
0015h	High-Speed On-Chip Oscillator Control Register 7	FRA7	When shipping	
0016h				
0017h				
0018h				
0019h				
001Ah				
001Bh				
001Ch	Count Source Protection Mode Register	CSPR	00h 1000000b (3)	
001Dh			100000000000	
001Eh				
001Eh				
0020h				
0021h				
0022h				
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h	
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping	
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h	
0026h	On-Chip Reference Voltage Control Register	OCVREFCR	00h	
0027h				
0028h	Clock Prescaler Reset Flag	CPSRF	00h	
0029h	High-Speed On-Chip Oscillator Control Register 4	FRA4	When shipping	
002Ah	High-Speed On-Chip Oscillator Control Register 5	FRA5	When shipping	
002Bh	High-Speed On-Chip Oscillator Control Register 6	FRA6	When shipping	
002Ch				
002Dh				
002Eh				
002Fh	High-Speed On-Chip Oscillator Control Register 3	FRA3	When shipping	
0030h	Voltage Monitor Circuit Control Register	CMPA	00h	
0031h	Voltage Monitor Circuit Edge Select Register	VCAC	00h	
0032h				
0033h	Voltage Detect Register 1	VCA1	00001000b	
0034h	Voltage Detect Register 2	VCA2	00h ⁽⁴⁾	
			0010000b (5)	
0035h				
0036h	Voltage Detection 1 Level Select Register	VD1LS	00000111b	
0037h				
0038h	Voltage Monitor 0 Circuit Control Register	VW0C	1100X010b ⁽⁴⁾	
			1100X011b ⁽⁵⁾	
0039h	Voltage Monitor 1 Circuit Control Register	VW1C	10001010b	

SFR Information (1) ⁽¹⁾ Table 4.1

X: Undefined Notes:

1.

The blank areas are reserved and cannot be accessed by users. The CWR bit in the RSTER register is set to 0 after power-on and voltage monitor 0 reset. Hardware reset, software reset, or watchdog timer 2. reset does not affect this bit.

The CSPROINI bit in the OFS register is set to 0. 3.

4. The LVDAS bit in the OFS register is set to 1.

5. The LVDAS bit in the OFS register is set to 0.

Address	Register	Symbol	After Reset
2C70h	DTC Control Data 6	DTCD6	XXh
2C71h			XXh
2C72h			XXh
2C73h			XXh
2073h			YYh
2074II			
2075h			XXN
2C76h			XXh
2C77h			XXh
2C78h	DTC Control Data 7	DTCD7	XXh
2C79h			XXh
2C7Ah			XXh
2C7Bh			XXh
2C7Ch			XXh
2070h			YYh
207Dh			XXII XXb
207Eh			
207Fh			XXN
2C80h	DTC Control Data 8	DTCD8	XXh
2C81h			XXh
2C82h			XXh
2C83h			XXh
2C84h			XXh
2C85h			XXh
2C86h			XXh
20001			XXh
200711	DTC Control Data 9	DTCD0	
20880	DTC Control Data 9	DICDa	
2089h			XXN
2C8Ah			XXh
2C8Bh			XXh
2C8Ch			XXh
2C8Dh			XXh
2C8Eh			XXh
2C8Fh			XXh
2C90h	DTC Control Data 10	DTCD10	XXh
2000h		DIODIO	YYh
20911			
20920			
2C93h			XXN
2C94h			XXh
2C95h			XXh
2C96h			XXh
2C97h			XXh
2C98h	DTC Control Data 11	DTCD11	XXh
2C99h			XXh
2C94h			XXh
2007th			YYh
20300			YYh
2090n			
209Dh			7.XU
2C9Eh			XXh
2C9Fh			XXh
2CA0h	DTC Control Data 12	DTCD12	XXh
2CA1h			XXh
2CA2h			XXh
2CA3h			XXh
2CA4h			XXh
20/1411			XXh
20A011			
20A60			
2CA/h		DT00/-	XXN
2CA8h	DTC Control Data 13	DTCD13	XXh
2CA9h			XXh
2CAAh			XXh
2CABh			XXh
2CACh			XXh
2CADh			XXh
20001			YYh
2CAFh			XXN

