

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	43
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21346cnfp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

				I/O Pin Functions for Peripheral Modules					
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	SSU	l ² C bus	A/D Converter, D/A Converter, Comparator B	
36		P1_0	KI0	KIO (TRCIOD)		AN8			
37		P0_7		(TRCIOC)				AN0/DA1	
38		P0_6		(TRCIOD)				AN1/DA0	
39		P0_5		(TRCIOB)				AN2	
40		P0_4		TREO (/TRCIOB)				AN3	
41		P0_3		(TRCIOB)	(CLK1)			AN4	
42		P0_2		(TRCIOA/ TRCTRG)	(RXD1)			AN5	
43		P0_1		(TRCIOA/ TRCTRG)	(TXD1)			AN6	
44		P0_0		(TRCIOA/ TRCTRG)				AN7	
45		P6_4			(RXD1)				
46		P6_3			(TXD1)				
47		P6_2			(CLK1)				
48		P6_1							

Table 1.5 Pin Name Information by Pin Number (2)

Note:

1. Can be assigned to the pin in parentheses by a program.

Item	Pin Name	I/O Type	Description
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter and D/A converter
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter
	ADTRG	I	A/D external trigger input pin
D/A converter	DA0, DA1	0	D/A converter output pins
Comparator B	IVCMP1, IVCMP3	I	Comparator B analog voltage input pins
	IVREF1, IVREF3	I	Comparator B reference voltage input pins
I/O port	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0, P3_1, P3_3 to P3_5, P3_7, P4_3 to P4_7, P6_0 to P6_7	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. All ports can be used as LED drive ports.
Input port	P4_2	I	Input-only port

Table 1.7Pin Functions (2)

I: Input O: Output I/O: Input and output

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupts are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3. Memory

3.1 R8C/34C Group

Figure 3.1 is a Memory Map of R8C/34C Group. The R8C/34C Group has a 1-Mbyte address space from addresses 00000h to FFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 32-Kbyte internal ROM area is allocated addresses 08000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM area is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh. Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

