

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Not For New Designs
Core Processor	H8/300H
Core Size	16-Bit
Speed	20MHz
Connectivity	I²C, SCI
Peripherals	PWM, WDT
Number of I/O	45
Program Memory Size	56KB (56K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/hd64f3687fpv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section 1 Overview

Figure 1.2 Internal Block Diagram of H8/3687N (EEPROM Stacked Version)

RENESAS

Bit	Bit Name	Initial Value	R/W	Description
7	I	1	R/W	Interrupt Mask Bit
				Masks interrupts other than NMI when set to 1. NMI is accepted regardless of the I bit setting. The I bit is set to 1 at the start of an exception-handling sequence.
6	UI	Undefined	R/W	User Bit
				Can be written and read by software using the LDC, STC, ANDC, ORC, and XORC instructions.
5	Н	Undefined	R/W	Half-Carry Flag
				When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or NEG.B instruction is executed, this flag is set to 1 if there is a carry or borrow at bit 3, and cleared to 0 otherwise. When the ADD.W, SUB.W, CMP.W, or NEG.W instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 11, and cleared to 0 otherwise. When the ADD.L, SUB.L, CMP.L, or NEG.L instruction is executed, the H flag is set to 1 if there is a carry or borrow at bit 27, and cleared to 0 otherwise.
4 U	U	Undefined	R/W	User Bit
				Can be written and read by software using the LDC, STC, ANDC, ORC, and XORC instructions.
3	Ν	Undefined	R/W	Negative Flag
				Stores the value of the most significant bit of data as a sign bit.
2	Z	Undefined	R/W	Zero Flag
				Set to 1 to indicate zero data, and cleared to 0 to indicate non-zero data.
1	V	Undefined	R/W	Overflow Flag
				Set to 1 when an arithmetic overflow occurs, and cleared to 0 at other times.
0	С	Undefined	R/W	Carry Flag
				Set to 1 when a carry occurs, and cleared to 0 otherwise. Used by:
				Add instructions, to indicate a carry
				Subtract instructions, to indicate a borrow
				Shift and rotate instructions, to indicate a carry
				The carry flag is also used as a bit accumulator by bit manipulation instructions.

Instructio	on Size*	Function					
DIVXS	B/W	Rd \div Rs \rightarrow Rd Performs signed division on data in two general registers: either 16 bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder or 32 bits \div 16 bits \rightarrow 16-bit quotient and 16-bit remainder.					
CMP	B/W/L	Rd – Rs, Rd – #IMM Compares data in a general register with data in another general register or with immediate data, and sets CCR bits according to the result.					
NEG	B/W/L	$0 - Rd \rightarrow Rd$ Takes the two's complement (arithmetic complement) of data in a general register.					
EXTU	W/L	Rd (zero extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by padding with zeros on the left.					
EXTS	W/L	$\begin{array}{l} \mbox{Rd (sign extension)} \rightarrow \mbox{Rd} \\ \mbox{Extends the lower 8 bits of a 16-bit register to word size, or the lower 16} \\ \mbox{bits of a 32-bit register to longword size, by extending the sign bit.} \end{array}$					
Note: *	Refers to the	operand size.					
	B: Byte						
	W: Word						
	L: Longword						

 Table 2.3
 Arithmetic Operations Instructions (2)

Relative Module	Exception Sources	Vector Number	Vector Address	Priority
IIC2	Transmit data empty Transmit end Receive data full Arbitration lost/Overrun error NACK detection Stop conditions detected	24	H'0030 to H'0031	High A
A/D converter	A/D conversion end	25	H'0032 to H'0033	_
Timer Z	Compare match/input capture A0 to D0 Timer Z overflow	26	H'0034 to H'0035	
	Compare match/input capture A1 to D1 Timer Z overflow Timer Z underflow	27	H'0036 to H'0037	
Timer B1	Timer B1 overflow	29	H'003A to H'003B	_
SCI3_2	Receive data full Transmit data empty Transmit end Receive error	32	H'0040 to H'0041	▼ Low

Note: * A low-voltage detection interrupt is enabled only in the product with an on-chip poweron reset and low-voltage detection circuit.