SFR Information (10)⁽¹⁾ Table 4.10

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Table 4.12	SFR Information (12) ⁽¹⁾
------------	-------------------------------------

Address	Register	Symbol	After Reset
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h			XXh
2CF2h			XXh
2CF3h			XXh
2CF4h			XXh
2CF5h			XXh
2CF6h			XXh
2CF7h			XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h			XXh
2CFAh			XXh
2CFBh			XXh
2CFCh			XXh
2CFDh			XXh
2CFEh			XXh
2CFFh			XXh
2D00h			
:			

2FFFh

X: Undefined

Note:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.13 ID Code Areas and Option Function Select Area

Address	Area Name	Symbol	After Reset
:		·	
FFDBh	Option Function Select Register 2	OFS2	(Note 1)
:			
FFDFh	ID1		(Note 2)
:			
FFE3h	ID2		(Note 2)
:			
FFEBh	ID3		(Note 2)
<u> </u>			
FFEFh	ID4		(Note 2)
:	T -=		
FFF3h	ID5		(Note 2)
:	T -=		
FFF7h	ID6		(Note 2)
:			
FFFBh	ID7		(Note 2)
:			
FFFFh	Option Function Select Register	OFS	(Note 1)

Notes: 1.

The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user.When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

2. The ID code areas are anocated in the hash memory, not in the SFRS. Set appropriate values as KOM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