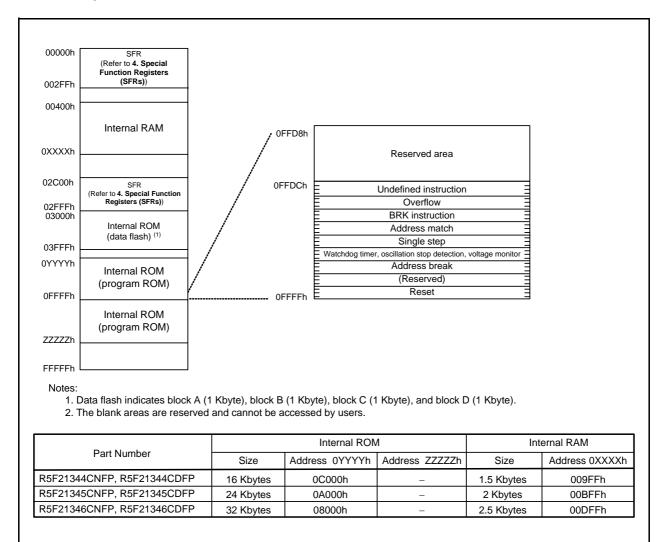


Figure 3.1 Memory Map of R8C/34C Group

Address	Register	Symbol	After Reset			
0180h	Timer RA Pin Select Register	TRASR	00h			
0181h	Timer RB/RC Pin Select Register	TRBRCSR	00h			
0182h	Timer RC Pin Select Register 0	TRCPSR0	00h			
0183h	Timer RC Pin Select Register 1	TRCPSR1	00h			
0184h	Timer RD Pin Select Register 0	TRDPSR0 00h				
0185h	Timer RD Pin Select Register 1	TRDPSR1	00h			
0186h	Timer Pin Select Register	TIMSR	00h			
		TIMOR	0011			
0187h						
0188h	UARTO Pin Select Register	UOSR	00h			
0189h	UART1 Pin Select Register	U1SR	00h			
018Ah	UART2 Pin Select Register 0	U2SR0	00h			
018Bh	UART2 Pin Select Register 1	U2SR1	00h			
018Ch	SSU/IIC Pin Select Register	SSUIICSR	00h			
018Dh	-					
018Eh	INT Interrupt Input Pin Select Register	INTSR	00h			
018Fh	I/O Function Pin Select Register	PINSR	00h			
0190h		T INOIC	0011			
0191h						
0192h						
0193h	SS Bit Counter Register	SSBR	11111000b			
0194h	SS Transmit Data Register L / IIC bus Transmit Data Register (2)	SSTDR / ICDRT	FFh			
0195h	SS Transmit Data Register H ⁽²⁾	SSTDRH	FFh			
0196h	SS Receive Data Register L / IIC bus Receive Data Register ⁽²⁾	SSRDR / ICDRR	FFh			
0197h	SS Receive Data Register H ⁽²⁾	SSRDRH	FFh			
0198h	SS Control Register H / IIC bus Control Register 1 (2)	SSCRH / ICCR1	00h			
0199h	SS Control Register L / IIC bus Control Register 2 ⁽²⁾	SSCRL / ICCR2	01111101b			
019Ah	SS Mode Register / IIC bus Mode Register (2)	SSMR / ICMR	00010000b / 00011000b			
019Bh	SS Enable Register / IIC bus Interrupt Enable Register ⁽²⁾	SSER / ICIER	00h			
		SSER / ICSR				
019Ch	SS Status Register / IIC bus Status Register (2)		00h / 0000X000b			
019Dh	SS Mode Register 2 / Slave Address Register (2)	SSMR2 / SAR	00h			
019Eh						
019Fh						
01A0h						
01A1h						
01A2h						
01A2h						
			_			
01A4h						
01A5h						
01A6h						
01A7h						
01A8h						
01A9h						
01AAh						
01ABh						
01ACh						
01ACh 01ADh						
01AEh						
01AFh						
01B0h						
01B1h						
01B2h	Flash Memory Status Register	FST	10000X00b			
01B3h			1			
01B4h		FMR0	00h			
01B4h 01B5h	Flash Memory Control Register 0	FMR0 FMR1	00h 00h			
01B5h	Flash Memory Control Register 0 Flash Memory Control Register 1	FMR1	00h			
01B5h 01B6h	Flash Memory Control Register 0					
01B5h 01B6h 01B7h	Flash Memory Control Register 0 Flash Memory Control Register 1	FMR1	00h			
01B5h 01B6h 01B7h 01B8h	Flash Memory Control Register 0 Flash Memory Control Register 1	FMR1	00h			
01B5h 01B6h 01B7h 01B8h 01B9h	Flash Memory Control Register 0 Flash Memory Control Register 1	FMR1	00h			
01B5h 01B6h 01B7h 01B8h 01B9h 01BAh	Flash Memory Control Register 0 Flash Memory Control Register 1	FMR1	00h			
01B5h 01B6h 01B7h 01B8h 01B9h	Flash Memory Control Register 0 Flash Memory Control Register 1	FMR1	00h			
01B5h 01B6h 01B7h 01B8h 01B9h 01BAh	Flash Memory Control Register 0 Flash Memory Control Register 1	FMR1	00h			
01B5h 01B6h 01B7h 01B8h 01B9h 01BAh 01BBh 01BCh	Flash Memory Control Register 0 Flash Memory Control Register 1	FMR1	00h			
01B5h 01B6h 01B7h 01B8h 01B9h 01BAh 01BBh 01BCh 01BDh	Flash Memory Control Register 0 Flash Memory Control Register 1	FMR1	00h			
01B5h 01B6h 01B7h 01B8h 01B9h 01BAh 01BBh 01BCh	Flash Memory Control Register 0 Flash Memory Control Register 1	FMR1	00h			

SFR Information (7)⁽¹⁾ Table 4.7

X: Undefined

Notes: 1. 2.