3.2 Register Descriptions

Interrupts are controlled by the following registers.

- Interrupt edge select register 1 (IEGR1)
- Interrupt edge select register 2 (IEGR2)
- Interrupt enable register 1 (IENR1)
- Interrupt enable register 2 (IENR2)
- Interrupt flag register 1 (IRR1)
- Interrupt flag register 2 (IRR2)
- Wakeup interrupt flag register (IWPR)

9.4.4 Port Pull-Up Control Register 5 (PUCR5)

PUCR5 controls the pull-up MOS in bit units of the pins set as the input ports.

Bit	Bit Name	Initial Value	R/W	Description
7, 6	_	All 0	—	Reserved
				These bits are always read as 0.
5	PUCR55	0	R/W	Only bits for which PCR5 is cleared are valid. The pull-up
4	PUCR54	0	R/W	MOS of the corresponding pins enter the on-state when these bits are set to 1, while they enter the off-state wh
3	PUCR53	0	R/W	these bits are cleared to 0.
2	PUCR52	0	R/W	
1	PUCR51	0	R/W	
0	PUCR50	0	R/W	

9.4.5 Pin Functions

The correspondence between the register specification and the port functions is shown below.

P57/SCL pin

Register	ICCR1	PCR5		
Bit Name	ICE	PCR57	Pin Function	
Setting Value	0	0	P57 input pin	
		1	P57 output pin	
	1	Х	SCL I/O pin	

Legend: X: Don't care.

SCL performs the NMOS open-drain output, that enables a direct bus drive.

10.3.3 Hour Data Register (RHRDR)

RHRDR counts the BCD-coded hour value on the carry generated once per hour by RMINDR. The setting range is either decimal 00 to 11 or 00 to 23 by the selection of the 12/24 bit in RTCCR1.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	BSY	_	R	RTC busy
				This bit is set to 1 when the RTC is updating (operating) the values of second, minute, hour, and day-of-week data registers. When this bit is 0, the values of second, minute, hour, and day-of-week data registers must be adopted.
6	_	0	_	Reserved
				This bit is always read as 0.
5	HR11	_	R/W	Counting ten's position of hours
4	HR10	—	R/W	Counts on 0 to 2 for ten's position of hours.
3	HR03	_	R/W	Counting one's position of hours
2	HR02	_	R/W	Counts on 0 to 9 once per hour. When a carry is
1	HR01	_	R/W	generated, 1 is added to the ten's position.
0	HR00	_	R/W	

10.3.4 Day-of-Week Data Register (RWKDR)

RWKDR counts the BCD-coded day-of-week value on the carry generated once per day by RHRDR. The setting range is decimal 0 to 6 using bits WK2 to WK0.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	BSY	_	R	RTC busy
				This bit is set to 1 when the RTC is updating (operating) the values of second, minute, hour, and day-of-week data registers. When this bit is 0, the values of second, minute, hour, and day-of-week data registers must be adopted.
6 to 3	_	All 0		Reserved
				These bits are always read as 0.
2	WK2	_	R/W	Day-of-week counting
1	WK1	_	R/W	Day-of-week is indicated with a binary code
0	WK0	_	R/W	000: Sunday
				001: Monday
				010: Tuesday
				011: Wednesday
				100: Thursday
				101: Friday
				110: Saturday
				111: Reserved (setting prohibited)

12.5.2 Pulse Output with Arbitrary Pulse Width and Delay from TRGV Input

The trigger function can be used to output a pulse with an arbitrary pulse width at an arbitrary delay from the TRGV input, as shown in figure 12.10. To set up this output:

- 1. Set bits CCLR1 and CCLR0 in TCRV0 so that TCNTV will be cleared by compare match with TCORB.
- 2. Set bits OS3 to OS0 in TCSRV so that the output will go to 1 at compare match with TCORA and to 0 at compare match with TCORB.
- 3. Set bits TVEG1 and TVEG0 in TCRV1 and set TRGE to select the falling edge of the TRGV input.
- 4. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired clock source.
- 5. After these settings, a pulse waveform will be output without further software intervention, with a delay determined by TCORA from the TRGV input, and a pulse width determined by (TCORB TCORA).