Symbol	Parameter		Conditions	Standard			Unit		
Cymbol		i an			Conditions	Min.	Тур.	Max.	Onit
Vcc/AVcc	Supply voltage					1.8	-	5.5	V
Vss/AVss	Supply voltage					-	0	-	V
Viн	Input "H" voltage	Other th	nan CMOS ir	nput		0.8 Vcc	-	Vcc	V
		CMOS	Input level	Input level selection	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0.5 Vcc	-	Vcc	V
		input	ut switching	: 0.35 Vcc	$2.7~\text{V} \leq \text{Vcc} < 4.0~\text{V}$	0.55 Vcc	-	Vcc	V
			function		$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0.65 Vcc	-	Vcc	V
			(I/O port)	Input level selection	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0.65 Vcc	-	Vcc	V
				: 0.5 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.7 Vcc	-	Vcc	V
					$1.8~\text{V} \leq \text{Vcc} < 2.7~\text{V}$	0.8 Vcc	-	Vcc	V
				Input level selection	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0.85 Vcc	_	Vcc	V
				: 0.7 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.85 Vcc	-	Vcc	V
					$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0.85 Vcc	-	Vcc	V
		Externa	I clock input	(XOUT)		1.2	_	Vcc	V
VIL	Input "L" voltage	Other th	an CMOS ir	nput		0	_	0.2 Vcc	V
		CMOS	Input level	Input level selection	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	_	0.2 Vcc	V
		input	switching	: 0.35 Vcc	$2.7 \text{ V} \leq \text{Vcc} < 4.0 \text{ V}$	0	_	0.2 Vcc	V
			function		1.8 V ≤ Vcc < 2.7 V	0	_	0.2 Vcc	V
			(I/O port)	Input level selection	4.0 V ≤ Vcc ≤ 5.5 V	0	_	0.4 Vcc	V
				: 0.5 Vcc	$2.7 \text{ V} \leq \text{Vcc} < 4.0 \text{ V}$	0	_	0.3 Vcc	V
					$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0	_	0.2 Vcc	V
				Input level selection	4.0 V ≤ Vcc ≤ 5.5 V	0	_	0.55 Vcc	V
				: 0.7 Vcc	$2.7 \text{ V} \leq \text{Vcc} < 4.0 \text{ V}$	0	_	0.45 Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0	_	0.35 Vcc	V
		Externa	l clock input	(XOUT)		0	_	0.4	V
IOH(sum)	Peak sum output "H	" current	Sum of all	Dins IOH(peak)		-	_	-160	mA
IOH(sum)	Average sum output "	H" current	Sum of all	Dins IOH(avg)		-	_	-80	mA
IOH(peak)	Peak output "H" curr	ent	Drive capa	city Low		-	_	-10	mA
,			Drive capa	city High		-	_	-40	mA
IOH(avg)	Average output "H" of	current	Drive capa	city Low		-	_	-5	mA
			Drive capa	city High		_	_	-20	mA
IOL(sum)	Peak sum output "L"	' current	Sum of all	pins IOL(peak)		_	_	160	mA
IOL(sum)	Average sum output "	L" current	Sum of all	Dins IOL(avg)		-	_	80	mA
IOL(peak)	Peak output "L" curr	ent	Drive capa	city Low		-	_	10	mA
u)			Drive capa	city High		-	_	40	mA
IOL(avg)	Average output "L" o	current	Drive capa	city Low		-	_	5	mA
			Drive capa	city High		-	_	20	mA
f(XIN)	XIN clock input oscil	lation free	quency	, ,	2.7 V ≤ Vcc ≤ 5.5 V	-	_	20	MHz
```			. ,		1.8 V ≤ Vcc < 2.7 V	-	_	5	MHz
f(XCIN)	XCIN clock input os	cillation fr	equency		1.8 V ≤ Vcc ≤ 5.5 V	-	32.768	50	kHz
fOCO40M	When used as the c	When used as the count source for timer $RC$ or timer $RD$ (3)		$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	32	_	40	MHz	
fOCO-F	fOCO-F frequency				$2.7 V \le Vcc < 5.5 V$	_	_	20	MHz
	i i oquonoy				$1.8 V \le Vcc \le 2.7 V$	_	_	5	MHz
	System clock freque	encv			$2.7 V < V_{CC} < 5.5 V$	_	_	20	MHz
					$1.8 V \le Vcc \le 2.7 V$	_	_	5	MHz
f(BCLK)	CPU clock frequenc	V			$2.7 V < V_{CC} < 5.5 V$	_	_	20	MHz
		,							N 41 1-

#### Table 5.2 Recommended Operating Conditions

Notes:

1. Vcc = 1.8 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

3. fOCO40M can be used as the count source for timer RC or timer RD in the range of Vcc = 2.7 V to 5.5V.



Figure 5.1 Ports P0 to P4, P6 Timing Measurement Circuit



Symbol	Paramotor	Conditions		Lloit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Onit
-	Program/erase endurance (2)		1,000 ⁽³⁾	-	-	times
_	Byte program time		-	80	500	μS
-	Block erase time		I	0.3	-	S
td(SR-SUS)	Time delay from suspend request until suspend		-	_	5+CPU clock × 3 cycles	ms
-	Interval from erase start/restart until following suspend request		0	_	_	μS
-	Time from suspend until erase restart		-	_	30+CPU clock × 1 cycle	μS
td(CMDRST- READY)	Time from when command is forcibly stopped until reading is enabled		-	-	30+CPU clock × 1 cycle	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		1.8	-	5.5	V
_	Program, erase temperature		0	-	60	°C
-	Data hold time (7)	Ambient temperature = 55°C	20	-	_	year

#### Table 5.6 Flash Memory (Program ROM) Electrical Characteristics

Notes: 1. Vcc = 2.7 to 5.5 V and  $T_{opr} = 0$  to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed). 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.