The blank areas are reserved and cannot be accessed by users. Selectable by the IICSEL bit in the SSUIICSR register.

Address	Denistar	O: male al	
Address	Register	Symbol	After Reset
2CB0h	DTC Control Data 14	DTCD14	XXh
2CB1h			XXh
2CB2h			XXh
2CB3h			XXh
2CB4h			XXh
2CB5h			XXh
2CB6h			XXh
2CB7h			XXh
2CB8h	DTC Control Data 15	DTCD15	XXh
2CB3h		DICDIS	XXh
2CBAh			XXh
2CBBh			XXh
2CBCh			XXh
2CBDh			XXh
2CBEh			XXh
2CBFh			XXh
2CC0h	DTC Control Data 16	DTCD16	XXh
2CC1h			XXh
2CC2h			XXh
2002h			XXh
2003h 2004h			XXh
2CC5h			XXh
2CC6h			XXh
2CC7h			XXh
2CC8h	DTC Control Data 17	DTCD17	XXh
2CC9h			XXh
2CCAh			XXh
2CCBh			XXh
2CCCh			XXh
2CCDh			XXh
2CCEh			XXh
2CCFh			XXh
	DTO Operatoral Data 40	DTOD40	
2CD0h	DTC Control Data 18	DTCD18	XXh
2CD1h			XXh
2CD2h			XXh
2CD3h			XXh
2CD4h			XXh
2CD5h			XXh
2CD6h			XXh
2CD7h			XXh
	DTC Control Data 19	DTCD19	XXh
2CD9h		BIODIS	XXh
2CDAh			XXh
2CDBh			XXh
2CDCh			XXh
2CDDh			XXh
2CDEh			XXh
2CDFh			XXh
2CE0h	DTC Control Data 20	DTCD20	XXh
2CE1h			XXh
2CE2h			XXh
2CE3h			XXh
2CE4h			XXh
2CE411 2CE5h			XXh
2CE6h			XXh
2CE7h			XXh
2CE8h	DTC Control Data 21	DTCD21	XXh
2CE9h			XXh
2CEAh			XXh
2CEBh			XXh
2CECh			XXh
2CEDh			XXh
2CEEh			XXh
2CEFh			XXh
206111			77711

SFR Information (11)⁽¹⁾ **Table 4.11**

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Table 4.12	SFR Information (12) ⁽¹⁾
------------	-------------------------------------

Address	Register	Symbol	After Reset
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h			XXh
2CF2h			XXh
2CF3h	1		XXh
2CF4h			XXh
2CF5h	1		XXh
2CF6h	1		XXh
2CF7h	1		XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h	1		XXh
2CFAh			XXh
2CFBh			XXh
2CFCh]		XXh
2CFDh]		XXh
2CFEh]		XXh
2CFFh			XXh
2D00h			
:			

2FFFh

X: Undefined

Note:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.13 ID Code Areas and Option Function Select Area

Address	Area Name	Symbol	After Reset
:			
FFDBh	Option Function Select Register 2	OFS2	(Note 1)
:		•	
FFDFh	ID1		(Note 2)
:			
FFE3h	ID2		(Note 2)
:			
FFEBh	ID3		(Note 2)
:			
FFEFh	ID4		(Note 2)
:			
FFF3h	ID5		(Note 2)
:			
FFF7h	ID6		(Note 2)
:			
FFFBh	ID7		(Note 2)
FFFFh	Option Function Select Register	OFS	(Note 1)

Notes: 1.