Figure 12.10 Example of Pulse Output Synchronized to TRGV Input

D '		Initial	D // //	
Bit	Bit Name	Value	R/W	Description
2	EC0	1	R/W	Master Enable C0
				0: FTIOC0 pin output is enabled according to the TPMR, TFCR, and TIORC_0 settings
				1: FTIOC0 pin output is disabled regardless of the TPMR, TFCR, and TIORC_0 settings (FTIOC0 pin is operated as an I/O port).
1	EB0	1	R/W	Master Enable B0
				0: FTIOB0 pin output is enabled according to the TPMR, TFCR, and TIORA_0 settings
				1: FTIOB0 pin output is disabled regardless of the TPMR, TFCR, and TIORA_0 settings (FTIOB0 pin is operated as an I/O port).
0	EA0	1	R/W	Master Enable A0
				0: FTIOA0 pin output is enabled according to the TPMR, TFCR, and TIORA_0 settings
				1: FTIOA0 pin output is disabled regardless of the TPMR, TFCR, and TIORA_0 settings (FTIOA0 pin is operated as an I/O port).

13.3.6 Timer Output Control Register (TOCR)

TOCR selects the initial outputs before the first occurrence of a compare match. Note that bits OLS1 and OLS0 in TFCR set these initial outputs in reset synchronous PWM mode and complementary PWM mode.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	TOD1	0	R/W	Output Level Select D1
				0: 0 output at the FTIOD1 pin*
				1: 1 output at the FTIOD1 pin*
6	TOC1	0	R/W	Output Level Select C1
				0: 0 output at the FTIOC1 pin*
				1: 1 output at the FTIOC1 pin*
5	TOB1	0	R/W	Output Level Select B1
				0: 0 output at the FTIOB1 pin*
				1: 1 output at the FTIOB1 pin*

TIORC: TIORC selects whether GRC or GRD is used as an output compare register or an input capture register. When an output compare register is selected, the output setting is selected. When an input capture register is selected, an input edge of an input capture signal is selected. TIORC also selects the function of FTIOC or FTIOD pin.

Bit	Bit Name	Initial value	R/W	Description
7	_	1		Reserved
				This bit is always read as 1.
6	IOD2	0	R/W	I/O Control D2 to D0
5	IOD1	0	R/W	GRD is an output compare register:
4	IOD0	0	R/W	000: Disables pin output by compare match
				001: 0 output by GRD compare match
				010: 1 output by GRD compare match
				011: Toggle output by GRD compare match
				GRD is an input capture register:
				100: Input capture to GRD at the rising edge
				101: Input capture to GRD at the falling edge
				11X: Input capture to GRD at both rising and falling edges
3	_	1		Reserved
				This bit is always read as 1.
2	IOC2	0	R/W	I/O Control C2 to C0
1	IOC1	0	R/W	GRC is an output compare register:
0	IOC0	0	R/W	000: Disables pin output by compare match
				001: 0 output by GRC compare match
				010: 1 output by GRC compare match
				011: Toggle Output by GRC compare match
				GRC is an input capture register:
				100: Input capture to GRC at the rising edge
				101: Input capture to GRC at the falling edge
				11X: Input capture to GRC at both rising and falling edges

Legend: X: Don't care

ТОВ0	POLB	Initial Output Level
0	0	1
0	1	0
1	0	0
1	1	1

Figure 13.21 Example of PWM Mode Setting Procedure

RENESAS

16.6.2 Multiprocessor Serial Data Reception

Figure 16.17 shows a sample flowchart for multiprocessor serial data reception. If the MPIE bit in SCR3 is set to 1, data is skipped until data with a 1 multiprocessor bit is sent. On receiving data with a 1 multiprocessor bit, the receive data is transferred to RDR. An RXI interrupt request is generated at this time. All other SCI3 operations are the same as those in asynchronous mode. Figure 16.18 shows an example of SCI3 operation for multiprocessor format reception.