Symbol	Paramotor	Condition		Linit		
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level Vdet0_0 ⁽²⁾		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 (2)		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 ⁽²⁾		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 ⁽²⁾		3.55	3.80	4.05	V
-	Voltage detection 0 circuit response time (4)	At the falling of Vcc from 5 V to (Vdet0 $_0$ - 0.1) V	-	6	150	μs
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	1.5	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μs

Table 5.8	Voltage Detection	0 Circuit Electrical	Characteristics
Table 5.0	vollage Delection	U GITCUIL Electrical	Characteristics

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and  $T_{opr} = -20$  to 85°C (N version) / -40 to 85°C (D version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

Table 5.9	Voltage Detection	1 Circuit	Electrical	Characteristics
	Tonago Botoonon			•

Symbol	Parameter	Condition		LInit		
Symbol	T arameter	Condition	Min.	Тур.	Max.	Offic
Vdet1	Voltage detection level Vdet1_0 ⁽²⁾	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 (2)	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 ⁽²⁾	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 ⁽²⁾	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 ⁽²⁾	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 ⁽²⁾	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 ⁽²⁾	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 ⁽²⁾	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 ⁽²⁾	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 ⁽²⁾	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A (2)	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C (2)	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E (2)	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V
_	Hysteresis width at the rising of Vcc in voltage detection 1 circuit	Vdet1_0 to Vdet1_5 selected	-	0.07	-	V
		Vdet1_6 to Vdet1_F selected	-	0.10	-	V
_	Voltage detection 1 circuit response time ⁽³⁾	At the falling of Vcc from $5 \text{ V}$ to (Vdet1_0 - 0.1) V	-	60	150	μS
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	-	1.7	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		-	-	100	μS

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20 to  $85^{\circ}C$  (N version) / -40 to  $85^{\circ}C$  (D version).

2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.



Symbol	Boromotor	Condition		Llnit		
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Onit
-	High-speed on-chip oscillator frequency after reset	Vcc = 1.8V to 5.5 V −20°C ≤Topr ≤ 85°C	38.4	40	41.6	MHz
		Vcc = 1.8V to 5.5 V -40°C $\leq$ Topr $\leq$ 85°C	38.0	40	42.0	MHz
	High-speed on-chip oscillator frequency when the FRA4 register correction value is written into	Vcc = 1.8V to 5.5 V $-20^{\circ}C \le T_{opr} \le 85^{\circ}C$	35.389	36.864	38.338	MHz
	the FRA1 register and the FRA5 register correction value into the FRA3 register ⁽²⁾	$\label{eq:VCC} \begin{array}{l} Vcc = 1.8V \text{ to } 5.5 \text{ V} \\ -40^{\circ}C \leq T_{opr} \leq 85^{\circ}C \end{array}$	35.020	36.864	38.707	MHz
	High-speed on-chip oscillator frequency when the FRA6 register correction value is written into	Vcc = 1.8V to 5.5 V -20°C $\leq$ Topr $\leq$ 85°C	30.72	32	33.28	MHz
	the FRA1 register and the FRA7 register correction value into the FRA3 register	$Vcc = 1.8V \text{ to } 5.5 \text{ V}$ $-40^{\circ}C \leq T_{opr} \leq 85^{\circ}C$	30.40	32	33.60	MHz
_	Oscillation stability time	$VCC = 5.0 \text{ V}, \text{ Topr} = 25^{\circ}C$	=	0.5	3	ms
-	Self power consumption at oscillation	VCC = 5.0 V, Topr = 25°C	-	400	-	μA

Table 5.12	High-speed On-Chip Oscillator Circuit Electrical Cha	racteristics
	Ingri-speed on-onip oscillator on cuit Electrical ona	actonatioa

Notes:

1. Vcc = 1.8 to 5.5 V,  $T_{opr} = -20$  to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

#### Table 5.13 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol Parameter		Condition		Lloit		
Symbol	Falametei	Condition	Min.	Тур.	Max.	Ofin
fOCO-S	Low-speed on-chip oscillator frequency		60	125	250	kHz
-	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	-	30	100	μS
-	Self power consumption at oscillation	VCC = 5.0 V, Topr = $25^{\circ}C$	-	2	-	μΑ

Note:

1. Vcc = 1.8 to 5.5 V,  $T_{opr} = -20$  to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