The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user.When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

2. The ID code areas are anocated in the hash memory, not in the SFRS. Set appropriate values as KOM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

Sympol	Parameter				Conditions	Standard			Linit
Symbol					Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage					1.8	-	5.5	V
Vss/AVss	Supply voltage					-	0	-	V
Viн	Input "H" voltage	Other th	ian CMOS ir	nput		0.8 Vcc	-	Vcc	V
		CMOS	Input level		$4.0~V \leq Vcc \leq 5.5~V$	0.5 Vcc	-	Vcc	V
		input	switching	: 0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.55 Vcc	-	Vcc	V
			function (I/O port)		$1.8~V \leq Vcc < 2.7~V$	0.65 Vcc	-	Vcc	V
			(i/O port)	Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0.65 Vcc	-	Vcc	V
				: 0.5 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.7 Vcc	-	Vcc	V
					$1.8~\text{V} \leq \text{Vcc} < 2.7~\text{V}$	0.8 Vcc	I	Vcc	V
				Input level selection	$4.0~V \leq Vcc \leq 5.5~V$	0.85 Vcc	-	Vcc	V
				: 0.7 Vcc	$2.7~\text{V} \leq \text{Vcc} < 4.0~\text{V}$	0.85 Vcc	I	Vcc	V
				$1.8~V \leq Vcc < 2.7~V$	0.85 Vcc	-	Vcc	V	
		Externa	I clock input	(XOUT)		1.2	-	Vcc	V
VIL	Input "L" voltage	Other th	an CMOS ir	nput		0	-	0.2 Vcc	V
		CMOS	Input level		$4.0~V \leq Vcc \leq 5.5~V$	0	-	0.2 Vcc	V
		input	switching	: 0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0	-	0.2 Vcc	V
			function (I/O port)		$1.8~V \leq Vcc < 2.7~V$	0	-	0.2 Vcc	V
			-	Input level selection : 0.5 Vcc	$4.0~V \leq Vcc \leq 5.5~V$	0	-	0.4 Vcc	V
					$2.7~V \leq Vcc < 4.0~V$	0	-	0.3 Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0	-	0.2 Vcc	V
				Input level selection : 0.7 Vcc	$4.0~V \leq Vcc \leq 5.5~V$	0	-	0.55 Vcc	V
					$2.7~V \leq Vcc < 4.0~V$	0	-	0.45 Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0	-	0.35 Vcc	V
		Externa	I clock input	(XOUT)		0	-	0.4	V
IOH(sum)	Peak sum output "H'	' current	Sum of all	pins IOH(peak)		-	-	-160	mA
IOH(sum)	Average sum output "	H" current	Sum of all	pins IOH(avg)		-	-	-80	mA
IOH(peak)	Peak output "H" curr	ent	Drive capa	city Low		-	-	-10	mA
			Drive capacity High			-	-	-40	mA
IOH(avg)	Average output "H" of	current	Drive capacity Low			-	-	-5	mA
			Drive capacity High			-	-	-20	mA
IOL(sum)	Peak sum output "L"	current	Sum of all	pins IOL(peak)		-	-	160	mA
IOL(sum)	Average sum output "		Sum of all	pins IOL(avg)		-	I	80	mA
IOL(peak)	Peak output "L" curre	ent	Drive capacity Low			-	I	10	mA
			Drive capa	city High		-	I	40	mA
IOL(avg)	Average output "L" o	urrent	Drive capa	city Low		-	I	5	mA
			Drive capa	city High		-	I	20	mA
f(XIN)	XIN clock input oscil	lation free	quency		$2.7~V \leq Vcc \leq 5.5~V$	-	-	20	MHz
					$1.8~V \leq Vcc < 2.7~V$	-	I	5	MHz
f(XCIN)	XCIN clock input os	cillation fr	on frequency		$1.8~V \leq Vcc \leq 5.5~V$	-	32.768	50	kHz
fOCO40M	When used as the c	ount sour	ce for timer	RC or timer RD ⁽³⁾	$2.7~V \leq Vcc \leq 5.5~V$	32	-	40	MHz
fOCO-F	fOCO-F frequency				$2.7~V \leq Vcc \leq 5.5~V$	-	_	20	MHz
					$1.8~\text{V} \leq \text{Vcc} < 2.7~\text{V}$	-	-	5	MHz
-	System clock freque	ncy			$2.7~V \leq Vcc \leq 5.5~V$	-	-	20	MHz
					$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	-	5	MHz
f(BCLK)	CPU clock frequency	y			$2.7~V \leq Vcc \leq 5.5~V$	-	-	20	MHz
					$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	_		5	MHz

Table 5.2 Recommended Operating Conditions

Notes:

1. Vcc = 1.8 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

3. fOCO40M can be used as the count source for timer RC or timer RD in the range of Vcc = 2.7 V to 5.5V.