17.5 Interrupt Request

There are six interrupt requests in this module; transmit data empty, transmit end, receive data full, NACK receive, STOP recognition, and arbitration lost/overrun error. Table 17.3 shows the contents of each interrupt request.

Table 17.3	Interrupt	Requests
-------------------	-----------	----------

Interrupt Request	Abbreviation	Interrupt Condition	I ² C Mode	Clocked Synchronous Mode
Transmit Data Empty	TXI	(TDRE=1) • (TIE=1)	0	0
Transmit End	TEI	(TEND=1) • (TEIE=1)	0	0
Receive Data Full	RXI	(RDRF=1) • (RIE=1)	0	0
STOP Recognition	STPI	(STOP=1) • (STIE=1)	0	×
NACK Receive	NAKI	{(NACKF=1)+(AL=1)} •	0	×
Arbitration Lost/Overrun Error	-	(NAKIE=1)	0	0

When interrupt conditions described in table 17.3 are 1 and the I bit in CCR is 0, the CPU executes an interrupt exception processing. Interrupt sources should be cleared in the exception processing. TDRE and TEND are automatically cleared to 0 by writing the transmit data to ICDRT. RDRF are automatically cleared to 0 by reading ICDRR. TDRE is set to 1 again at the same time when transmit data is written to ICDRT. When TDRE is cleared to 0, then an excessive data of one byte may be transmitted.

18.3.2 A/D Control/Status Register (ADCSR)

ADCSR consists of the control bits and conversion end status bits of the A/D converter.

Bit	Bit Name	Initial Value	R/W	Description
7	ADF	0	R/W	A/D End Flag
				[Setting conditions]
				When A/D conversion ends in single mode
				When A/D conversion ends once on all the channels selected in scan mode
				[Clearing condition]
				• When 0 is written after reading ADF = 1
6	ADIE	0	R/W	A/D Interrupt Enable
				A/D conversion end interrupt request (ADI) is enabled by ADF when this bit is set to 1
5	ADST	0	R/W	A/D Start
				Setting this bit to 1 starts A/D conversion. In single mode, this bit is cleared to 0 automatically when conversion on the specified channel is complete. In scan mode, conversion continues sequentially on the specified channels until this bit is cleared to 0 by software, a reset, or a transition to standby mode.
4	SCAN	0	R/W	Scan Mode
				Selects single mode or scan mode as the A/D conversion operating mode.
				0: Single mode
				1: Scan mode
3	CKS	0	R/W	Clock Select
				Selects the A/D conversions time.
				0: Conversion time = 134 states (max.)
				1: Conversion time = 70 states (max.)
				Clear the ADST bit to 0 before switching the conversion time.

18.5 A/D Conversion Accuracy Definitions

This LSI's A/D conversion accuracy definitions are given below.

Resolution

The number of A/D converter digital output codes

• Quantization error

The deviation inherent in the A/D converter, given by 1/2 LSB (see figure 18.4).

Offset error

The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from the minimum voltage value 0000000000 to 0000000001 (see figure 18.5).

• Full-scale error

The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from 1111111110 to 111111111 (see figure 18.5).

• Nonlinearity error

The deviation from the ideal A/D conversion characteristic as the voltage changes from zero to full scale. This does not include the offset error, full-scale error, or quantization error.

• Absolute accuracy

The deviation between the digital value and the analog input value. Includes offset error, fullscale error, quantization error, and nonlinearity error.

Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
ICIER	TIE	TEIE	RIE	NAKIE	STIE	ACKE	ACKBR	ACKBT	IIC2
ICSR	TDRE	TEND	RDRF	NACKF	STOP	AL/OVE	AAS	ADZ	-
SAR	SVA6	SVA5	SVA4	SVA3	SVA2	SVA1	SVA0	FS	_
ICDRT	ICDRT7	ICDRT6	ICDRT5	ICDRT4	ICDRT3	ICDRT2	ICDRT1	ICDRT0	-
ICDRR	ICDRR7	ICDRR6	ICDRR5	ICDRR4	ICDRR3	ICDRR2	ICDRR1	ICDRR0	_
_	_	_	_	_	_	_	_	_	_
TMB1	TMB17	_	_	_	_	TMB12	TMB11	TMB10	Timer B1
TCB1	TCB17	TCB16	TCB15	TCB14	TCB13	TCB12	TCB11	TCB10	_
_	_	_	_	_	_	_	_	_	_
FLMCR1	_	SWE	ESU	PSU	EV	PV	E	Р	ROM
FLMCR2	FLER	_	_	_	_	_	_	_	_
FLPWCR	PDWND	_	_	_	_	_	_	_	_
EBR1	_	EB6	EB5	EB4	EB3	EB2	EB1	EB0	_
FENR	FLSHE	_	_	_	_	_	_	_	-
TCRV0	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	Timer V
TCSRV	CMFB	CMFA	OVF	_	OS3	OS2	OS1	OS0	_
TCORA	TCORA7	TCORA6	TCORA5	TCORA4	TCORA3	TCORA2	TCORA1	TCORA0	_
TCORB	TCORB7	TCORB6	TCORB5	TCORB4	TCORB3	TCORB2	TCORB1	TCORB0	-
TCNTV	TCNTV7	TCNTV6	TCNTV5	TCNTV4	TCNTV3	TCNTV2	TCNTV1	TCNTV0	-
TCRV1	_	_	_	TVEG1	TVEG0	TRGE	_	ICKS0	_
_	_	_	_	_	_	_	_	_	_
SMR	СОМ	CHR	PE	PM	STOP	MP	CKS1	CKS0	SCI3
BRR	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0	-
SCR3	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	-
TDR	TDR7	TDR6	TDR5	TDR4	TDR3	TDR2	TDR1	TDR0	-
SSR	TDRE	RDRF	OER	FER	PER	TEND	MPBR	MPBT	-
RDR	RDR7	RDR6	RDR5	RDR4	RDR3	RDR2	RDR1	RDR0	-
ADDRA	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	A/D
	AD1	AD0	—	_	_	_		—	converter

Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
PDR8	P87	P86	P85	_	_	_		_	I/O port
PDRB	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	-
PMR1	IRQ3	IRQ2	IRQ1	IRQ0	TXD2	PWM	TXD	TMOW	-
PMR5	POF57	POF56	WKP5	WKP4	WKP3	WKP2	WKP1	WKP0	-
PMR3	_	_	_	POF24	POF23	_	_	_	-
PCR1	PCR17	PCR16	PCR15	PCR14		PCR12	PCR11	PCR10	
PCR2	_	_	_	PCR24	PCR23	PCR22	PCR21	PCR20	-
PCR3	PCR37	PCR36	PCR35	PCR34	PCR33	PCR32	PCR31	PCR30	-
PCR5	PCR57* ³	PCR56*3	PCR55	PCR54	PCR53	PCR52	PCR51	PCR50	-
PCR6	PCR67	PCR66	PCR65	PCR64	PCR63	PCR62	PCR61	PCR60	-
PCR7	_	PCR76	PCR75	PCR74	_	PCR72	PCR71	PCR70	-
PCR8	PCR87	PCR86	PCR85	_	_	_	_	_	-
SYSCR1	SSBY	STS2	STS1	STS0	NESEL	_	_	—	Low power
SYSCR2	SMSEL	LSON	DTON	MA2	MA1	MA0	SA1	SA0	-
IEGR1	NMIEG		_	_	IEG3	IEG2	IEG1	IEG0	Interrupt
IEGR2	—	—	WPEG5	WPEG4	WPEG3	WPEG2	WPEG1	WPEG0	-
IENR1	IENDT	IENTA	IENWP	_	IEN3	IEN2	IEN1	IEN0	-
IENR2	_	_	IENTB1	_	_	_	_	_	-
IRR1	IRRDT	IRRTA	_	_	IRRI3	IRRI2	IRRI1	IRRI0	-
IRR2	_	_	IRRTB1	_	_	_	_	_	-
IWPR	_	_	IWPF5	IWPF4	IWPF3	IWPF2	IWPF1	IWPF0	Interrupt
MSTCR1	_	MSTIIC	MSTS3	MSTAD	MSTWD	_	MSTTV	MSTTA	Low power
MSTCR2	MSTS3_2	_	_	MSTTB1			MSTTZ	MSTPWM	-
_					_	_			