#### Table 5.14 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition	Standard			Lloit
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Ofin
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		-	-	2,000	μS

Notes:

1. The measurement condition is Vcc = 1.8 to 5.5 V and Topr = 25°C.

2. Waiting time until the internal power supply generation circuit stabilizes during power-on.



Symbol	Doromoto	Paramotor			Standard			
Symbol	Farameter		Conditions	Min.	Тур.	Max.	Unit	
tsucyc	SSCK clock cycle time	;		4	-	-	tCYC ⁽²⁾	
tнı	SSCK clock "H" width			0.4		0.6	tsucyc	
tlo	SSCK clock "L" width			0.4	-	0.6	tsucyc	
trise	SSCK clock rising	Master		-	-	1	tCYC (2)	
	time	Slave		-	-	1	μS	
TFALL	SSCK clock falling	Master		-	-	1	tCYC (2)	
	time	Slave		-		1	μS	
ts∪	SSO, SSI data input setup time			100	-	-	ns	
tн	SSO, SSI data input hold time			1	-	-	tCYC (2)	
tlead	SCS setup time	Slave		1tcyc + 50	1	_	ns	
tlag	SCS hold time	Slave		1tcyc + 50	-	_	ns	
top	SSO, SSI data output	delay time		-	-	1	tCYC ⁽²⁾	
tSA	SSI slave access time		$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	-	-	1.5tcyc + 100	ns	
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	-	1.5tcyc + 200	ns	
tor	SSI slave out open tim	ne	$2.7~\text{V} \leq \text{Vcc} \leq 5.5~\text{V}$	-	-	1.5tcyc + 100	ns	
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	-	1.5tcyc + 200	ns	

#### Table 5.15 Timing Requirements of Synchronous Serial Communication Unit (SSU) ⁽¹⁾

Notes:

1. Vcc = 1.8 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. 1tcyc = 1/f1(s)







Symbol	Parameter		Standard		
Symbol	Falanielei	Min.	Max.	Offic	
tc(CK)	CLKi input cycle time	300	-	ns	
tW(CKH)	CLKi input "H" width	150	-	ns	
tW(CKL)	CLKi Input "L" width	150	-	ns	
td(C-Q)	TXDi output delay time	-	80	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	70	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 to 2



Figure 5.14 Serial Interface Timing Diagram when Vcc = 3 V

# Table 5.28External Interrupt $\overline{INTi}$ (i = 0 to 4) Input, Key Input Interrupt $\overline{Kli}$ (i = 0 to 3)

Symbol	Paramatar		Standard		
Symbol	Falameter	Min.	Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	380 (1)	-	ns	
tw(INL)	INTi input "L" width, Kli input "L" width	380 (2)	-	ns	

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.







# **Package Dimensions**

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Electronics website.





### General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
  - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
  not access these addresses; the correct operation of LSI is not guaranteed if they are
  accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

#### Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for which the soften where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of soften an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
  "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
  designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information



#### SALES OFFICES

#### **Renesas Electronics Corporation**

http://www.renesas.com

Renease Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renease Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renease Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1528-585-100, Fax: +44-1528-585-900 Renease Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1528-585-900 Renease Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1528-585-900 Renease Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1528-585-900 Renease Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-12-827-1551, Fax: +86-21-6837-7859 Renease Electronics (Shanghai) Co., Ltd. 10n1 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 Renease Electronics Hong Kong Limited Unit 1801-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +88-2486-9318, Fax: +882-2486-9022/9044e, 1845-24817-9400, Fax: +882-2486-9022/9044e, 1945-063 Fu Shing North Road Taipei, Taiwan Tel: +882-2486-9300, Fax: +882-24175-9670 Renease Electronics Mangapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +68-2413-2400, Fax: +885-24175-9670 Renease Electronics Malaysia Sch.Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +69-23-7955-9300, Fax: +882-2455-9510 Renease Electronics Korea Co., Ltd. 11-, Samik Lavied O'r Bilde, T20-2-Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141