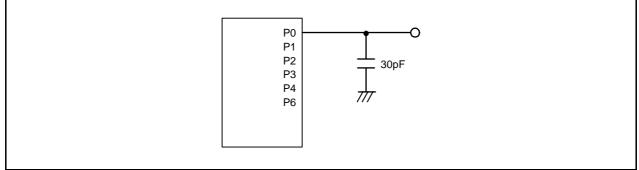


Figure 5.1 Ports P0 to P4, P6 Timing Measurement Circuit

Symbol	Parameter		Conditions		Standard			Unit
Symbol	Falameter		Cond	Conditions		Тур.	Max.	Onit
-	Resolution		Vref = AVCC		-	-	10	Bit
-	Absolute accuracy	10-bit mode	Vref = AVcc = 5.0 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±3	LSB
			Vref = AVCC = 3.3 V	AN0 to AN7 input, AN8 to AN11 input	_	-	±5	LSB
			Vref = AVCC = 3.0 V	AN0 to AN7 input, AN8 to AN11 input	-	_	±5	LSB
			Vref = AVCC = 2.2 V	AN0 to AN7 input, AN8 to AN11 input	_	1	±5	LSB
		8-bit mode	Vref = AVCC = 5.0 V	AN0 to AN7 input, AN8 to AN11 input	-	_	±2	LSB
			Vref = AVCC = 3.3 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±2	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input, AN8 to AN11 input	-	_	±2	LSB
			Vref = AVCC = 2.2 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±2	LSB
φAD	A/D conversion clock		4.0 V \leq Vref = AVcc \leq 5.5 V $^{(2)}$		2	-	20	MHz
			3.2 V \leq Vref = AVcc \leq 5.5 V $^{(2)}$		2	-	16	MHz
			$2.7 \text{ V} \leq \text{Vref} = \text{AVcc} \leq 5.5 \text{ V}^{(2)}$		2	-	10	MHz
			$2.2 \text{ V} \leq \text{Vref} = \text{AVcc} \leq$	5.5 V ⁽²⁾	2	-	5	MHz
-	Tolerance level impedance	1			_	3	-	kΩ
t CONV	Conversion time	10-bit mode	$Vref = AVCC = 5.0 V, \phi$	AD = 20 MHz	2.2	-	-	μS
		8-bit mode	Vref = AVCC = 5.0 V, ¢	AD = 20 MHz	2.2	-	-	μS
t SAMP	Sampling time		φAD = 20 MHz		0.8	-	-	μS
Vref	Vref current		Vcc = 5 V, XIN = f1 =	$\phi AD = 20 \text{ MHz}$	-	45	-	μΑ
Vref	Reference voltage				2.2	-	AVcc	V
VIA	Analog input voltage (3)				0	-	Vref	V
OCVREF	On-chip reference voltage		$2 \text{ MHz} \le \phi \text{AD} \le 4 \text{ MH}$	z	1.19	1.34	1.49	V

Table 5.3 A/D Converter Characteristics

Notes:

1. Vcc/AVcc = Vref = 2.2 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-currentconsumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Symbol	Parameter	Condition		Unit		
Symbol	Faranieter	Condition	Min.	Тур.	Max.	Unit
Vdet0	Voltage detection level Vdet0_0 (2)		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 ⁽²⁾		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 (2)		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 (2)		3.55	3.80	4.05	V
_	Voltage detection 0 circuit response time (4)	At the falling of Vcc from 5 V to (Vdet0_0 - 0.1) V	-	6	150	μs
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	1.5	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