• EEPROM

Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
EKR									EEPROM

Notes: 1. LVDC: Low-voltage detection circuits (optional)

2. WDT: Watchdog timer

3. These bits are reserved in the EEPROM stacked F-ZTAT[™] and mask-ROM versions.

RENESAS

					Value	es		
Item	Symbol	Applicable Pins	Test Condition	Min	Тур	Max	Unit	Notes
Standby mode current consump- tion	I _{stby}	V _{cc}	32-kHz crystal resonator not used	_	_	5.0	μA	*
RAM data retaining voltage	V _{RAM}	V _{cc}		2.0	_	_	V	

Note: * Pin states during current consumption measurement are given below (excluding current in the pull-up MOS transistors and output buffers).

Mode	RES Pin	Internal State	Other Pins	Oscillator Pins
Active mode 1	V _{cc}	Operates	V _{cc}	Main clock: ceramic or crystal resonator
Active mode 2		Operates (¢OSC/64)		Subclock: Pin X1 = V _{ss}
Sleep mode 1	V _{cc}	Only timers operate	V _{cc}	
Sleep mode 2		Only timers operate (
Subactive mode	V _{cc}	Operates	V _{cc}	Main clock: ceramic or crystal resonator
Subsleep mode	V _{cc}	Only timers operate	V _{cc}	Subclock resonator: crystal
Standby mode	V _{cc}	CPU and timers both stop	V _{cc}	Main clock: ceramic or crystal resonator
				Subclock: Pin X1 = V _{ss}

Figure B.18 Port 7 Block Diagram (P74)

TCNT	189, 374, 381, 386
TCNTV	161, 377, 383, 388
TCORA	161, 377, 383, 388
TCORB	161, 377, 383, 388
TCR	191, 374, 381, 386
TCRV0	162, 376, 383, 387
TCRV1	165, 377, 383, 388
TCSRV	164, 376, 383, 387
TCSRWD	252, 378, 384, 388
TCWD	253, 378, 384, 388
TDR	263, 377, 383, 388
TFCR	185, 375, 382, 386
TIER	196, 374, 381, 386
TIORA	192, 374, 381, 386
TIORC	193, 374, 381, 386
TLB1	
TMB1	155, 376, 383, 387
TMDR	183, 375, 382, 386
TMWD	253, 378, 384, 388
TOCR	
TOER	187, 375, 382, 386
TPMR	184, 375, 382, 386
TSR	194, 374, 381, 386
TSTR	182, 375, 382, 386
Register field	

S

Bit rate	269
Break	300
Clocked synchronous mode	284

Framing error	280
Multiprocessor communication	
function	292
Overrun error	280
Parity error	280
Stacked-structure cross-sectional	
view of H8/3687N	491
Stack pointer (SP)	17

Т

Timor D1	152
	133
Auto-reload timer operation	156
Event counter operation	157
Interval timer operation	156
Timer V	159
Timer Z	175
Buffer operation	230
Complementary PWM mode	221
Input capture function	207
PWM mode	211
Reset synchronous PWM mode	217
Synchronous operation	210
Waveform output by	
compare match	203
1	

V

Vector address4	8
-----------------	---

W

Watchdog	timer	251
----------	-------	-----