Table 5.8	Voltage Detection 0 Circuit Electrical Characteristics
	Voltage Deteotion & Onean Electrical Onalabteristics

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

Table 5.9	Voltage Detection 1 Circuit Electrical Characteristics
	Voltage Detection i Oneun Electrical Onaracteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falalletei	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level Vdet1_0 ⁽²⁾	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 ⁽²⁾	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 ⁽²⁾	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 (2)	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 ⁽²⁾	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 ⁽²⁾	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 ⁽²⁾	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 ⁽²⁾	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 ⁽²⁾	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 ⁽²⁾	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A ⁽²⁾	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C ⁽²⁾	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E ⁽²⁾	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V
-	Hysteresis width at the rising of Vcc in voltage detection 1 circuit	Vdet1_0 to Vdet1_5 selected	-	0.07	-	V
		Vdet1_6 to Vdet1_F selected	-	0.10	-	V
-	Voltage detection 1 circuit response time ⁽³⁾	At the falling of Vcc from 5 V to (Vdet1_0 – 0.1) V	_	60	150	μS
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	1.7	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		-	-	100	μS

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).

2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level Vdet2_0	At the falling of Vcc	3.70	4.00	4.30	V
-	Hysteresis width at the rising of Vcc in voltage detection 2 circuit		_	0.10	-	V
-	Voltage detection 2 circuit response time ⁽²⁾	At the falling of Vcc from 5 V to (Vdet2_0 – 0.1) V	-	20	150	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	1.7	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

Table 5.10 Voltage Detection 2 Circuit Electrical Characteristics

Notes:

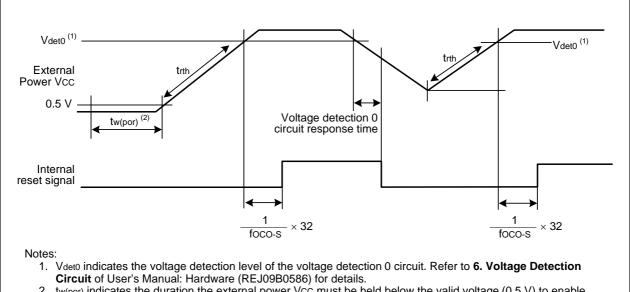

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version).
- 2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

 Table 5.11
 Power-on Reset Circuit ⁽²⁾

Symbol	Parameter	Condition		Standard			
	Falanetei	Condition	Min.	Тур.	Max.	Unit	
trth	External power Vcc rise gradient	(1)	0	-	50,000	mV/msec	

Notes:

- 1. The measurement condition is $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.
- 2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

 tw(por) indicates the duration the external power Vcc must be held below the valid voltage (0.5 V) to enable a power-on reset. When turning on the power after it falls with voltage monitor 0 reset disabled, maintain tw(por) for 1 ms or more.

Figure 5.3

Power-on Reset Circuit Electrical Characteristics

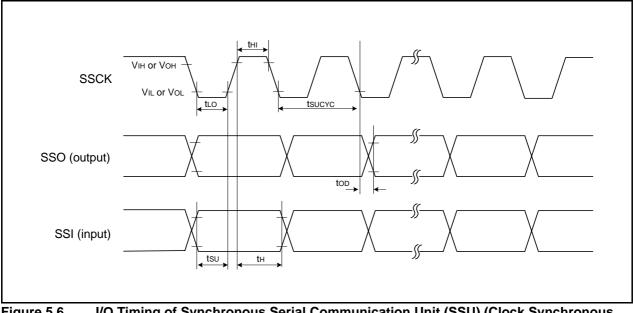


Figure 5.6 I/O Timing of Synchronous Serial Communication Unit (SSU) (Clock Synchronous Communication Mode)

Cumhal	Demonster	O and it is an	Sta	Standard			
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit	
tSCL	SCL input cycle time		12tcyc + 600 (2)	-	-	ns	
t SCLH	SCL input "H" width		3tcyc + 300 ⁽²⁾	_	-	ns	
tSCLL	SCL input "L" width		5tcyc + 500 (2)	_	-	ns	
tsf	SCL, SDA input fall time		-	-	300	ns	
tSP	SCL, SDA input spike pulse rejection time		-	-	1tcyc (2)	ns	
t BUF	SDA input bus-free time		5tcyc (2)	_	-	ns	
t STAH	Start condition input hold time		3tcyc (2)	_	-	ns	
t STAS	Retransmit start condition input setup time		3tcyc (2)	-	-	ns	
t STOP	Stop condition input setup time		3tcyc (2)	_	-	ns	
tSDAS	Data input setup time		1tcyc + 40 (2)	-	-	ns	
t SDAH	Data input hold time		10	-	-	ns	

 Table 5.16
 Timing Requirements of I²C bus Interface ⁽¹⁾

Notes:

1. Vcc = 1.8 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. 1tcyc = 1/f1(s)

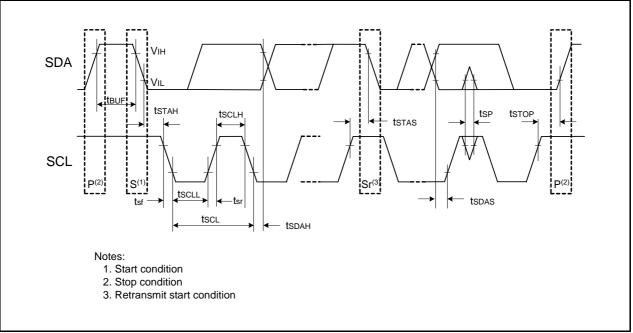


Figure 5.7 I/O Timing of I²C bus Interface

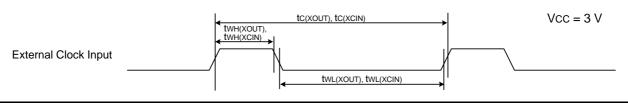
Symbol		Parameter	Condition		Standard			Unit
Symbol		Faranielei Condition		Condition		Тур.	Max.	Unit
Vон	Output "H"	Other than XOUT	Drive capacity High Vcc = 5V	Іон = -20 mA	Vcc - 2.0	-	Vcc	V
	voltage		Drive capacity Low Vcc = 5V	Iон = -5 mA	Vcc - 2.0	-	Vcc	V
		XOUT	Vcc = 5V	Іон = -200 μА	1.0	-	Vcc	V
Vol	Output "L"	Other than XOUT	Drive capacity High Vcc = 5V	IoL = 20 mA	-	-	2.0	V
	voltage		Drive capacity Low Vcc = 5V	lo∟ = 5 mA	-	-	2.0	V
		XOUT	Vcc = 5V	IoL = 200 μA	-	-	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, INT4, KIO, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRDIOAO, TRDIOBO, TRDIOCO, TRDIODO, TRDIOC1, TRDIOD1, TRDIOC1, TRDIOD1, TRCTRG, TRCCLK, ADTRG, RXD0, RXD1, RXD2, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO RESET			0.1	1.2	_	V
Ін	Input "H" cu	rrent	VI = 5 V, Vcc = 5.0 V		-	-	5.0	μA
lı∟	Input "L" cu	rrent	VI = 0 V, Vcc = 5.0 V		-	_	-5.0	μA
Rpullup	Pull-up resi	stance	VI = 0 V, Vcc = 5.0 V		25	50	100	kΩ
Rfxin	Feedback resistance	XIN			-	0.3	_	MΩ
Rfxcin	Feedback resistance	XCIN			-	8	_	MΩ
Vram	RAM hold v	oltage	During stop mode		1.8	-	-	V

Table 5.17	Electrical Characteristics (1) [4.2 V \leq Vcc \leq 5.5 V]
------------	--

Note:

1. $4.2 \text{ V} \le \text{Vcc} \le 5.5 \text{ V}$ at T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 20 MHz, unless otherwise specified.

Table 5.24Electrical Characteristics (4) [2.7 V \leq Vcc < 3.3 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)


Sympol	Doromotor		Condition		Standard	ł	Linit
Symbol	Parameter		Condition	Min.	Тур.	Max.	Unit
lcc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	3.5	10	mA
	output pins are open, other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	7.5	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	7.0	15	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	4.0	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTIIC = MSTTRD = MSTTRC = 1	_	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	390	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division FMR27 = 1, VCA20 = 0	_	80	400	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0		40	_	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation	_	15	90	μA
			VCA27 = VCA26 = VCA25 = 0, VCA20 = 1 XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	80	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed	_	3.5	_	μA
		Stop mode	VCA27 = VCA26 = VCA25 = 0, VCA20 = 1 XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5.0	μA
			VCA27 = $VCA26 = VCA25 = 0$ XIN clock off, Topr = 85° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off		5.0	_	μΑ

Timing Requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C)

Table 5.25 External Clock Input (XOUT, XCIN)

Symbol	Parameter		Standard		
	Falanielei	Min.	Max.	Unit	
tc(XOUT)	XOUT input cycle time	50	-	ns	
twh(xout)	XOUT input "H" width	24	-	ns	
twl(xout)	XOUT input "L" width	24	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μS	
twh(xcin)	XCIN input "H" width	7	-	μS	
twl(xcin)	XCIN input "L" width	7	-	μS	

Figure 5.12 External Clock Input Timing Diagram when VCC = 3 V

Table 5.26 TRAIO Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	300	-	ns	
twh(traio)	TRAIO input "H" width	120	-	ns	
twl(traio)	TRAIO input "L" width	120	-	ns	

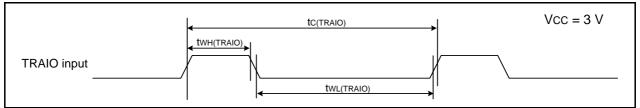
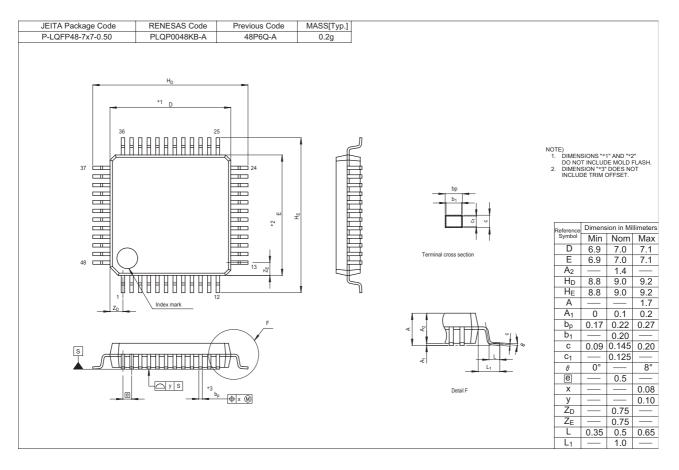


Figure 5.13 TRAIO Input Timing Diagram when Vcc = 3 V


Table 5.30Electrical Characteristics (6) [1.8 V \leq Vcc < 2.7 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standar	d	Unit
Symbol				Min.	Тур.	Max.	Unit
(Power supply current (Vcc = 1.8 to 2.7 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	2.2	-	mA
	other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	0.8	-	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	2.5	10	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.7	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTIIC = MSTTRD = MSTTRC = 1	-	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	90	300	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division FMR27 = 1, VCA20 = 0	_	80	350	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	40	_	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	15	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	4	80	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	3.5	_	μA
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5	μA
			XIN clock off, $T_{opr} = 85 ^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	5.0	_	μA

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Electronics website.

